Método de integração por partes

Tamanho: px
Começar a partir da página:

Download "Método de integração por partes"

Transcrição

1 Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas num inervalo I, com derivadas f e g, conínuas em I: ara quaisquer dois onos a; b I em-se: Z b a f () g () d [f () g ()] b a Z b a f () g () d Eemlo: Z arcsin d [ arcsin ] () Z d arcsin arcsin r!! + f arcsin! f g g () rimiivação e inegração or subsiuição O méodo de rimiivação or subsiuição baseia-se na regra de derivação da função comosa e ermie, mais uma vez, ransformar rimiivas não imediaas em rimiivas imediaas ou já conhecidas. Seja f () uma função que reendemos rimiivar e suonhamos que F () é uma rimiiva de f () num deerminado inervalo real. Se subsiuirmos or uma função bijeciva u () ; como (F (u ())) F (u ()) u () f (u ()) u () ; emos que ( (F (u ()))) (f (u ()) u ()),, F (u ()) (f (u ()) u ()) : Assim a função F (u ()) ode ser calculada rimiivando a função f (u ()) u () :

2 Maemáica - 8/9 - Inegral de nido 78 Como u () é bijeciva, de u () ; obemos u () : Subsiuindo em F (u ()) a variável or u () ; camos com F (u (u ())) F () ; que é a rimiiva reendida. Vejamos alguns eemlos de alicação do méodo: Eemlos:. Z e Fazendo d: e ; em-se que elo que, nese caso, ln + ; u () ln + e u () + : Vamos enão efecuar a subsiuição e rimiivar a função f (u ()) u () : d + d + d + arcan + c: ara ober a rimiiva reendida, basa agora subsiuir or u () e ca: arcan e + c: e e Noa: ara não sobrecarregar os cálculos, muias vezes não se refere eliciamene a função u () ; ois de faco o que ineressa é er escrio em função de e em função de : ara indicar a derivada de u () ; comee-se um abuso de linguagem escrevendo d ou simlesmene d : No caso anerior er-se-ia: e ln ( + ) +. Z e e + e d

3 Maemáica - 8/9 - Inegral de nido 79 Vamos efecuar a a subsiuição ln. Resumimos a informação necessária ao rocedimeno na seguine abela: ln e Assim, ln + + c: Subsiuindo or e ; obém-se: e e + e ln e + + c: Méodo de inegração or subsiuição: Nese caso do méodo, o rocedimeno simli ca-se ois o cálculo do valor do inegral é direco desde que, ao efecuar a susbsiuição, ara além de alerar a função inegranda e mudar a variável de inegração, se mudem ambém os limies de inegração. Sendo f uma função conínua num inervalo I e u uma função bijeciva de um inervalo H no inervalo I; com derivada conínua. Enão, ara a; b I; Eemlos: Z b a f () d Z u (b) u (a) f (u ()) u () d. Z 5 () d Z Z + Z d + d + d [ arcan ] ( arcan + arcan ) arcan

4 Maemáica - 8/9 - Inegral de nido 8 () Subsiuição: u () + u () u () Novos limies de inegração: u (5) 5 u (). Z d + () 8 Z d 8 Z d !! () Subsiuição: + u () u () u () Novos limies de inegração: u () + 8 u () + rimiivação de funções racionais Chama-se função racional uma função que ode ser de nida elo quociene de dois olinómios. Eemlos:. f () f () + +

5 Maemáica - 8/9 - Inegral de nido 8 Uma função racional é, orano, reresenável or um cociene a () em que a () e b () b () são olinómios. Quando o grau de a () é maior ou igual que o grau de b () a função racional ode ser reresenada na forma a () b () q () + r () b () em que o grau de r () é menor que o grau de b () : De faco, dado que efecuando a divisão de a () or b () se obém a () q () b () + r () ; em que o grau de r () é menor que o grau de b () ; enão a () b () q () b () + r () b () q () + r () b () O roblema de rimiivar funções racionais arbirárias reduz-se assim ao de rimiivar funções racionais em que o grau do numerador é menor que o grau do denominador ois a () q () + r () r () (q ()) + b () b () b () em que (q ()) é a rimiiva de um olinómio e o grau de r () é menor que o grau de b () : ara rimiivar essas funções, vamos decomô-las na soma de funções racionais mais simles, cujas rimiivas se inserem na classe das rimiivas imediaas. Consideramos, enão uma função racional da forma (), em que o grau de () é menor q () que o grau de q () : Há dois casos fundamenais: Caso q () decomôe-se num roduo de facores de grau : q () ( a ) ( a ) : : : ( a n ) Caso q () em facores de grau sem raízes. Vamos analisar cada um desses casos: Caso : Ese caso em dois subcasos: Subcaso (i) a ; a ; : : : ; a n são odos diferenes. Nese caso: em que A i () q () A + A + + A n a a (a i ) (a i a ) : : : (a i a i ) (a i a i+ ) : : : (a i a n ) a n + Eemlo: ( ) ( ) 7

6 Maemáica - 8/9 - Inegral de nido 8 Subcaso (ii) Eisem facores da forma ( a ) k : Na decomosição de () ; ara além q () das arcelas corresondenes às raizes simles, a cada um desses facores corresondem k arcelas da forma: Eemlo: ( ) Caso : Novamene há dois subcasos: A a + A ( a ) + + A k ( a i ) k + ( ) Subcaso (i) Cada facor quadráico é simles. Nese caso a cada facor de grau dois, sem raizes reais, a + b + c, corrsonde uma arcela da forma: B + C a + b + c Eemlo: ( ) ( + + ) Subcaso (ii) Eisem facores quadráicos múlilos, iso é, da forma (a + b + c) k. A cada um desses facores corresondem k arcelas da forma: B + C a + b + c + B + C (a + b + c) + + B k + C k (a + b + c) k Eemlo: + ( + ) + ( + ) + + ( + ) Méodo dos coe cienes indeerminados Em geral, ara deerminar as consanes que aarecem nos numeradores, usa-se o chamado méodo dos coe cienes indeerminados, que consise em igualar () à soma das q () fracções corresondenes aos facores do denominador, de acordo com os casos eliciados acima, e efecuar os cálculos ara deerminar as consanes que êm de gurar nos numeradores, o que assa em geral or resolver um sisema (eemlo abaio), ou enão aribuir valores de modo a ober os resulados reendidos (eemlo abaio). Eemlos:. Vamos decomor a função racional numa soma de fracções simles: ( + ) ( + )

7 Maemáica - 8/9 - Inegral de nido 8 ( + ) ( + ) A + + B + C +,, ( + ) ( + ) A ( + ) + (B + C) ( + ) ( + ) ( + ), A ( + ) + (B + C) ( + ), (A + B) + ( A + B + C) + (A + C) >< A + B, A + B + C >: A + C, A ; B ; C orano ( + ) ( + ) Vamos decomor ( ) numa soma de fracções simles: ( + ) ( ) ( + ) A + B ( ) + C +,, A ( ) + B ( + ) + C ( ) ) C ) C ) B ) B ) A + B + C ) A orano + # e. ( ) ( + ) ( ) + +. Cálculo de uma rimiiva or decomosição em fracções simles: ( + ) ( ) ( ) ( + ) + ( ) + C A + + ( ) + ln j j ln j + j. Cálculo de um inegral de nido uilizando o méodo de decomosição: Z + 5 d

8 Maemáica - 8/9 - Inegral de nido 8 Z () ( 5) ( ) d Z 5 () 5 d + 5 Z Z 5 d 5 [ln j 5j] d Z d [ln j j] 5 (ln ln ) (ln ln ) 5 ln ln ln () + 5, 5 _ () Decomosição: ( 5) ( ) A 5 + B, A 5 e B

Integração por substituição (mudança de variável)

Integração por substituição (mudança de variável) M@plus Inegrais Inegrais Pare II IV. Técnicas de inegração Quando o inegral (definido ou indefinido) não é imediao ou quase imediao, recorremos a ouras écnicas de inegração. Inegração por subsiuição (mudança

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas

CÁLCULO I 1º Semestre 2011/2012. Duração: 2 horas NOV SCHOOL OF USINESS ND ECONOMICS CÁLCULO I º Semesre / TESTE INTERMÉDIO - Correcção 8 Novembro Duração: oras Não é permiido o uso de calculadoras. Não pode desagrafar as folas do enunciado. Responda

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Séries de Fourier de Senos e de Cossenos de Índices Ímpares

Séries de Fourier de Senos e de Cossenos de Índices Ímpares Séries de Fourier de Senos e de Cossenos de Índices Ímpares Reginaldo J. Sanos Deparameno de Maemáica-ICEx Universidade Federal de Minas Gerais hp://www.ma.ufmg.br/~regi 26 de seembro de 21 2 Análogo ao

Leia mais

Análise Matemática II

Análise Matemática II Análise Maemáica II Exame/Tese 3 - de Junho de 5 Licenciaura em Eng. Informáica e de Compuadores Nome: Número: Exame: Todas as pergunas Tese: Pergunas 5, 6, 7, 8 e 9 Indique na erceira coluna da abela

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Tabela: Variáveis reais e nominais

Tabela: Variáveis reais e nominais Capíulo 1 Soluções: Inrodução à Macroeconomia Exercício 12 (Variáveis reais e nominais) Na abela seguine enconram se os dados iniciais do exercício (colunas 1, 2, 3) bem como as soluções relaivas a odas

Leia mais

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO:

02 A prova pode ser feita a lápis. 03 Proibido o uso de calculadoras e similares. 04 Duração: 2 HORAS. SOLUÇÃO: UNIVERSIDADE FEDERAL DE ITAJUBÁ FUNDAMENTOS DE MATEMÁTICA PROVA DE TRANSFERÊNCIA INTERNA, EXTERNA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CANDIDATO: CURSO PRETENDIDO: OBSERVAÇÕES: Prova sem consula

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

Notas de aula - profa Marlene - função logarítmica 1

Notas de aula - profa Marlene - função logarítmica 1 Noas de aula - profa Marlene - função logarímica Inrodução U - eparameno de Maemáica Aplicada (GMA) NOTAS E AULA - CÁLCULO APLICAO I - PROESSORA MARLENE unção Logarímica e unção Eponencial No Ensino Médio

Leia mais

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação.

Por outras palavras, iremos desenvolver a operação inversa da derivação conhecida por primitivação. RIMITIVS Definições No caítulo anterior, centramos a nossa atenção no seguinte roblema: dada uma função, determinar a sua função derivada Neste caítulo, vamos considerar o roblema inverso, ou seja, determinar

Leia mais

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável

yy + (y ) 2 = 0 Demonstração. Note que esta EDO não possui a variável independente e assim faremos a mudança de variável UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIDADE ACADÊMICA DO CABO DE SANTO AGOSTINHO CÁLCULO DIFERENCIAL E INTEGRAL 4-018.1 1A VERIFICAÇÃO DE APRENDIZAGEM - PARTE Nome Legível Turma RG CPF Resposas sem

Leia mais

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária

Dinâmica Estocástica. Aula 9. Setembro de Equação de Fokker-Planck Solução estacionária Dinâmica Esocásica Aula 9 Seembro de 015 Solução esacionária Bibliograia Capíulo 4 T. Tomé e M de Oliveira Dinâmica Esocásica e Irreversibilidade Úlima aula 1 Dedução da equação de Fokker-lanck Esudo da

Leia mais

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim

Cálculo Diferencial e Integral II - Tagus Park 1o. Semestre 2015/2016 1o. Teste 07/Novembro/2015 JUSTIFIQUE AS SUAS RESPOSTAS. x y 2 x 2 +y 2 (b) lim Cálculo Diferencial e Inegral II - Tagus Park o. Semesre 5/6 o. Tese 7/Novembro/5 JUSTIFIQUE AS SUAS RESPOSTAS RESOLUÇÃO..5+.5 vals.) Calcule ou mosre que não eise: a) a) + b) + + 4 + + Como, não eise.

Leia mais

Voo Nivelado - Avião a Hélice

Voo Nivelado - Avião a Hélice - Avião a Hélice 763 º Ano da icenciaura em ngenharia Aeronáuica edro. Gamboa - 008. oo de ruzeiro De modo a prosseguir o esudo analíico do desempenho, é conveniene separar as aeronaves por ipo de moor

Leia mais

Análise e Processamento de BioSinais

Análise e Processamento de BioSinais Análise e Processameno de BioSinais Mesrado Inegrado em Engenaria Biomédica Faculdade de Ciências e Tecnologia Slide Análise e Processameno de BioSinais MIEB Adapado dos slides S&S de Jorge Dias Tópicos:

Leia mais

Teoremas Básicos de Equações a Diferenças Lineares

Teoremas Básicos de Equações a Diferenças Lineares Teoremas Básicos de Equações a Diferenças Lineares (Chiang e Wainwrigh Capíulos 17 e 18) Caracerização Geral de Equações a diferenças Lineares: Seja a seguine especificação geral de uma equação a diferença

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

CAPÍTULO 10 DERIVADAS DIRECIONAIS

CAPÍTULO 10 DERIVADAS DIRECIONAIS CAPÍTULO 0 DERIVADAS DIRECIONAIS 0. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1

x x9 8 + x13 1 cos (t) t f(x) = (a) Manipulando algebricamente a expressão da soma: 8 + x12 (t) dt = 1 t 4 dt 4 ln 1 Turma A Quesão : (3,5 ponos Insiuo de Maemáica e Esaísica da USP MAT455 - Cálculo Diferencial e Inegral IV para Engenharia a. Prova - o. Semesre 3-4//3 (a Obenha uma expressão da série abaixo e o respecivo

Leia mais

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações.

Observação: No próximo documento veremos como escrever a solução de um sistema escalonado que possui mais incógnitas que equações. .. Sisemas Escalonados Os sisemas abaio são escalonados: 7 Veja as maries associadas a esses sisemas: 7 Podemos associar o nome "escalonado" com as maries ao "escalar" os eros ou energar a "escada" de

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Prof Lorí Viali, Dr viali@maufrgsbr h://wwwmaufrgsbr/~viali/ Moivação Na ráica, não exise muio ineresse na comaração de reços e quanidades de um único arigo, como é o caso dos relaivos, mas sim na comaração

Leia mais

PARTE 12 DERIVADAS DIRECIONAIS

PARTE 12 DERIVADAS DIRECIONAIS PARTE DERIVADAS DIRECIONAIS. Inrodução Dada uma função f : Dom(f) R n R X = (x, x,..., x n ) f(x) = f(x, x,..., x n ), vimos que a derivada parcial de f com respeio à variável x i no pono X 0, (X 0 ),

Leia mais

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549

P IBpm = C+ I+ G+X F = = b) Despesa Nacional. PNBpm = P IBpm+ RF X = ( ) = 59549 Capíulo 2 Soluções: Medição da Acividade Económica Exercício 24 (PIB pelaópica da despesa) i. Usando os valores da abela que consa do enunciado, a solução das várias alíneas é imediaa, basando para al

Leia mais

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL

Movimento unidimensional. Prof. DSc. Anderson Cortines IFF campus Cabo Frio MECÂNICA GERAL Movimeno unidimensional Prof. DSc. Anderson Corines IFF campus Cabo Frio MECÂNICA GERAL 218.1 Objeivos Ter uma noção inicial sobre: Referencial Movimeno e repouso Pono maerial e corpo exenso Posição Diferença

Leia mais

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico.

Antes de mais nada, é importante notar que isso nem sempre faz sentido do ponto de vista biológico. O modelo malusiano para empo conínuo: uma inrodução não rigorosa ao cálculo A dinâmica de populações ambém pode ser modelada usando-se empo conínuo, o que é mais realisa para populações que se reproduzem

Leia mais

4 Procedimentos de solução

4 Procedimentos de solução 4 Procedimenos de solução De acordo com Leis e chrefler (998), os roblemas de acolameno fluido mecânico odem ser resolvidos aravés de esraégias acoladas ou desacoladas. As soluções acoladas dividem-se

Leia mais

Modelos Não-Lineares

Modelos Não-Lineares Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene

Leia mais

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES

SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES 8//7 SISTEMAS DE EQUAÇÕES A DIFERENÇAS LINEARES Teorema: Considere o seguine sisema de k equações a diferenças lineares de primeira ordem, homogêneo: x a x a x... a x k k x a x a x... a x k k x a x a x...

Leia mais

5 de fevereiro de x 2 y

5 de fevereiro de x 2 y P 2 - Gabario 5 de fevereiro de 2018 Quesão 1 (1.5). Considere x 2 y g(x, y) = (x, y + x 2 ) e f (x, y) = x 4, se (x, y) = (0, 0) + y2. 0, se (x, y) = (0, 0) Mosre que: (a) f e g admiem odas as derivadas

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Dinâmicos Análise de Projecos ESAPL / IPVC Criérios de Valorização e Selecção de Invesimenos. Méodos Dinâmicos Criério do Valor Líquido Acualizado (VLA) O VLA de um invesimeno é a diferença enre os valores dos benefícios

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY

DINÂMICA POPULACIONAL COM CONDIÇÃO INICIAL FUZZY DINÂMICA OULACIONAL COM CONDIÇÃO INICIAL FUZZY Débora Vailai (ICV-UNICENTRO), Maria José de aula Casanho (Orienadora), e-mail: zeza@unicenro.br. Universidade Esadual do Cenro-Oese, Seor de Ciências Exaas

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Exercício Exemplo de Análise Matricial de Estruturas

Exercício Exemplo de Análise Matricial de Estruturas Exercício Exempo de Anáise Maricia de Esruura Exercício Exempo de Anáise Maricia de Esruuras Dada a esruura abaixo, deermine os desocamenos no nó e as reações de apoio uiizando a anáise maricia de esruuras.

Leia mais

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo.

Introdução ao Controle Ótimo: Otimização de funções e funcionais. Otimização paramétrica. Problema de controle ótimo com tempo final fixo. Inrodução ao Conrole Óimo: Oimização de funções e funcionais. Oimização paramérica. Problema de conrole óimo com empo final fio. Oimização Deerminação de uma ação que proporciona um máimo de benefício,

Leia mais

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas.

1. Calcule os seguintes limites: lim. lim t t. lim. lim. lim. lim. x + lim. lim. lim. 2. Encontre a derivada das funções dadas. DEPARTAMENTO DE MATEMÁTICA APLICADA ICTE/UFTM Lisa 0 Cálculo Diferencial e Inegral II Profa.: LIDIANE SARTINI. Calcule os seguines ies: ( 7 5 ) 0 ( 5 + + ) + 5+ + + 0 5 5 5 5 7+ 0 5 + + + l) + + 5 + 5

Leia mais

Campus de Ilha Solteira

Campus de Ilha Solteira Campus de Ilha Soleira - CAPÍTULO 5 - BALANÇO O INTEGRAL DE ASSA Disciplina: 1081 - Fenômenos de Transpores I Professor: Tsunao asumoo Equação da coninuidade Aplicação do conceio de conservação de massa

Leia mais

t G 1 A v A v v r 2 turbulento média máx média máx máx saem entram saem entram Capítulo 3 Cinemática dos fluidos Escoamento

t G 1 A v A v v r 2 turbulento média máx média máx máx saem entram saem entram Capítulo 3 Cinemática dos fluidos Escoamento Misura homoênea Uma enrada e uma saída Várias enradas e árias saídas equação da coninuidade ou da conseração de massa Cálculo da elocidade média Escoameno Reime ermanene Reime ariado Qual a simlificação

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Ponifícia Universidade Caólica Do Paraná PPGIA- Programa de Pós-Graduação Em Informáica Alicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE RENYI Resumo: Segmenação de imagem é um méodo

Leia mais

Motivação. Prof. Lorí Viali, Dr.

Motivação. Prof. Lorí Viali, Dr. Moivação rof. Lorí Viali, Dr. vialli@ma.ufrgs.br hp://www.ma.ufrgs.br/~vialli/ Na práica, não exise muio ineresse na comparação de preços e quanidades de um único arigo, como é o caso dos relaivos, mas

Leia mais

4 Análise de Sensibilidade

4 Análise de Sensibilidade 4 Análise de Sensibilidade 4.1 Considerações Gerais Conforme viso no Capíulo 2, os algorimos uilizados nese rabalho necessiam das derivadas da função objeivo e das resrições em relação às variáveis de

Leia mais

Aplicações à Teoria da Confiabilidade

Aplicações à Teoria da Confiabilidade Aplicações à Teoria da ESQUEMA DO CAPÍTULO 11.1 CONCEITOS FUNDAMENTAIS 11.2 A LEI DE FALHA NORMAL 11.3 A LEI DE FALHA EXPONENCIAL 11.4 A LEI DE FALHA EXPONENCIAL E A DISTRIBUIÇÃO DE POISSON 11.5 A LEI

Leia mais

DISCIPLINA SÉRIE CAMPO CONCEITO

DISCIPLINA SÉRIE CAMPO CONCEITO Log Soluções Reforço escolar M ae máica Dinâmica 4 2ª Série 1º Bimesre DISCIPLINA SÉRIE CAMPO CONCEITO Maemáica 2ª do Ensino Médio Algébrico simbólico Função Logarímica Primeira Eapa Comparilhar Ideias

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística

Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Circuitos elétricos oscilantes. Circuito RC

Circuitos elétricos oscilantes. Circuito RC Circuios eléricos oscilanes i + - Circuio C Processo de carga do capacior aé V c =. Como C /V c a carga de euilíbrio é C. Como variam V c, i e durane a carga? Aplicando a Lei das Malhas no senido horário

Leia mais

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G.

CAPÍTULO 8. v G G. r G C. Figura Corpo rígido C com centro de massa G. 7 CÍTULO 8 DINÂMIC DO MOVIMENTO LNO DE COROS RÍIDOS IMULSO E QUNTIDDE DE MOVIMENTO Nese capíulo será analisada a lei de Newon apresenada nua ra fora inegral. Nesa fora inegra-se a lei de Newon dada por

Leia mais

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas

Séries de Tempo. José Fajardo. Agosto EBAPE- Fundação Getulio Vargas Séries de Tempo Inrodução José Faardo EBAPE- Fundação Geulio Vargas Agoso 0 José Faardo Séries de Tempo . Por quê o esudo de séries de empo é imporane? Primeiro, porque muios dados econômicos e financeiros

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

3.1 Cálculo de Limites

3.1 Cálculo de Limites 3. Cálculo de Limites 0. Formas Indeterminadas 0=0 = 0 0 02. Oerações com os símbolos + = = ( ) = = k = ; se k > 0 k = ; se k < 0 ( ) ( ) = ( ) = k = ; se k > 0 = ; se > 0 = 0; se < 0 k=0 = ; k 6= 0 03.

Leia mais

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1)

Definição 0.1. Define se a derivada direcional de f : R n R em um ponto X 0 na direção do vetor unitário u como sendo: df 0) = lim t 0 t (1) Cálculo II - B profs.: Heloisa Bauzer Medeiros e Denise de Oliveira Pino 1 2 o semesre de 2017 Aulas 11/12 derivadas de ordem superior/regra da cadeia gradiene e derivada direcional Derivadas direcionais

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Cinemática unidimensional

Cinemática unidimensional 0.1 Problemas correspondenes ao Capíulo 2 1 0.1 Problemas correspondenes ao Capíulo 2 Cinemáica unidimensional 1. A conclusão de Zeca esá errada. Podemos verificar isso mesmo anes de fazer qualquer cálculo,

Leia mais

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( )

Para Newton, conforme o tempo passa, a velocidade da partícula aumenta indefinidamente. ( ) Avaliação 1 8/0/010 1) A Primeira Lei do Movimeno de Newon e a Teoria da elaividade esria de Einsein diferem quano ao comporameno de uma parícula quando sua velocidade se aproxima da velocidade da luz

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Notas sobre primitivas

Notas sobre primitivas Matemática - 8/9 - Notas sobre primitivas 57 Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

Curvas e Superfícies Paramétricas

Curvas e Superfícies Paramétricas Curvas e Superfícies araméricas Eemplo de superfícies NURBS Curvas e Superfícies ara aplicações de CG normalmene é mais conveniene adoar a forma paramérica Independene do sisema de coordenadas Represenação

Leia mais

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0.

velocidade inicial: v 0 ; ângulo de tiro com a horizontal: 0. www.fisicaee.com.br Um projéil é disparado com elocidade inicial iual a e formando um ânulo com a horizonal, sabendo-se que os ponos de disparo e o alo esão sobre o mesmo plano horizonal e desprezando-se

Leia mais

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS Gil da Cosa Marques Fundamenos de Maemáica I.1 Inrodução. Equações Diferenciais Lineares.3 Equações Lineares de Primeira ordem.3.1 Equações de Primeira ordem não homogêneas

Leia mais

Análise de Pós-optimização e de Sensibilidade

Análise de Pós-optimização e de Sensibilidade CPÍULO nálise de Pós-opimização e de Sensibilidade. Inrodução Uma das arefas mais delicadas no desenvolvimeno práico dos modelos de PL, relaciona-se com a obenção de esimaivas credíveis para os parâmeros

Leia mais

Complementos de Análise Matemática

Complementos de Análise Matemática Insiuo Poliécnico de Viseu Escola Superior de Tecnologia Ficha práica n o 4 - Transformadas de Laplace Equações e Sisemas de Equações Diferenciais. Em cada uma das alíneas seguines, deermine Lf()}., 0

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

2 Formulação do Problema

2 Formulação do Problema 30 Formulação do roblema.1. Dedução da Equação de Movimeno de uma iga sobre Fundação Elásica. Seja a porção de viga infinia de seção ransversal consane mosrada na Figura.1 apoiada sobre uma base elásica

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sisemas Série de Fourier Renao Dourado Maia Universidade Esadual de Mones Claros Engenharia de Sisemas Inrodução A Série e a Inegral de Fourier englobam um dos desenvolvimenos maemáicos mais produivos

Leia mais

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995

III Congresso da Sociedade Portuguesa de Estatística Guimarães, 26 a 28 Junho 1995 1 III Congresso da Sociedade Poruguesa de Esaísica Guimarães, 26 a 28 Junho 1995 Políicas Ópimas e Quase-Ópimas de Inspecção de um Sisema Sujeio a Falhas Cláudia Nunes, João Amaral Deparameno de Maemáica,

Leia mais

TÓPICOS. Primitivação de funções racionais. Zeros de um polinómio. Fracções simples. Primitivação de fracções simples.

TÓPICOS. Primitivação de funções racionais. Zeros de um polinómio. Fracções simples. Primitivação de fracções simples. Noe bem, a leiura deses apoameos ão dispesa de modo algum a leiura aea da bibliografia pricipal da cadeira. Nomeadamee, o referee ao Módulo, poameos de álise Maemáica, Maemáica - Eg. Mauel Messias págias:

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Limite e Continuidade

Limite e Continuidade Matemática Licenciatura - Semestre 200. Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Limite e Continuidade Neste caítulo aresentaremos as idéias básicas sobre ites e continuidade de

Leia mais

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA

MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA MÉTODOS PARAMÉTRICOS PARA A ANÁLISE DE DADOS DE SOBREVIVÊNCIA Nesa abordagem paramérica, para esimar as funções básicas da análise de sobrevida, assume-se que o empo de falha T segue uma disribuição conhecida

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica

Problema de controle ótimo com equações de estado P-fuzzy: Programação dinâmica Problema de conrole óimo com equações de esado P-fuzzy: Programação dinâmica Michael Macedo Diniz, Rodney Carlos Bassanezi, Depo de Maemáica Aplicada, IMECC, UNICAMP, 1383-859, Campinas, SP diniz@ime.unicamp.br,

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO

PROVA PARA OS ALUNOS DO 1o. ANO DO ENSINO MÉDIO. 15 a ORMUB/2007 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO 1º ANO DO ENSINO MÉDIO 5 a ORMUB/7 OLIMPÍADA REGIONAL DE MATEMÁTICA PROVA PARA OS ALUNOS DO º ANO DO ENSINO MÉDIO NOME: ESCOLA: CIDADE: INSTRUÇÕES AVALIAÇÃO Ese caderno coném 5 (cinco) quesões. A solução de cada quesão, bem

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes 6 8 - - - -6-8 -3-3 Frequency (Hz) Hamming aiser Chebyshev Sisemas Lineares e Invarianes Power Specral Densiy Env B F CS1 CS B F CS1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz) Sine Wave

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

Modelos de Crescimento Endógeno de 1ªgeração

Modelos de Crescimento Endógeno de 1ªgeração Teorias do Crescimeno Económico Mesrado de Economia Modelos de Crescimeno Endógeno de 1ªgeração Inrodução A primeira geração de modelos de crescimeno endógeno ena endogeneiar a axa de crescimeno de SSG

Leia mais

3 Metodologia 3.1. O modelo

3 Metodologia 3.1. O modelo 3 Meodologia 3.1. O modelo Um esudo de eveno em como obeivo avaliar quais os impacos de deerminados aconecimenos sobre aivos ou iniciaivas. Para isso são analisadas as diversas variáveis impacadas pelo

Leia mais

3 O Modelo SAGA de Gestão de Estoques

3 O Modelo SAGA de Gestão de Estoques 3 O Modelo SG de Gesão de Esoques O Sisema SG, Sisema uomaizado de Gerência e poio, consise de um sofware conendo um modelo maemáico que permie fazer a previsão de iens no fuuro com base nos consumos regisrados

Leia mais

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

35ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase ª Olimpíada rasileira de Maemáica GRITO Segunda Fase Soluções Nível Segunda Fase Pare PRTE Na pare serão aribuídos ponos para cada resposa correa e a ponuação máxima para essa pare será. NENHUM PONTO deverá

Leia mais

5 EQUAÇÕES. 3 equações gerais do movimento (x, y, z)

5 EQUAÇÕES. 3 equações gerais do movimento (x, y, z) 9/04/06 CAA 346 Hidráulica UNIERSIDADE ESTADUAL DE SANTA CRUZ Dearameno de Ciências Arárias e Ambienais PRINCÍPIOS GERAIS A HIDRODINÂMICA TEM POR OBJETIO GERAL O ESTUDO DO MOIMENTO DOS FLUIDOS. AULA 03

Leia mais

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO

MECÂNICA DE PRECISÃO - ELETRÔNICA I - Prof. NELSON M. KANASHIRO FILTRO CAPACITIVO . INTRODUÇÃO Na saída dos circuios reificadores, viso na aula anerior, emos ensão pulsane que não adequada para o funcionameno da maioria dos aparelhos elerônicos. Esa ensão deve ser conínua, semelhane

Leia mais

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio

AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática A B C D E A B C D E. Avaliação da Aprendizagem em Processo Prova do Aluno 3 a série do Ensino Médio AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Maemáica a série do Ensino Médio Turma EM GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o Bimesre de 6 Daa / / Escola Aluno A B C D E 6 7 9 A B C D E Avaliação

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F-18 semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno em 1-D Enender o moimeno é uma das meas das leis da Física. A Mecânica

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ESOMENTOS VIÁVEIS EM ESSÃO (hoque idráulico) Méodo das aracerísicas -6-3 Méodo das aracerísicas -6-3 Méodo das aracerísicas hoque idráulico Equações Diferenciais: Equilíbrio Dinâmico onservação da Massa

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos

CAPÍTULO 2. Exercícios 2.1. f é integrável em [0, 2], pois é limitada e descontínua apenas em x 1. Temos CAPÍTULO Eercícios.. a) Ï f( ), onde f( ) Ó f é inegrável em [, ], pois é limiada e desconínua apenas em. Temos f( ) f( ) f( ) Em [, ], f() difere de apenas em. Daí, f ( ) [ ] Em [, ], f(). Logo, f( )

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais