Sistemas não-lineares de 2ª ordem Plano de Fase

Tamanho: px
Começar a partir da página:

Download "Sistemas não-lineares de 2ª ordem Plano de Fase"

Transcrição

1 EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados, que recebe a denominação de plano de ase para o caso paricular a ser esudado nese ópico do curso. é um méodo gráico, que admie inerpreações geoméricas dedução do comporameno qualiaivo da solução no empo, sem recorrer a expressões analíicas na orma echada. rerao de ase: amília de rajeórias para dierenes condições iniciais, ornecendo uma visualização do padrão de comporameno do sisema. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase EA93 - Pro. Von Zuben desvanagem da análise no plano de ase: é aplicável apenas a sisemas que podem ser adequadamene descrios por dinâmicas aé a ordem. Obs: sisemas de a ordem ambém podem ser invesigados no plano de ase, com a paricularidade de ornecerem uma única rajeória e não uma amília delas. SLOTINE & LI, pg. Caso paricular: plano de ase considere o sisema dinâmico não-linear auônomo de a ordem: x x x, x, x, x, x x x x ese sisema apresena duas variáveis de esado. Porano, a evolução de seu esado no empo esá resria ao plano de esados espaço de esados de dimensão. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase

2 EA93 - Pro. Von Zuben como já ormalizado aneriormene, uma rajeória no espaço de esados é uma curva ormada pelo conjuno de ponos { x, x, } permanece como uma variável implícia. x, em que x,x x,x x Figura : Exemplo de rajeória no plano de esados Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 3 EA93 - Pro. Von Zuben no caso paricular em que x x, o plano de esados ambém recebe a denominação de plano de ase. sempre que um sisema dinâmico não-linear puder ser descrio com base na seguine equação dierencial não-linear de a ordem: x x, x é possível deinir x x, x x e ober: x x x, x, x, x x x x 3 Análise do Plano de Fase aravés de Linearização Méodo Indireo de Liapunov objeivo: no plano de ase, analisar as rajeórias do sisema nas proximidades dos ponos de equilíbrio. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 4

3 EA93 - Pro. Von Zuben seja F, com x x, a represenação linearizada de um sisema não-linear de a ordem em orno de um pono de equilíbrio x. Enão + +,, como a análise de esabilidade não é conclusiva quando pelo menos um auovalor em pare real nula, o esudo a ser apresenado a seguir se resringirá ao caso em que ambos os auovalores em pare real não-nula. assim, sejam,, os pares de auovalores e auoveores associados, à mariz F. Deina agora uma mariz de ransormação T [ v ], onde v e v v são veores linearmene independenes obidos a parir de e. Enão, rês casos devem ser analisados: Caso : T FT se e são auovalores reais e disinos de F; Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 5 Caso : T FT se é um auovalor real repeido de F; Caso 3: T α FT β β α se α ± jβ αre{}, βim{}; Exercício: Mosre que de I F de I T FT de T de T EA93 - Pro. Von Zuben, sabendo-se que, sendo T uma mariz não-singular. I F T. de I T FT de T IT T FT de T Solução: de T de I F de T de I F 3. Escolha de v e v para os rês casos considerados Caso : Tome v e v. T FT, com T [ v v ]. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 6

4 EA93 - Pro. Von Zuben Teorema: Se, enão e são LI. Prova por conradição: Suponha que exisem α e α, não odos nulos, ais que α + α. Sem perda de generalidade, assuma que α. Enão: α α +. α α Pré-muliplicando por F, resula: α α F + F +. α α Subsiuindo calculado acima, emos α α α +. α α α Como, por hipóese,, resula α. Daí, conclui-se que α α, chegando-se a uma conradição. Logo, para produzir + α α, deve-se er necessariamene α α, demonsrando que e são LI. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 7 Caso : Tome v e v I F v. T FT, com T [ v v ]. Caso 3: Tome v e v jv. {} {} Re Im T FT, com T [ v v ] Im{} Re{}. EA93 - Pro. Von Zuben 3. Aplicação da ransormação de similaridade Formas de Jordan o emprego das propriedades deinidas na seção anerior orna mais simples a análise das soluções do sisema linearizado. De ao, se deinirmos T enão F,, pode ser reescrio na orma: T FT T FT, T Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 8

5 EA93 - Pro. Von Zuben Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase Caso,, com isso, é possível ober { },,, e porano { },,, de orma desacoplada: e ; e como é assumido que, é possível expressar como segue: ln e, o que permie ober. EA93 - Pro. Von Zuben Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase Obs: as rajeórias no plano sisema linearizado se relacionam com as rajeórias no plano aravés da expressão: T. como conseqüência, o aspeco geral dos gráicos é o mesmo, mas podem ocorrer roações e escalonamenos disinos em cada eixo. e e [ ] v v v v T e e + x x x v v < <

6 EA93 - Pro. Von Zuben Caso.: e possuem o mesmo sinal nó a siuação: < < ou < < nó esável Figura : < < e ixos, para dierenes condições iniciais Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase EA93 - Pro. Von Zuben Figura 3: < < e ixos, para dierenes condições iniciais a siuação: > > ou > > nó insável rajeórias equivalenes às da igura para o caso > > e igura 3 para o caso > >, com as seas inveridas e CI s próximas de,. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase

7 EA93 - Pro. Von Zuben Caso.: e possuem sinais disinos sela a siuação: < < Figura 4: < < e ixos, para dierenes condições iniciais as rajeórias desa igura oram obidas para Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 3 EA93 - Pro. Von Zuben a siuação: < < Figura 5: < < e ixos, para dierenes condições iniciais as rajeórias desa igura oram obidas para Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 4

8 EA93 - Pro. Von Zuben 3.. Caso +,, assim, e, e + e, cuja solução é + e e como é assumido que, é possível expressar como segue: e ln, o que permie ober + Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 5 EA93 - Pro. Von Zuben a siuação: < nó esável Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 6

9 EA93 - Pro. Von Zuben a siuação: > nó insável Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase Caso 3 Re{ } Im{ } Re{ } Im{ } Im{ } Re{ } Im{ } Re{ } Re{ } Im{ }, Im{ } + Re{ }, ransormando para coordenadas polares, dadas por: resula cujas soluções são r + e φ g, r Re{ } r φ Im{ } Re{ } r e r φ Im{ } + φ EA93 - Pro. Von Zuben Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 8

10 EA93 - Pro. Von Zuben a siuação: Re{} < oco esável Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 9 a siuação: Re{} > oco insável EA93 - Pro. Von Zuben Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase

11 EA93 - Pro. Von Zuben 3 a siuação: Re{} cenro Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 4 Resumo EA93 - Pro. Von Zuben Auovalores de F Sisema Linearizado Sisema Não-Linear reais negaivos nó esável nó esável reais posiivos nó insável nó insável reais, com < sela sela complexos, com Re{}< oco esável oco esável complexos, com Re{}> oco insável oco insável complexos, com Re{} cenro? Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase

12 EA93 - Pro. Von Zuben 5 Plano de parâmeros x x x, x, x, x, x x x x x x x, x, x, x x x x x x x x x x x x, x x Em noação veorial: x x +, onde x é um pono de equilíbrio. x x + + F F x x x x F x x x x Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 3 de de I F + + Tr F + de F + p + p, com p Tr e p de p p, ± p Casos críicos de Lapunov: 4 F p e p, ± j p cenro F p p p e p, ± e p EA93 - Pro. Von Zuben Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 4

13 EA93 - Pro. Von Zuben neses casos, a linearização não inorma nada sobre a esabilidade, pois o ermo de a ordem é nulo na expansão de Talor, ou seja, o ermo que domina para qualquer perurbação em orno do pono de equilíbrio já é de ordem. p cenro oco insável oco esável nó insável nó esável p sela caso críico Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 5 6 Exemplo de uilização do plano de parâmeros EA93 - Pro. Von Zuben r + e k u s + s s + s + equação caracerísica: + k s + + k s + k s s + p + k k p p k p p 3 p p, com p p 3 p ± j 4 resulado: as curvas não se inercepam conclusão: k [, sela k, + nó esável Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 6

14 EA93 - Pro. Von Zuben Inerpreação geomérica no plano de parâmeros: p k +3 p k 3 Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 7 O lugar das raízes ica: EA93 - Pro. Von Zuben Im k + Re Criério de Rouh-Huriz: s + + k s + k k [, + + k k k + k >, k [, + k >, k > Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 8

15 EA93 - Pro. Von Zuben 7 Reerências para os ópicos 4, 5 e 6 FERREIRA, P.A.V. Noas de Aula EA93, FEEC/Unicamp, 997. KHALIL, H. Lesson 4 Nonlinear Ssems, in Masen, M.K. ed. Modern Conrol Ssems, IEEE Press, pp , 995. NIJMEIJER, H. & VAN DER SCHAFT, P. Nonlinear Dnamical Conrol Ssems, Springer, 99. OTT, E. Chaos in Dnamical Ssems, Ne York: Cambridge Universi Press, 993. OTT, E., GREBOGI, C., YORKE, J.A. Conrolling Chaos, Phsical Revie Leers, vol. 64, no., pp , March 99. SHINBROT, T., GREBOGI, C., OTT, E., YORKE, J.A. Using small perurbaions o conrol chaos, Naure, vol. 363, pp. 4-47, June 993. SLOTINE, J.-J. E. & LI, W. Applied Nonlinear Conrol, Prenice Hall, 99. Tópico 6 - Sisemas Não-Lineares de a ordem Plano de Fase 9

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração.

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração. Ao final desse grupo de slides os alunos deverão ser capazes de: OBJETIVOS Explicar a diferença enre regressão espúria e coinegração. Jusificar, por meio de ese de hipóeses, se um conjuno de séries emporais

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09 Teoria da Comuniação Pro. Andrei Piinini Legg Aula 09 Inrodução Sabemos que a inormação pode ser ransmiida aravés da modiiação das araerísias de uma sinusóide, hamada poradora do sinal de inormação. Se

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Comportamento Assintótico de Convoluções e Aplicações em EDP

Comportamento Assintótico de Convoluções e Aplicações em EDP Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese

Leia mais

Centro Federal de EducaçãoTecnológica 28/11/2012

Centro Federal de EducaçãoTecnológica 28/11/2012 Análise da Dinâmica da Volailidade dos Preços a visa do Café Arábica: Aplicação dos Modelos Heeroscedásicos Carlos Albero Gonçalves da Silva Luciano Moraes Cenro Federal de EducaçãoTecnológica 8//0 Objevos

Leia mais

Dinâmica de interação da praga da cana-de-açúcar com seu parasitóide Trichogramma galloi

Dinâmica de interação da praga da cana-de-açúcar com seu parasitóide Trichogramma galloi Dinâmica de ineração da praga da cana-de-açúcar com seu parasióide Trichogramma galloi Elizabeh de Holanda Limeira 1, Mara Rafikov 2 1 Universidade Federal do ABC - UFABC, Sano André, Brasil, behmacampinas@yahoo.com.br

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Curso de Controle Avançado (ELE-1815) Pe. Pedro M. Guimarães Ferreira S.J.

Curso de Controle Avançado (ELE-1815) Pe. Pedro M. Guimarães Ferreira S.J. Curso de Conrole Avançado (ELE-85) Pe. Pedro M. Guimarães Ferreira S.J. (Ese exo esá disponível em hp://www.fplf.org.br/pedro_varios/) Capíulo : Análise de Sisemas não lineares (Seguiremos nese capíulo

Leia mais

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão Modelos de Previsão Inrodução Em omada de decisão é basane comum raar problemas cujas decisões a serem omadas são funções de faos fuuros Assim, os dados descrevendo a siuação de decisão precisam ser represenaivos

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS Caroline Poli Espanhol; Célia Mendes Carvalho Lopes Engenharia de Produção, Escola de Engenharia, Universidade Presbieriana Mackenzie

Leia mais

Intervenção no Mercado Cambial: Eficácia de Derivativos e de Outros Instrumentos

Intervenção no Mercado Cambial: Eficácia de Derivativos e de Outros Instrumentos Inervenção no Mercado Cambial: Eicácia de Derivaivos e de Ouros Insrumenos RESUMO Ese arigo avalia a eicácia, no Brasil, dos insrumenos radicionais de políica cambial inervenções no mercado de câmbio à

Leia mais

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL FUNÇÕES CONVEAS EM EORIA DE APREÇAMENO DE OPÇÕES POR ARBIRAGEM UILIZANDO O MODELO BINOMIAL Devanil Jaques de SOUZA Lucas Moneiro CHAVES RESUMO: Nese rabalho uilizam-se écnicas maemáicas elemenares, baseadas

Leia mais

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA Orienador: Prof. Ph.D. Andrei Toom Área de concenração: Probabilidade Disseração submeida como requerimeno parcial para obenção do grau de Mesre

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA.

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA. UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA Área: ECONOMIA COELHO JUNIOR, Juarez da Silva PONTILI, Rosangela Maria

Leia mais

1 TRANSMISSÃO EM BANDA BASE

1 TRANSMISSÃO EM BANDA BASE Página 1 1 TRNSMISSÃO EM BND BSE ransmissão de um sinal em banda base consise em enviar o sinal de forma digial aravés da linha, ou seja, enviar os bis conforme a necessidade, de acordo com um padrão digial,

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produividade no Brasil Fernando de Holanda Barbosa Filho Samuel de Abreu Pessôa Resumo Esse arigo consrói uma série de horas rabalhadas para a

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Redes de Computadores

Redes de Computadores Inrodução Ins iuo de Info ormáic ca - UF FRGS Redes de Compuadores Conrole de fluxo Revisão 6.03.015 ula 07 Comunicação em um enlace envolve a coordenação enre dois disposiivos: emissor e recepor Conrole

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1

O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 O EFEITO DIA DO VENCIMENTO DE OPÇÕES NA BOVESPA 1 Paulo J. Körbes 2 Marcelo Marins Paganoi 3 RESUMO O objeivo dese esudo foi verificar se exise influência de evenos de vencimeno de conraos de opções sobre

Leia mais

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula Resumo Sisemas e Sinais Definição de Sinais e de Sisemas () lco@is.ul.p Insiuo Superior Técnico Definição de funções. Composição. Definição declaraiva e imperaiva. Definição de sinais. Energia e poência

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios! Principais diferenças! Como uilizar! Vanagens e desvanagens Francisco Cavalcane (francisco@fcavalcane.com.br) Sócio-Direor

Leia mais

Economia e Finanças Públicas Aula T21. Bibliografia. Conceitos a reter. Livro EFP, Cap. 14 e Cap. 15.

Economia e Finanças Públicas Aula T21. Bibliografia. Conceitos a reter. Livro EFP, Cap. 14 e Cap. 15. Economia e Finanças Públicas Aula T21 6.3 Resrição Orçamenal, Dívida Pública e Susenabilidade 6.3.1 A resrição orçamenal e as necessidades de financiameno 6.3.2. A divida pública 6.3.3 A susenabilidade

Leia mais

RASTREAMENTO GLOBAL E EXATO DE SISTEMAS MIMO INCERTOS USANDO DIFERENCIADORES EXATOS NÃO-HOMOGÊNEOS

RASTREAMENTO GLOBAL E EXATO DE SISTEMAS MIMO INCERTOS USANDO DIFERENCIADORES EXATOS NÃO-HOMOGÊNEOS Anais do XX Congresso Brasileiro de Auomáica Belo Horizone, MG, 2 a 24 de Seembro de 24 RASTREAMENTO GLOBAL E EXATO DE SISTEMAS MIMO INCERTOS USANDO DIFERENCIADORES EXATOS NÃO-HOMOGÊNEOS Paulo Vicor N

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO Pág.: 1/88 ÍNDICE Professor: Waldemir Loureiro Inrodução ao Conrole Auomáico de Processos... 4 Conrole Manual... 5 Conrole Auomáico... 5 Conrole Auo-operado... 6 Sisema

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO ANÁLSE DE UMA EQUAÇÃO DFERENCAL LNEAR QUE CARACTERZA A QUANTDADE DE SAL EM UM RESERATÓRO USANDO DLUÇÃO DE SOLUÇÃO Alessandro de Melo Omena Ricardo Ferreira Carlos de Amorim 2 RESUMO O presene arigo em

Leia mais

Uma avaliação da poupança em conta corrente do governo

Uma avaliação da poupança em conta corrente do governo Uma avaliação da poupança em cona correne do governo Manoel Carlos de Casro Pires * Inrodução O insrumeno de políica fiscal em vários ojeivos e não é surpreendene que, ao se deerminar uma mea de superávi

Leia mais

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB.

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB. Análise de Séries Temporais de Pacienes com HIV/AIDS Inernados no Hospial Universiário João de Barros Barreo (HUJBB), da Região Meropoliana de Belém, Esado do Pará Gilzibene Marques da Silva ¹ Adrilayne

Leia mais

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1 ETFSC UNED/SJ CURSO DE TELEFONIA DIGITAL CAPÍTULO. MODULAÇÃO POR CÓDIGO DE PULSO - PCM. INTRODUÇÃO. Uma grande pare dos sinais de inormações que são processados em uma rede de elecomunicações são sinais

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

ELECTRÓNICA DE POTÊNCIA II

ELECTRÓNICA DE POTÊNCIA II E.N.I.D.H. Deparameno de Radioecnia APONTAMENTOS DE ELECTRÓNICA DE POTÊNCIA II (Capíulo 2) José Manuel Dores Cosa 2000 42 ÍNDICE Inrodução... 44 CAPÍTULO 2... 45 CONVERSORES COMUTADOS DE CORRENTE CONTÍNUA...

Leia mais

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas J.G. Casro e al. / Invesigação Operacional, 27 (2007) 67-83 67 Uso da imulação de Mone Carlo e da Curva de Gailho na Avaliação de Opções de Venda Americanas Javier Guiérrez Casro Tara K. Nanda Baidya Fernando

Leia mais

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr.

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr. SP-2 X SEPOPE 2 a 25 de maio de 2006 a 2 s o 25 h 2006 X SIPÓSIO DE ESPECIAISTAS E PANEJAENTO DA OPERAÇÃO E EXPANSÃO EÉTRICA X SYPOSIU OF SPECIAISTS IN EECTRIC OPERATIONA AND EXPANSION PANNING FORIANÓPOIS

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA Capiulo V SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA 5.1 - INTRODUÇÃO I - QUALIDADE DA ÁGUA A água em sua uilização obedece a padrões qualiaivos que são variáveis de acordo com o seu uso (domésico, indusrial,

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

Susan Schommer Risco de Crédito 1 RISCO DE CRÉDITO

Susan Schommer Risco de Crédito 1 RISCO DE CRÉDITO Susan Schommer Risco de Crédio 1 RISCO DE CRÉDITO Definição: Risco de crédio é o risco de defaul ou de reduções no valor de mercado causada por rocas na qualidade do crédio do emissor ou conrapare. Modelagem:

Leia mais

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA Era uma vez uma pequena cidade que não inha água encanada. Mas, um belo dia, o prefeio mandou consruir uma caia d água na serra e ligou-a a uma rede de disribuição.

Leia mais

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO ALICAÇÃO DE MODELAGEM NO CRESCIMENTO OULACIONAL BRASILEIRO Adriano Luís Simonao (Faculdades Inegradas FAFIBE) Kenia Crisina Gallo (G- Faculdade de Ciências e Tecnologia de Birigüi/S) Resumo: Ese rabalho

Leia mais

Prof. Luiz Marcelo Chiesse da Silva DIODOS

Prof. Luiz Marcelo Chiesse da Silva DIODOS DODOS 1.JUÇÃO Os crisais semiconduores, ano do ipo como do ipo, não são bons conduores, mas ao ransferirmos energia a um deses ipos de crisal, uma pequena correne elérica aparece. A finalidade práica não

Leia mais

ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES

ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES Paulo Eduardo Nunes Bruel Disseração apresenada à escola de Engenharia de São Carlos da Universidade de São Paulo como pare dos requisios

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Elasticidades da demanda residencial de energia elétrica

Elasticidades da demanda residencial de energia elétrica Elasicidades da demanda residencial de energia elérica RESUMO O objeivo dese rabalho é esimar elasicidades de preço e renda da demanda residencial por elericidade aravés de modelos dinâmicos. Como objeo

Leia mais

POLÍTICA MONETÁRIA E MUDANÇAS MACROECONÔMICAS NO BRASIL: UMA ABORDAGEM MS-VAR

POLÍTICA MONETÁRIA E MUDANÇAS MACROECONÔMICAS NO BRASIL: UMA ABORDAGEM MS-VAR POLÍTICA MONETÁRIA E MUDANÇAS MACROECONÔMICAS NO BRASIL: UMA ABORDAGEM MS-VAR Osvaldo Cândido da Silva Filho Bacharel em Economia pela UFPB Mesre em Economia pela UFPB Douorando em Economia pelo PPGE UFRGS

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano. Curso. SIMULINK - Simulação de Modelos Quantitativos em Meio Ambiente

Prof. Dr. Marco Antonio Leonel Caetano. Curso. SIMULINK - Simulação de Modelos Quantitativos em Meio Ambiente Curso SIMULINK - Simulação de Modelos Quaniaivos em Meio Ambiene Prof.Dr. Marco Anonio Leonel Caeano Depo de Esaísica, Maemáica Aplicada e Compuacional UNESP - Rio Claro - SP 1997 1 1- Inegradores Numéricos

Leia mais

Risco no mercado de arroz em casca

Risco no mercado de arroz em casca RISCO NO MERCADO DE ARROZ EM CASCA ANDRÉIA CRISTINA DE OLIVEIRA ADAMI; GERALDO SANT ANA DE CAMARGO BARROS; ESALQ/USP PIRACICABA - SP - BRASIL adami@esalq.usp.br APRESENTAÇÃO ORAL Comercialização, Mercados

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais

Influência de Variáveis Meteorológicas sobre a Incidência de Meningite em Campina Grande PB

Influência de Variáveis Meteorológicas sobre a Incidência de Meningite em Campina Grande PB Revisa Fafibe On Line n.3 ago. 007 ISSN 808-6993 www.fafibe.br/revisaonline Faculdades Inegradas Fafibe Bebedouro SP Influência de Variáveis Meeorológicas sobre a Incidência de Meningie em Campina Grande

Leia mais

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a:

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a: PROVA DE MATEMÁTICA - TURMA DO o ANO DO ENINO MÉDIO COLÉGIO ANCHIETA-A - JUlHO DE. ELAORAÇÃO: PROFEORE ADRIANO CARIÉ E WALTER PORTO. PROFEORA MARIA ANTÔNIA C. GOUVEIA QUETÃO Considere os conjunos A { R

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão Transisor de Efeio de Campo de Pora Isolada MOSFET - Revisão 1 NMOS: esruura física NMOS subsrao ipo P isposiivo simérico isposiivo de 4 erminais Pora, reno, Fone e Subsrao (gae, drain, source e Bulk)

Leia mais

UMA APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA PARA DADOS EM SÉRIES TEMPORAIS DO CONSUMO AGREGADO DAS FAMÍLIAS BRASILEIRAS

UMA APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA PARA DADOS EM SÉRIES TEMPORAIS DO CONSUMO AGREGADO DAS FAMÍLIAS BRASILEIRAS UMA APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA PARA DADOS EM SÉRIES TEMPORAIS DO CONSUMO AGREGADO DAS FAMÍLIAS BRASILEIRAS VIEIRA, Douglas Tadeu. TCC, Ciências Econômicas, Fecilcam, vieira.douglas@gmail.com PONTILI,

Leia mais

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS João Dionísio Moneiro * ; Pedro Marques Silva ** Deparameno de Gesão e Economia, Universidade

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

Contratos Futuros e o Ibovespa: Um Estudo Empregando Procedimento de Auto- Regressão Vetorial Estutural. Autoria: Gustavo de Souza Grôppo

Contratos Futuros e o Ibovespa: Um Estudo Empregando Procedimento de Auto- Regressão Vetorial Estutural. Autoria: Gustavo de Souza Grôppo Conraos Fuuros e o Ibovespa: Um Esudo Empregando Procedimeno de Auo- Regressão Veorial Esuural. Auoria: Gusavo de Souza Grôppo Resumo: Ese esudo em como objeivo principal verificar a relação enre conraos

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2016 Professor: Rubens Penha Cysne Lisa de Exercícios 4 - Gerações Superposas Obs: Na ausência de de nição de

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

PROJEÇÃO DO PREÇO FUTURO DE UMA AÇÃO DA USIMINAS: UMA ABORDAGEM ECONOMÉTRICA

PROJEÇÃO DO PREÇO FUTURO DE UMA AÇÃO DA USIMINAS: UMA ABORDAGEM ECONOMÉTRICA 3 PROJEÇÃO DO PREÇO FUTURO DE UMA AÇÃO DA USIMINAS: UMA ABORDAGEM ECONOMÉTRICA PROJEÇÃO DO PREÇO FUTURO DE UMA AÇÃO DA USIMINAS: UMA ABORDAGEM ECONOMÉTRICA Felipe Lacerda Diniz Leroy 1 RESUMO Nese arigo,

Leia mais

Previsão de Demanda. Métodos de Previsão. Demanda: disposição ao consumo Demanda versus Vendas Fatores que afetam a Demanda (Vendas)

Previsão de Demanda. Métodos de Previsão. Demanda: disposição ao consumo Demanda versus Vendas Fatores que afetam a Demanda (Vendas) 2.1 Previsão de emanda Conceios básicos Méodos de Previsão iscussão Formulação do Problema emanda: disposição ao consumo emanda versus Vendas Faores que afeam a emanda (Vendas) Economia, Mercado, Preços,

Leia mais

SPREAD BANCÁRIO NO BRASIL

SPREAD BANCÁRIO NO BRASIL SPREAD BANCÁRIO NO BRASIL Elaine Aparecida Fernandes RESUMO: Diane da consaação de que os spreads bancários brasileiros (diferença enre as axas de juros de capação e aplicação dos bancos) se enconram em

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

Resumo. Palavras-chave: Estrutura a termo da taxa de juros. Previsão. Redes neurais artificiais. Abstract

Resumo. Palavras-chave: Estrutura a termo da taxa de juros. Previsão. Redes neurais artificiais. Abstract 1 Área 8: Microeconomia, Méodos Quaniaivos e Finanças Classificação JEL: G17 PREVISÃO DA ESTRUTURA A TERMO DA TAXA DE JUROS BRASILEIRA USANDO REDES NEURAIS ARTIFICIAIS Breno de Oliveira Aranes * Resumo

Leia mais

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS Disseração apresenada à Escola Poliécnica da Universidade de São Paulo para obenção do íulo de Mesre

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Multicointegração e políticas fiscais: uma avaliação de sustentabilidade fiscal para América Latina

Multicointegração e políticas fiscais: uma avaliação de sustentabilidade fiscal para América Latina IPES Texo para Discussão Publicação do Insiuo de Pesquisas Econômicas e Sociais Mulicoinegração e políicas fiscais: uma avaliação de susenabilidade fiscal para América Laina Luís Anônio Sleimann Berussi

Leia mais

Modelos Econométricos para a Projeção de Longo Prazo da Demanda de Eletricidade: Setor Residencial no Nordeste

Modelos Econométricos para a Projeção de Longo Prazo da Demanda de Eletricidade: Setor Residencial no Nordeste 1 Modelos Economéricos para a Projeção de Longo Prazo da Demanda de Elericidade: Seor Residencial no Nordese M. L. Siqueira, H.H. Cordeiro Jr, H.R. Souza e F.S. Ramos UFPE e P. G. Rocha CHESF Resumo Ese

Leia mais

A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR

A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR Bárbara Lopes Macedo (Faculdades Inegradas FAFIBE) Carina Aleandra Rondini Marreo (Faculdades Inegradas FAFIBE) Jucélia Maria de Almeida

Leia mais

Um Modelo Macrodinâmico Pós-Keynesiano de Simulação *

Um Modelo Macrodinâmico Pós-Keynesiano de Simulação * Um Modelo Macrodinâmico Pós-Keynesiano de Simulação * José Luís Oreiro ** Fábio Hideki Ono *** Resumo: Ese arigo apresena a esruura e as primeiras simulações compuacionais de um modelo macrodinâmico uni-seorial

Leia mais

ESTIMANDO O IMPACTO DO ESTOQUE DE CAPITAL PÚBLICO SOBRE O PIB PER CAPITA CONSIDERANDO UMA MUDANÇA ESTRUTURAL NA RELAÇÃO DE LONGO PRAZO

ESTIMANDO O IMPACTO DO ESTOQUE DE CAPITAL PÚBLICO SOBRE O PIB PER CAPITA CONSIDERANDO UMA MUDANÇA ESTRUTURAL NA RELAÇÃO DE LONGO PRAZO ESTIMANDO O IMPACTO DO ESTOQUE DE CAPITAL PÚBLICO SOBRE O PIB PER CAPITA CONSIDERANDO UMA MUDANÇA ESTRUTURAL NA RELAÇÃO DE LONGO PRAZO Área 5 - Crescimeno, Desenvolvimeno Econômico e Insiuições Classificação

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais