Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula"

Transcrição

1 Resumo Sisemas e Sinais Definição de Sinais e de Sisemas () Insiuo Superior Técnico Definição de funções. Composição. Definição declaraiva e imperaiva. Definição de sinais. Energia e poência Transformação da variável independene. Periodicidade. Sisemas e Sinais p./3 Sisemas e Sinais p./3 Nesa Aula Definição de Funções O que é a composição de duas funções? Qual é a diferença enre a definição declaraiva e imperaiva de uma função? Qual a diferença enre a energia e a poência de um sinal? Qual a ransformação da variável independene que produz um deslocameno do sinal? Porque é que a amosragem de um sinal conínuo periódico nem sempre produz um sinal discreo periódico? Qual é o resulado da soma da componene para com a componene ímpar de um sinal? Uma função f : X Y aribui a cada elemeno do domínio X um único elemeno do conra-domínio Y. Esa aribuição pode ser realizada: pela declaração da relação maemáica enre o valor em X e do valor em Y; aravés do gráfico ou enumeração das possíveis aribuições enre os elemenos de X e Y; dando um procedimeno para deerminar o valor em Y dado o valor em X. aravés da composição de funções mais simples. Sisemas e Sinais p.3/3 Sisemas e Sinais p.4/3

2 Aribuição Declaraiva Gráfico da Função Define-se a função f : X Y aravés de: x X, f (x)=expressão em x Por exemplo: z= x+ jy, abs(z)= x + y O gráfico da função f : X Y é o conjuno dos pares (x, f (x)) perencenes ao produo caresiano X Y: grá f ico( f )={(x, y) x X y= f (x)} O gráfico é um subconjuno paricular de X Y uma vez que para cada elemeno x Xexise exacamene um y Y. y=x^ Sisemas e Sinais p.5/3 Sisemas e Sinais p.6/3 Procedimenos Composição O valor aribuído a um elemeno do domínio pode ser obido pela execução de um procedimeno. funcion y = facorial (n) y = prod(:n); endfuncion Considerando as funções f : X Y e f : X Y, se Y X pode-se definir: em f 3 : X Y al que: f 3 = f f x X, f 3 (x)= f ( f (x)) Na noação f f função f é aplicada ao resulado de f! Sisemas e Sinais p.7/3 Sisemas e Sinais p.8/3

3 Exemplo Declaraiva vs Imperaiva Considere as funções: x, f (x)= x x, f (x)=x Deermine:. f f f 3 (x)=x. f f f 3 (x)=4x 3. f f f 3 (x)= x 4 Definição Declaraiva: esabelece uma relação enre os elemenos do domínio e do conra-domínio. Exemplo: x, y, y= sin(x) x Definição Imperaiva: fornece um procedimeno para enconrar um elemeno do conra-domínio dado um elemeno do domínio. Exemplo: if (x==) y=; else y=sin(x)/x; endif Sisemas e Sinais p.9/3 Sisemas e Sinais p./3 Definição de Sinais Energia Definição Declaraiva Definição Imperaiva: Tempo, s()=cos(44 π) =[:/8:] s=cos(*pi*44*) Convencionou-se definir a energia de um sinal como sendo: E = + x() d. De forma análoga para o caso discreo: E = + n= x(n). Podem exisir sinais com energia infinia! Sisemas e Sinais p./3 Sisemas e Sinais p./3

4 Poência Deslocameno Temporal Com base na definição de energia, podemos ambém definir a poência média de um sinal: x() +T P = lim x() d. T T T De forma análoga para o caso discreo: y()= x( ) y() P = lim N N+ +N n= N x(n). Sisemas e Sinais p.3/3 Sisemas e Sinais p.4/3 Problema Inversão Temporal x(n) x() n y(n)= x(n n ) y(n) Qual o valor de n? y()= x( ) y() n Sisemas e Sinais p.5/3 Sisemas e Sinais p.6/3

5 Escalameno Temporal Problema y()= x(a), a x() y() Considere o sinal: x(n) Deermine a sequência y(n) definida por: y(n)= x(3 n) n Sisemas e Sinais p.7/3 Sisemas e Sinais p.8/3 Sinal Periódico Conínuo Um sinal conínuo diz-se periódico se se maniver inalerado por um deslocameno emporal de valor T: x()= x(+t), T Ao menor valor posiivo de T dá-se o nome de período fundamenal (T ). Sinal Periódico Discreo Idenicamene ao caso conínuo, um sinal discreo diz-se periódico se se maniver inalerado por um deslocameno emporal de N amosras: x(n)= x(n+ N), N Ao menor valor ineiro posiivo de N dá-se o nome de período fundamenal (N ). A amosragem de um sinal periódico conínuo nem sempre resula num sinal periódico discreo. Sisemas e Sinais p.9/3 Sisemas e Sinais p./3

6 Sinais Pares e Ímpares Componene Par e Ímpar Um sinal é par se for igual à sua inversão emporal x(n) Qualquer sinal pode ser decomposo na soma de um sinal par com um sinal ímpar: x()= x e ()+ x o () x()= x( ) Um sinal é ímpar se: x() = x( ) y(n) x e () x o () = [x()+ x( )] = [x() x( )] Sisemas e Sinais p./3 Sisemas e Sinais p./3 Exemplo Deerminar a componene par e ímpar do sinal: x() Sisemas e Sinais p.3/3

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico

Resumo. Sinais e Sistemas Sinais e Sistemas. Sinal em Tempo Contínuo. Sinal Acústico Resumo Sinais e Sisemas Sinais e Sisemas lco@is.ul.p Sinais de empo conínuo e discreo Transformações da variável independene Sinais básicos: impulso, escalão e exponencial. Sisemas conínuos e discreos

Leia mais

Capítulo 1 Definição de Sinais e Sistemas

Capítulo 1 Definição de Sinais e Sistemas Capíulo 1 Definição de Sinais e Sisemas 1.1 Inrodução 1.2 Represenação dos sinais como funções 1.3 Represenação dos sisemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6 Definição

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:

Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução: Queda Livre e Movimeno Uniformemene Acelerado Sergio Scarano Jr 1906/013 Exercícios Proposo Um navio equipado com um sonar preende medir a profundidade de um oceano. Para isso, o sonar emiiu um Ulra-Som

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL FUNÇÕES CONVEAS EM EORIA DE APREÇAMENO DE OPÇÕES POR ARBIRAGEM UILIZANDO O MODELO BINOMIAL Devanil Jaques de SOUZA Lucas Moneiro CHAVES RESUMO: Nese rabalho uilizam-se écnicas maemáicas elemenares, baseadas

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

Análise de Circuitos Dinâmicos no Domínio do Tempo

Análise de Circuitos Dinâmicos no Domínio do Tempo Teoria dos ircuios e Fundamenos de Elecrónica Análise de ircuios Dinâmicos no Domínio do Tempo Teresa Mendes de Almeida TeresaMAlmeida@is.ul.p DEE Área ienífica de Elecrónica T.M.Almeida IST-DEE- AElecrónica

Leia mais

1 TRANSMISSÃO EM BANDA BASE

1 TRANSMISSÃO EM BANDA BASE Página 1 1 TRNSMISSÃO EM BND BSE ransmissão de um sinal em banda base consise em enviar o sinal de forma digial aravés da linha, ou seja, enviar os bis conforme a necessidade, de acordo com um padrão digial,

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 IV SEMEAD METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 RESUMO Uma das ferramenas de gesão do risco de mercado

Leia mais

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030 EG04030 AÁISE DE IRUITOS I Aulas 9 ircuios e ª orem: análise no omínio o empo aracerísicas e capaciores e inuores; energia armazenaa nos componenes; associação e capaciores/inuores Sérgio Haffner ircuios

Leia mais

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão Modelos de Previsão Inrodução Em omada de decisão é basane comum raar problemas cujas decisões a serem omadas são funções de faos fuuros Assim, os dados descrevendo a siuação de decisão precisam ser represenaivos

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

APONTAMENTOS SINAIS E SISTEMAS

APONTAMENTOS SINAIS E SISTEMAS Escola Superior de ecnologia - Insiuo Poliécnico de Seúbal APONAMENOS DE SINAIS E SISEMAS Folhas de Apoio às Disciplinas de Versão.a - Sinais e Sisemas º Ano EEC - eoria de Sinais e Sisemas Ano de EACI

Leia mais

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA.

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA. UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA Área: ECONOMIA COELHO JUNIOR, Juarez da Silva PONTILI, Rosangela Maria

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

2 Conceitos de transmissão de dados

2 Conceitos de transmissão de dados 2 Conceios de ransmissão de dados 2 Conceios de ransmissão de dados 1/23 2.2.1 Fones de aenuação e disorção de sinal 2.2.1 Fones de aenuação e disorção do sinal (coninuação) 2/23 Imperfeições do canal

Leia mais

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produividade no Brasil Fernando de Holanda Barbosa Filho Samuel de Abreu Pessôa Resumo Esse arigo consrói uma série de horas rabalhadas para a

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo

RÁPIDA INTRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Coutinho Cardoso & Marta Feijó Barroso UNIDADE 3. Decaimento Radioativo Decaimeno Radioaivo RÁPIDA ITRODUÇÃO À FÍSICA DAS RADIAÇÕES Simone Couinho Cardoso & Mara Feijó Barroso Objeivos: discuir o que é decaimeno radioaivo e escrever uma equação que a descreva UIDADE 3 Sumário

Leia mais

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (2) Definição de Sistemas. Esta Aula Resumo Sistemas e Sinais Definição de Sinais e de Sistemas (2) lco@ist.utl.pt Instituto Superior Técnico Definição de sistemas. Espaço de funções. Equações diferenciais e às diferenças. Sistemas com e

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Telefonia Digital: Modulação por código de Pulso

Telefonia Digital: Modulação por código de Pulso MINISTÉRIO DA EDUCAÇÃO Unidade de São José Telefonia Digial: Modulação por código de Pulso Curso écnico em Telecomunicações Marcos Moecke São José - SC, 2004 SUMÁRIO. MODULAÇÃO POR CÓDIGO DE PULSO....

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

Prof. Josemar dos Santos

Prof. Josemar dos Santos Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão Transisor de Efeio de Campo de Pora Isolada MOSFET - Revisão 1 NMOS: esruura física NMOS subsrao ipo P isposiivo simérico isposiivo de 4 erminais Pora, reno, Fone e Subsrao (gae, drain, source e Bulk)

Leia mais

Comportamento Assintótico de Convoluções e Aplicações em EDP

Comportamento Assintótico de Convoluções e Aplicações em EDP Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade ETORES 1- DEFINIÇÃO: Ene maemáico usado para caracerizar uma grandeza eorial. paralelogramo. O eor resulane é raçado a parir das origens aé a inersecção das linhas auxiliares. - TIPOS DE GRANDEZAS.1- GRANDEZA

Leia mais

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração.

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração. Ao final desse grupo de slides os alunos deverão ser capazes de: OBJETIVOS Explicar a diferença enre regressão espúria e coinegração. Jusificar, por meio de ese de hipóeses, se um conjuno de séries emporais

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo

Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL RELATIVIDADE ESPECIAL AULA N O ( Quadriveores - Velocidade relaivísica - Tensores ) Vamos ver um eemplo de uma lei que é possível na naureza, mas que não é uma lei da naureza. Duas parículas colidem no

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

EE-881 Princípios de Comunicações I Turma U

EE-881 Princípios de Comunicações I Turma U EE-881 Princípios de Comunicações I Turma U 1º Semesre/2013 Prof.: Renao Baldini Filho- sala 324 baldini@decom.fee.unicamp.br www.decom.fee.unicamp.br/~baldini/ee881.hm Horário: Terças (21:00 h às 22:40

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA Orienador: Prof. Ph.D. Andrei Toom Área de concenração: Probabilidade Disseração submeida como requerimeno parcial para obenção do grau de Mesre

Leia mais

Discreta - modelos e técnicas

Discreta - modelos e técnicas Localização Discrea - modelos e écnicas Maria Eugénia Capivo Universidade de Lisboa - Faculdade de Ciências Cenro de Invesigação Operacional Deparameno de Esaísica e Invesigação Operacional Porugal E-Mail:

Leia mais

CAPACITÂNCIA E INDUTÂNCIA

CAPACITÂNCIA E INDUTÂNCIA INTRODUÇÃO APAITÂNIA E INDUTÂNIA Dois elemenos passivos que armazenam energia:apaciores e Induores APAITORES Armazenam energia aravés do campo elérico (energia elerosáica) Modelo de elemeno de circuio

Leia mais

APLICAÇÃO DE SÉRIES TEMPORAIS NA PREVISÃO DA MÉDIA MENSAL DA TAXA DE CÂMBIO DO REAL PARA O DÓLAR COMERCIAL DE COMPRA USANDO O MODELO DE HOLT

APLICAÇÃO DE SÉRIES TEMPORAIS NA PREVISÃO DA MÉDIA MENSAL DA TAXA DE CÂMBIO DO REAL PARA O DÓLAR COMERCIAL DE COMPRA USANDO O MODELO DE HOLT XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 12 a15 de ouubro

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCIATURA EM ENGENHARIA DE SISTEMAS DE TELECOMUNICAÇÕES E ELECTRÓNICA Aponamenos de Análise de Sinais Módulo Prof. José Amaral Versão. -- Secção de Comunicações e Processameno de Sinal ISEL-CEDET, Gabinee

Leia mais

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB.

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB. Análise de Séries Temporais de Pacienes com HIV/AIDS Inernados no Hospial Universiário João de Barros Barreo (HUJBB), da Região Meropoliana de Belém, Esado do Pará Gilzibene Marques da Silva ¹ Adrilayne

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

ELECTRÓNICA DE POTÊNCIA II

ELECTRÓNICA DE POTÊNCIA II E.N.I.D.H. Deparameno de Radioecnia APONTAMENTOS DE ELECTRÓNICA DE POTÊNCIA II (Capíulo 2) José Manuel Dores Cosa 2000 42 ÍNDICE Inrodução... 44 CAPÍTULO 2... 45 CONVERSORES COMUTADOS DE CORRENTE CONTÍNUA...

Leia mais

ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS

ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS EDUARDO MARMO MOREIRA Disseração de Mesrado apresenada

Leia mais

MÁRCIO YOSHIKAZU EMATSU ANÁLISE ESPECTRAL DA CORRENTE DE PARTIDA DE MOTORES DE INDUÇÃO PARA DETECÇÃO DE FALHAS NAS BARRAS DO ROTOR

MÁRCIO YOSHIKAZU EMATSU ANÁLISE ESPECTRAL DA CORRENTE DE PARTIDA DE MOTORES DE INDUÇÃO PARA DETECÇÃO DE FALHAS NAS BARRAS DO ROTOR MÁRCIO YOSHIKAZU EMATSU ANÁLISE ESPECTRAL DA CORRENTE DE PARTIDA DE MOTORES DE INDUÇÃO PARA DETECÇÃO DE FALHAS NAS BARRAS DO ROTOR FLORIANÓPOLIS 8 UNIVERSIDADE FEDERAL DE SANTA CATARINA CURSO DE PÓS-GRADUAÇÃO

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1 ETFSC UNED/SJ CURSO DE TELEFONIA DIGITAL CAPÍTULO. MODULAÇÃO POR CÓDIGO DE PULSO - PCM. INTRODUÇÃO. Uma grande pare dos sinais de inormações que são processados em uma rede de elecomunicações são sinais

Leia mais

MODELAGEM E PREVISÃO POR MEIO DE METODOLOGIA BOX & JENKINS: UMA FERRAMENTA DE GESTÃO

MODELAGEM E PREVISÃO POR MEIO DE METODOLOGIA BOX & JENKINS: UMA FERRAMENTA DE GESTÃO UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO MODELAGEM E PREVISÃO POR MEIO DE METODOLOGIA BOX & JENKINS: UMA FERRAMENTA DE GESTÃO DISSERTAÇÃO

Leia mais

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital.

Comunicação. Tipos de Sinal. Redes. Tempo de Transmissão x Tempo de Propagação. d = v. Sinal Analógico. Sinal Digital. Comunicação Redes Análise Básica de Sinais Informação Mensagem Sinal Sinal Mensagem Informação Idéia Idéia Sinal de Voz rof. Sérgio Colcher colcher@inf.puc-rio.br 2 Tipos de Sinal Tempo de Transmissão

Leia mais

SÉRIE: Estatística Básica Texto: Percentagens, Relativos e Índices SUMÁRIO 1. PERCENTAGENS...4 2. 2. RELATIVOS...9 3. 3. NÚMEROS ÍNDICES...

SÉRIE: Estatística Básica Texto: Percentagens, Relativos e Índices SUMÁRIO 1. PERCENTAGENS...4 2. 2. RELATIVOS...9 3. 3. NÚMEROS ÍNDICES... SUMÁRO 1. PERCENTAGENS...4 1.1. NTRODUÇÃO...4 1.2. 1.2.. EQUVALÊNCAS...5 1.3. 1.3. ASSMETRA...5 1.4. 1.4. AUMENTOS E BAXAS SUCESSVAS...7 2. 2. RELATVOS...9 2.1. 2.1. TPOS DE RELATVOS...9 2.1.1. 2.1.1.

Leia mais

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO ANÁLSE DE UMA EQUAÇÃO DFERENCAL LNEAR QUE CARACTERZA A QUANTDADE DE SAL EM UM RESERATÓRO USANDO DLUÇÃO DE SOLUÇÃO Alessandro de Melo Omena Ricardo Ferreira Carlos de Amorim 2 RESUMO O presene arigo em

Leia mais

MC102 Algoritmos e Programação de Computadores

MC102 Algoritmos e Programação de Computadores MC102 Algoritmos e Programação de Computadores Instituto de Computação UNICAMP Primeiro Semestre de 2015 Roteiro 1 Fundamentos de análise de algoritmos 2 Cálculo da função de custo 3 Exercícios Instituto

Leia mais

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez Universidade Federal de Peloas UFPEL Deparameno de Economia - DECON Economia Ecológica Professor Rodrigo Nobre Fernandez Capíulo 6 Conabilidade Ambienal Nacional Peloas, 2010 6.1 Inrodução O lado moneário

Leia mais

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS

RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS RISCO DE PERDA ADICIONAL, TEORIA DOS VALORES EXTREMOS E GESTÃO DO RISCO: APLICAÇÃO AO MERCADO FINANCEIRO PORTUGUÊS João Dionísio Moneiro * ; Pedro Marques Silva ** Deparameno de Gesão e Economia, Universidade

Leia mais

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr.

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr. SP-2 X SEPOPE 2 a 25 de maio de 2006 a 2 s o 25 h 2006 X SIPÓSIO DE ESPECIAISTAS E PANEJAENTO DA OPERAÇÃO E EXPANSÃO EÉTRICA X SYPOSIU OF SPECIAISTS IN EECTRIC OPERATIONA AND EXPANSION PANNING FORIANÓPOIS

Leia mais

MODELAGEM DE SÓLIDOS, Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR

MODELAGEM DE SÓLIDOS, Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR MODELAGEM DE SÓLIDOS, CURVAS E SUPERFÍCIES Adair Sana Caarina Curso de Ciência da Compuação Unioese Campus de Cascavel PR Mar/24 O que é Modelagem? Modelagem é o uso de écnicas para criar represenações

Leia mais

Resumo. Sistemas e Sinais Máquinas de Estados Finitos. Máquina de Estados Finitos. Esta Aula

Resumo. Sistemas e Sinais Máquinas de Estados Finitos. Máquina de Estados Finitos. Esta Aula Resumo Sistemas e Sinais Máquinas de Estados Finitos lco@ist.utl.pt Estrutura das máquinas de estados finitos. Diagrama de estados. Tabela de actualização. Máquinas não-determinísticas. Simulação e bi-simulação.

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

MODELAMENTO DINÂMICO DO SISTEMA DE CONTROLE DE UMA MÁQUINA CNC DIDÁTICA

MODELAMENTO DINÂMICO DO SISTEMA DE CONTROLE DE UMA MÁQUINA CNC DIDÁTICA 6º CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 6 h BRAZILIAN CONFERENCE ON MANUFACTURING ENGINEERING 11 a 15 de abril de 2011 Caxias do Sul RS - Brasil April 11 h o 15 h, 2011 Caxias do Sul RS Brazil

Leia mais

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS Anasácio Sebasian Arce Encina 1, João Eduardo Gonçalves Lopes 2, Marcelo Auguso Cicogna 2, Secundino Soares Filho 2 e Thyago Carvalho Marques 2 RESUMO

Leia mais

Deteção e Previsão de Falhas em Equipamentos de Produção Industrial

Deteção e Previsão de Falhas em Equipamentos de Produção Industrial ASSOCIAÇÃO DE POLITÉCNICOS DO NORTE (APNOR) INSTITUTO POLITÉCNICO DO PORTO Deeção e Previsão de Falhas em Equipamenos de Produção Indusrial Daniel Filipe Ferreira da Silva Disseração apresenada ao Insiuo

Leia mais

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA Capiulo V SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA 5.1 - INTRODUÇÃO I - QUALIDADE DA ÁGUA A água em sua uilização obedece a padrões qualiaivos que são variáveis de acordo com o seu uso (domésico, indusrial,

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM. Misturas betuminosas determinação do módulo de resiliência Méodo de Ensaio Página 1 de 5 RESUMO Ese documeno, que é uma norma écnica, esabelece o méodo para deerminar o módulo de resiliência de misuras beuminosas, de uilidade para projeo de pavimenos flexíveis.

Leia mais

Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México

Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México A axa de câmbio consiui variável fundamenal em economias aberas, pois represena imporane componene do preço relaivo de bens, serviços e aivos, ou

Leia mais

ESTUDO DE MODELOS DE SÉRIES TEMPORAIS PARA A DEMANDA DE PRODUÇÃO DE CIMENTO

ESTUDO DE MODELOS DE SÉRIES TEMPORAIS PARA A DEMANDA DE PRODUÇÃO DE CIMENTO ESTUDO DE MODELOS DE SÉRIES TEMPORAIS PARA A DEMANDA DE PRODUÇÃO DE CIMENTO Nagila Raquel Marins Gomes; Célia Mendes Carvalho Lopes Engenharia de Produção, Escola de Engenharia, Universidade Presbieriana

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

COINTEGRAÇÃO E CAUSALIDADE ENTRE AS TAXAS DE JURO E A INFLAÇÃO EM PORTUGAL

COINTEGRAÇÃO E CAUSALIDADE ENTRE AS TAXAS DE JURO E A INFLAÇÃO EM PORTUGAL COINTEGRAÇÃO E CAUSALIDADE ENTRE AS TAAS DE JURO E A INFLAÇÃO EM PORTUGAL JORGE CAIADO 1 Deparameno de Maemáica e Informáica Escola Superior de Gesão Insiuo Poliécnico de Caselo Branco Resumo No presene

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia Elecrónica de nsrumenação edição de oência Jorge Guilherme 008 #0 oência em.. U ce., ce. Elecrónica de nsrumenação U. [] oência em.a. p( u(. i( [] oência insanânea Num circuio resisivo puro i( u( / u (

Leia mais