Experiência IV (aulas 06 e 07) Queda livre

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Experiência IV (aulas 06 e 07) Queda livre"

Transcrição

1 Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de um corpo, comparando os resulados experimenais com o modelo da queda livre. Elaborar um modelo consise em descrever cero fenômeno a parir de uma eoria, adoando um conjuno de hipóeses que nos levam a considerar apenas os efeios mais imporanes. Uilizaremos a análise gráfica para verificar a validade do modelo empregado e, assim, das hipóeses que o originaram. Oberemos ambém uma esimaiva da aceleração da gravidade. Com ese esudo, ambém iremos discuir como medir a velocidade de um objeo, que é uma grandeza derivada de ouras duas grandezas fundamenais (o empo e o espaço).. Inrodução A elaboração de modelos a parir de hipóeses simplificadoras é um procedimeno imporane para a Física. Os fenômenos físicos dependem de muios faores e é fundamenal saber reer apenas aqueles mais relevanes, que influenciam de modo significaivo o processo considerado. Quando uma maçã cai de uma árvore podemos dizer que ela sofre a influência da aração graviacional, do empuxo relaivo ao ar que a circunda e da resisência do ar. A princípio poderíamos considerar ambém a variação da aração graviacional da Terra com a alura, a influência dos ouros planeas e galáxias. Levar em cona odas esas forças para descrever a queda da maçã poderia ornar impraicável a obenção de qualquer resulado numérico. Assim, por meio da análise da influência relaiva dos faores mencionados, podemos eleger os mais relevanes e, com a hipóese de que apenas eles governam o movimeno do corpo, somos capazes de descrever o fenômeno de maneira quaniaiva.

2 No modelo de queda livre supõe-se que oda a influência do ar sobre o movimeno do corpo é desprezível. Nese caso, a hipóese com que rabalhamos é a de que não há nenhuma oura força auando no objeo, a não ser a da aração graviacional. Quando se aplica um modelo, é sempre necessário considerar os limies da sua aplicabilidade. Podemos usar o modelo de queda livre para afirmar que uma bolinha de chumbo e de papel caem de 1 mero de alura em um mesmo inervalo de empo, por exemplo. Mas será que a hipóese de desprezar a influência do ar coninua válida quando lançamos eses objeos do décimo andar de um prédio? Nesa aula esudaremos a queda de um objeo com um formao aerodinâmico denro da sala do laboraório, verificando se o modelo de queda livre descreve adequadamene os resulados empíricos denro da nossa precisão experimenal. De acordo com a segunda lei de Newon, podemos relacionar a força resulane F sobre um cero corpo com a sua quanidade de movimeno como: dp F d onde p mv, sendo m a massa do corpo e, (1) dx v d a siuação em que a massa é consane, emos: em que a é a aceleração., a sua velocidade. Considerando dv F m ma, () d No modelo de queda livre rabalhamos com a hipóese de que apenas a força de aração graviacional aua sobre o corpo. Esa pode ser dada por, onde g é a aceleração da gravidade, desde que o eveno esudado siue-se nas proximidades da Terra. Dessa maneira, escrevemos: ma mg mg. (3) Considerando que a velocidade e a posição iniciais são dadas por respecivamene, a solução da equação (), empregando (3) fornece: g x x v, (4) 0 0 que represena a posição do objeo em função do empo. Se a posição e velocidade iniciais e a aceleração da gravidade possuem a mesma direção, podemos reescrever a equação acima, de maneira simplificada, como: g x x v. (5) 0 0 p v 0 e x 0,

3 A velocidade, por sua vez, é dada por: v v g 0. (6) Com o modelo de queda livre iramos uma oura conclusão imporane acerca do movimeno do corpo e que empregaremos na análise dos dados: como se considera que a aceleração é consane, podemos dizer que a velocidade média enre dois insanes é igual à velocidade insanânea na meade do inervalo, 1 m. Dessa forma, emos: 1 e v m v 1, x x1 1. (7) Podemos nos quesionar em que condições esa aproximação é válida. Será que ela é válida somene para o caso da queda livre? Ou será que mesmo para siuações onde a influência do ar é mensurável, esa aproximação ambém é válida para inervalos de empo curos? 3. Procedimeno experimenal Nesa experiência, o objeo a ser lançado em a forma de um elipsoide de revolução (parecido com um ovo), que cai enre dois fios meálicos sem ocá-los. Inicialmene, o objeo é manido no opo da hase por meio de um eleroímã, que é desligado aravés de uma chave, liberando o elipsoide. O acionameno coninuado desa chave, durane a queda do elipsoide, provoca pulsos de ala ensão enre os fios e, devido a um anel meálico em orno do corpo (na Figura 1 ele é represenado por uma faixa hachurada em orno do elipsoide, que é feio de um maerial isolane), ocorrem descargas eléricas enre os fios, originando faíscas. Os pulsos são gerados por um circuio elérico, com a mesma frequência da rede elérica, f 60,00 Hz (eses quaro algarismos significaivos mosram a grande precisão do período de oscilação da rede elérica). 1 Assim, o inervalo de empo enre duas faíscas é T s. 60,00

4 Figura 1: equipameno uilizado para o esudo da queda do corpo. As faíscas provocadas pelos pulsos de ala ensão enre os dois fios marcam um papel encerado. Para regisrar a ocorrência das faíscas emprega-se uma fia de papel encerado (papel de fax), colocada ao longo da hase de supore dos fios. As descargas eléricas marcam o papel, deerminando a posição do objeo no insane em que a faísca ocorreu. Para se realizar a omada de dados sugerimos os seguines passos: 1) para garanir que o elipsoide marque correamene o papel, é imporane observar se a hase de supore dos fios esá alinhada com a verical, o que pode ser verificado com um fio de prumo e com algumas simulações de queda do corpo. Nesas deve-se noar se o objeo não oca os fios. Tome muio cuidado para não omar um choque elérico; ) para ober o deslocameno do corpo com o empo, usamos o papel encerado que será marcado pelas faíscas em inervalos consanes. Nesa eapa devese prender o papel na hase e colocar o elipsoide no opo dela, preso pelo eleroímã; 3) após garanir que a hase eseja na verical, a fia presa correamene e o elipsoide preso no opo da hase, aciona-se a chave que desliga o eleroímã e ao mesmo empo dá início aos pulsos de ala ensão. Manenha a chave pressionada durane oda a queda; 4) após a queda do elipsoide, é imporane observar se as marcas no papel encerado são regulares, pois iso garane que odas as faíscas ocorreram correamene e não houve falhas.

5 4. Análise de dados Para analisarmos o movimeno do corpo, podemos deerminar a relação enre a sua velocidade e o empo. Para isso, medimos o deslocameno do elipsoide x x x, correspondene ao inervalo de empo, obendo a ij j i velocidade insanânea em v m m i j xi x x ij v i, j ij j i j, a parir de (7):. ij j i É imporane lembrar que ao usarmos esa relação assumimos que a aceleração é consane, pelo menos em um breve inervalo de empo. Na análise dos dados, além da unidade convencional de empo, o segundo, podemos alernaivamene adoar como unidade de empo o inervalo enre duas faíscas, a qual denominamos de u, onde u 1/ 60s. Por exemplo, podemos dizer que a erceira faísca ocorre em. Fica a criério do aluno escolher a unidade de empo usada na análise. Pare I: 3u A análise dos resulados é feia a parir das seguines eapas: 1) idenificar o primeiro pono marcado na fia, associando-o com o insane inicial, ou seja, (ou 0 s). Localizar os demais, anoando ao lado deles os empos correspondenes em u ou segundos (1 u, u, 3 u e ec); 0u ) medir a disância enre os diversos ponos, x x x ij j i, com uma régua, anoando os valores em uma abela com a descrição do inervalo ao qual eles se referem. Um dos inegranes do grupo, denominado de A, oberá a disância enre duas marcas consecuivas (1-, 3-4, 5-6 e ec) e o B medirá, pulando uma marca (1-3, -4, 5-7, 6-8 e ec). Veja que nenhum pono foi omado como exremo comum a dois inervalos. Iso foi feio para eviar que um dado seja dependene de ouro. Não se esqueça de esimar a incereza deses valores; 3) consruir abelas das velocidades insanâneas e dos empos aos quais elas se referem, com as respecivas incerezas. Pare II: 1) Fazer um gráfico da velocidade em função do empo, empregando os ponos obidos na eapa anerior, colocando barras de incereza. Assumindo a validade das hipóeses que dão origem ao modelo de queda livre, esperamos ober uma dependência linear enre a velocidade e o empo, o

6 que represena que a aceleração do corpo é consane. A parir desa ideia, avalie a adequação do modelo aos dados. Eles são bem descrios por uma rea? ) Por meio da análise do gráfico, deerminar os parâmeros da rea com as respecivas incerezas (há uma explicação sobre iso no capíulo IV Inerpreação gráfica de dados). Teremos enão a velocidade no insane inicial e a aceleração do corpo; 3) Discuir os resulados obidos, comparando a aceleração da gravidade obida com o valor fornecido pelo IAG (Insiuo de Asronomia, Geofísica e Ciências Amosféricas), g = 9,7864 m/s. 5. Quesões 1) Por que é imporane omar inervalos cujos exremos não sejam repeidos? ) A primeira faísca deve obrigaoriamene ocorrer com o acionameno da chave que desliga o eleroímã? Nese senido, o valor da velocidade inicial irado do ajuse da rea esá de acordo com o esperado? 6. Referências 1. J. H. Vuolo e al, Física Experimenal para o Bacharelado em Física, Geofísica e Meeorologia, Insiuo de Física da USP (005).

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço

Física e Química A Ficha de trabalho nº 2: Unidade 1 Física 11.º Ano Movimentos na Terra e no Espaço Física e Química A Ficha de rabalho nº 2: Unidade 1 Física 11.º Ano Moimenos na Terra e no Espaço 1. Um corpo descree uma rajecória recilínea, sendo regisada a sua posição em sucessios insanes. Na abela

Leia mais

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade Incereza- Padrão Repeiividade! A incereza padrão corresponde ao desvio-padrão (esimaiva do desvio-padrão da população) e deve ser associado a ela o número de graus de liberdade (reflee o grau de segurança

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES

GERAÇÃO DE PREÇOS DE ATIVOS FINANCEIROS E SUA UTILIZAÇÃO PELO MODELO DE BLACK AND SCHOLES XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 1 a15 de ouubro de

Leia mais

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada

Desenvolvimento de um sistema instrumentado para ensaios de filtração em batelada Desenvolvimeno de um sisema insrumenado para ensaios de ilração em baelada Pedro Tersiguel de Oliveira Bolsisa de Iniciação Cieníica, Engenharia ecânica, UFRJ Claudio L. Schneider Orienador, Engenheiro

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

RESSALTO HIDRÁULICO Nome: nº

RESSALTO HIDRÁULICO Nome: nº RESSALTO HIDRÁULICO Nome: nº O ressalo hidráulico é um dos fenômenos imporanes no campo da hidráulica. Ele foi primeiramene descrio por Leonardo da Vinci e o primeiro esudo experimenal foi crediado a Bidone

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

Atividade experimental

Atividade experimental Nome: n o Série/Classe: Daa: / / Aividade experimenal ermomeria, calorimeria e ransferência de calor Componenes da equipe: Nome Nu m. Série/Cla sse Daa 1 Daa 2 Conrole dos equipamenos uilizados Equipamenos

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados

Capítulo 4. Propriedades dos Estimadores de Mínimos Quadrados Capíulo 4 Propriedades dos Esimadores de Mínimos Quadrados Hipóeses do Modelo de Regressão Linear Simples RS1. y x e 1 RS. Ee ( ) 0 E( y ) 1 x RS3. RS4. var( e) var( y) cov( e, e ) cov( y, y ) 0 i j i

Leia mais

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase

ROTEIRO DE CÁLCULO. Este roteiro de cálculo se aplica ao projeto de trocadores de calor casco e tubos, sem mudança de fase ROEIRO DE CÁLCULO Ese roeiro de cálculo se aplica ao projeo de rocadores de calor casco e ubos, sem mudança de fase . Deerminar qual fluido passa pelo ubo e qual passa pelo casco. Diferença de emperauras

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Circuitos simples em corrente alternada Resistor, Capacitor e Indutor

Circuitos simples em corrente alternada Resistor, Capacitor e Indutor 1 - Conceios relacionados Resisência, correne, ensão, reaância, fase, ferença de fase 2 Objeivos Avaliar a dependência da reaância de sposiivos simples como resisor, capacior e induor em regime esacionário

Leia mais

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ

GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E QUALIDADE DE ENERGIA - GCQ SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCQ - 11 16 a 21 Ouubro de 2005 Curiiba - Paraná GRUPO XIII GRUPO DE ESTUDO DE INTERFERÊNCIAS, COMPATIBILIDADE ELETROMAGNÉTICA E

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

CURVAS DE CRESCIMENTO E OTIMIZAÇÃO DE UM PROCESSO INDUSTRIAL DE FERMENTAÇÃO

CURVAS DE CRESCIMENTO E OTIMIZAÇÃO DE UM PROCESSO INDUSTRIAL DE FERMENTAÇÃO CURVAS DE CRESCIMENTO E OTIMIZAÇÃO DE UM PROCESSO INDUSTRIAL DE FERMENTAÇÃO Naália Peçanha Caninas Companhia Municipal de Limpeza Urbana - COMLURB Rua Major Ávila, 358 CEP 20.519-900-Rio de Janeiro- RJ

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares

Biofísica II Turma de Biologia FFCLRP USP Prof. Antônio Roque Biologia de Populações 2 Modelos não-lineares. Modelos Não-Lineares Modelos Não-Lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

4 O Papel das Reservas no Custo da Crise

4 O Papel das Reservas no Custo da Crise 4 O Papel das Reservas no Cuso da Crise Nese capíulo buscamos analisar empiricamene o papel das reservas em miigar o cuso da crise uma vez que esa ocorre. Acrediamos que o produo seja a variável ideal

Leia mais

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR.

S = S S 0 S>0 S<0 S 13 S 23. Mecânica é o ramo da Física que estuda os movimentos. Pode ser dividida em: S(m) 1. CINEMÁTICA ESCALAR. Mecânica é o ramo da Física que esuda os movimenos. Pode ser dividida em: Início Final (m) a) Cinemáica: Esuda os movimenos sem se preocupar com as suas causas. b) Dinâmica: Esuda as causas dos movimenos.

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES

UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES UTILIZAÇÃO DO MÉTODO DE HOLT-WINTERS PARA PREVISÃO DO LEITE ENTREGUE ÀS INDÚSTRIAS CATARINENSES Rober Wayne Samohyl Professor do Programa de Pós-Graduação em Engenharia de Produção e Sisemas UFSC. Florianópolis-SC.

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação.

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação. MDELS USADS EM QUÍMICA: CINÉTICA N NÍVEL SUPERIR André Luiz Barboza Formiga Deparameno de Química Fundamenal, Insiuo de Química, Universidade de São Paulo. C.P. 6077, CEP 05513-970, São Paulo, SP, Brasil.

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

Cálculo Vetorial - Lista de Exercícios

Cálculo Vetorial - Lista de Exercícios álculo Veorial - Lisa de Exercícios (Organizada pela Profa. Ilka Rebouças). Esboçar o gráfico das curvas represenadas pelas seguines funções veoriais: a) a 4 i j, 0,. d) d i 4 j k,. b) b sen i 4 j cos

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Universidade do Esado do Rio de Janeiro Insiuo de Maemáica e Esaísica Economeria Variável dummy Regressão linear por pares Tese de hipóeses simulâneas sobre coeficienes de regressão Tese de Chow professorjfmp@homail.com

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

Exercícios 5 Leis de Newton

Exercícios 5 Leis de Newton Exercícios 5 Leis de Newon 1) (UES) Um carro freia bruscamene e o passageiro bae com a cabeça no idro para-brisa. Três pessoas dão a seguine explicação sobre o fao: 1- O carro foi freado, mas o passageiro

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Cap.7 IMPULSO, TRABALHO E ENERGIA

Cap.7 IMPULSO, TRABALHO E ENERGIA Impulso: Resula de uma força que acua num corpo durane um curo período de empo. Exemplos de impulsos: Colisão ou impaco de corpos. Quedas acidenais (podem provocar danos em pessoas idosas, acima dos 65

Leia mais

Jovens no mercado de trabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1

Jovens no mercado de trabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1 Jovens no mercado de rabalho formal brasileiro: o que há de novo no ingresso dos ocupados? 1 Luís Abel da Silva Filho 2 Fábio José Ferreira da Silva 3 Silvana Nunes de Queiroz 4 Resumo: Nos anos 1990,

Leia mais

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE

ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE TRABALHO PRÁTICO Nº 1 ESTUDO DO MOVIMENTO UNIFORMEMENTE ACELERADO DETERMINAÇÃO DA ACELERAÇÃO DA GRAVIDADE Objecivo - Preende-se esudar o movimeno recilíneo e uniformemene acelerado medindo o empo gaso

Leia mais

Curso de Dinâmica das Estruturas 1

Curso de Dinâmica das Estruturas 1 Curso de Dinâica das Esruuras 1 I INTRODUÇÃO 1 O principal objeivo dese curso é apresenar eodologias para analisar ensões e deslocaenos desenvolvidos por u dado sisea esruural quando o eso esá sujeio à

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

ANÁLISE DE ESTABILIDADE ESTÁTICA

ANÁLISE DE ESTABILIDADE ESTÁTICA 31 APÍTULO 5 ANÁLISE DE ESTABILIDADE ESTÁTIA 5.1 - Inrodução A análise de esabilidade represena um dos ponos mais complexos do projeo de uma aeronave, pois geralmene envolve uma série de equações algébricas

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Palavras-chave: Modelagem Matemática, demografia brasileira, ensino médio.

Palavras-chave: Modelagem Matemática, demografia brasileira, ensino médio. A MODELAGEM MATEMÁTICA COMO FERRAMETA MOTIVADORA PARA A FORMAÇÃO DA CIDADAIA OS JOVES DO ESIO MÉDIO: UMA DISCUSSÃO SOBRE A DEMOGRAFIA BRASILEIRA Ana Claudia Saie Kakihaa 1 Universidade Esadual de Maringá

Leia mais

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS

AULA PRÁTICA-TEÓRICA 01 ANÁLISE DE CIRCUITOS COM DIODOS PráicaTeórica 01 Análise de circuios com diodos INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA

Leia mais

ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO

ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO M. F. C. SOUSA 1, W. R. S. CRUZ 2, R. A. MEDRONHO 3 e G. F. SILVA 4 1 Universidade Federal de Sergipe, Deparameno de

Leia mais

ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE

ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE 5, 6 e 7 de Agoso de 010 ISSN 1984-9354 ANÁLISE DO PROCESSO PRODUTIVO DE UMA INDÚSTRIA TÊXTIL ATRAVÉS DE CARTAS DE CONTROLE Maria Emilia Camargo (Universidade de Caxias do Sul) kamargo@erra.com.br Waler

Leia mais

2 PREVISÃO DA DEMANDA

2 PREVISÃO DA DEMANDA PREVISÃO DA DEMANDA Abandonando um pouco a visão românica do ermo previsão, milhares de anos após as grandes civilizações da nossa hisória, a previsão do fuuro vola a omar a sua posição de imporância no

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

TORNEIRO MECÂNICO TECNOLOGIA

TORNEIRO MECÂNICO TECNOLOGIA TORNEIRO MECÂNICO TECNOLOGIA CÁLCULO ÂNGULO INCL. CARRO SUP. TORNEAR CÔNICO DEFINIÇÃO: É indicar o ângulo de inclinação para desviar em graus na base do carro superior de acordo com a conicidade da peça

Leia mais

EXERCÍCIOS MECÂNICA - UNIDADE 1 - CINEMÁTICA

EXERCÍCIOS MECÂNICA - UNIDADE 1 - CINEMÁTICA www.pascal.com.br MECÂNICA - UNIDADE 1 - CINEMÁTICA EXERCÍCIOS Prof. Edson Osni Ramos (Cebola) 1. (BP - 2006) Analise as senenças a seguir. I. O século XVI foi marcado pela revolução cienífica no esudo

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Esadual do Sudoese da Bahia Dearameno de Ciências Exaas e Naurais.1- Roações, Cenro de Massa e Momeno Física I Prof. Robero Claudino Ferreira Índice 1. Movimeno Circular Uniformemene Variado;.

Leia mais

Econometria Semestre

Econometria Semestre Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por

Leia mais

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM?

DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? DENOMINADORES: QUAIS SÃO? COMO SE CALCULAM? POPULAÇÃO SOB OBSERVAÇÃO A idade e o sexo da população inscria nas lisas dos médicos paricipanes é conhecida. A composição dessas lisas é acualizada no final

Leia mais

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009 TIR Taxa Inerna de Reorno LCF 685-Economia de Recursos Floresais 2009 TIR: Taxa Inerna de Reorno AT Taxa Inerna de Reorno (TIR)de um projeo é aquela que orna o valor presene das receias menos o valor presene

Leia mais

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho

NOTA TÉCNICA. Nota Sobre Evolução da Produtividade no Brasil. Fernando de Holanda Barbosa Filho NOTA TÉCNICA Noa Sobre Evolução da Produividade no Brasil Fernando de Holanda Barbosa Filho Fevereiro de 2014 1 Essa noa calcula a evolução da produividade no Brasil enre 2002 e 2013. Para ano uiliza duas

Leia mais

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução: Queda Livre e Movimeno Uniformemene Acelerado Sergio Scarano Jr 1906/013 Exercícios Proposo Um navio equipado com um sonar preende medir a profundidade de um oceano. Para isso, o sonar emiiu um Ulra-Som

Leia mais

5.3 Escalonamento FCFS (First-Come, First Served)

5.3 Escalonamento FCFS (First-Come, First Served) c prof. Carlos Maziero Escalonameno FCFS (Firs-Come, Firs Served) 26 5.3 Escalonameno FCFS (Firs-Come, Firs Served) A forma de escalonameno mais elemenar consise em simplesmene aender as arefas em sequência,

Leia mais

Pontão Sul Brasília Lighting Design: Sandra Barbato

Pontão Sul Brasília Lighting Design: Sandra Barbato Foo: Paulo MacDowell Ponão Sul Brasília Lighing Design: Sandra Barbao 50 p o n o d e v i s a Morro Dois Irmãos (esq) e Palácio Guanabara, ambos no Rio de Janeiro, receberam iluminação especial. Foos: Lula

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

GABARITO COMENTADO 9 VESTIBULAR FEPECS 2009 PROVA 2 2 DIA (11/01/2009 DOMINGO)

GABARITO COMENTADO 9 VESTIBULAR FEPECS 2009 PROVA 2 2 DIA (11/01/2009 DOMINGO) GABARITO COMENTADO 9 VESTIBULAR FEPECS 9 PROVA DIA (//9 DOMINGO) Equipe de elaboradores: Eduardo Ulisses, George Menezes, Márcia Verburg, Édio Gleiser, Daniel Barros, Domigos Dias, Thiago Rezende, Hara

Leia mais

1 Pesquisador - Embrapa Semiárido. 2 Analista Embrapa Semiárido.

1 Pesquisador - Embrapa Semiárido.   2 Analista Embrapa Semiárido. XII Escola de Modelos de Regressão, Foraleza-CE, 13-16 Março 2011 Análise de modelos de previsão de preços de Uva Iália: uma aplicação do modelo SARIMA João Ricardo F. de Lima 1, Luciano Alves de Jesus

Leia mais

AMANDA OLIVEIRA, G. Depto. Engenharia de Computação e Automação - UFRN

AMANDA OLIVEIRA, G. Depto. Engenharia de Computação e Automação - UFRN ANÁLISE COMPARATIVA DE ALGUMAS TÉCNICAS PARA O ESTABELECIMENTO DE TRAJETÓRIAS EM AMBIENTES COM OBSTÁCULOS USANDO APRENDIZAGEM POR REFORÇO AMANDA OLIVEIRA, G. Depo. Engenharia de Compuação e Auomação -

Leia mais

Danilo Perretti Trofimoff EXPOSIÇÃO CAMBIAL ASSIMÉTRICA: EVIDÊNCIA SOBRE O BRASIL

Danilo Perretti Trofimoff EXPOSIÇÃO CAMBIAL ASSIMÉTRICA: EVIDÊNCIA SOBRE O BRASIL FACULDADE IBMEC SÃO PAULO Programa de Mesrado Profissional em Economia Danilo Perrei Trofimoff EXPOSIÇÃO CAMBIAL ASSIMÉTRICA: EVIDÊNCIA SOBRE O BRASIL São Paulo 2008 1 Livros Gráis hp://www.livrosgrais.com.br

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

JEL classification: E31, E52, E37. Classificação ANPEC: Área 4 Macroeconomia, Economia Monetária e Finanças.

JEL classification: E31, E52, E37. Classificação ANPEC: Área 4 Macroeconomia, Economia Monetária e Finanças. Políica moneária e câmbio: efeios sobre preços desagregados em um modelo FAVAR para o Brasil. RESUMO hiago Sevilhano Marinez ** Elcyon Caiado Lima * Vinícius dos Sanos Cerqueira ** Ese rabalho invesiga

Leia mais

Capítulo 7. O Modelo de Regressão Linear Múltipla

Capítulo 7. O Modelo de Regressão Linear Múltipla Capíulo 7 O Modelo de Regressão Linear Múlipla Quando ornamos um modelo econômico com mais de uma variável explanaória em um modelo esaísico correspondene, nós dizemos que ele é um modelo de regressão

Leia mais

Cap. 6 - Análise de Investimentos em Situação de Risco

Cap. 6 - Análise de Investimentos em Situação de Risco Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com Dependência

Leia mais