Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Gripe: Época de gripe; actividade gripal; cálculo da linha de base e do respectivo intervalo de confiança a 95%; e área de actividade basal."

Transcrição

1 Grpe: Época de grpe; acvdade grpal; cálculo da lnha de ase e do respecvo nervalo de confança a 95%; e área de acvdade asal. ÉPOCA DE GRPE Para maor facldade de compreensão será desgnado por época de grpe o período de empo de aproxmadamene 4 semanas que decorre enre o níco de Ouuro de um deermnado ano (semana 40ª e o fnal de Março do ano segune (semana 1ª. ACTVDADE GRPAL Desgnou-se por acvdade grpal o grau de nensdade da ocorrênca da doença, meddo pela respecva axa de ncdênca. Aé 00-00, foram ulzados, como referênca para classfcar a acvdade grpal, os valores angdos em 1989, em Porugal, durane uma epdema de grpe, em que o pco máxmo de ncdênca fo 90/10 5 uenes. Desa forma, a acvdade grpal fo consderada axa sempre que o valor mas elevado da axa de ncdênca fo nferor ou gual a 50/10 5 uenes; moderada sempre que aquele valor fo superor a 50 e nferor a 10/10 5 ; e ala se fo superor ou gual a 10/10 5 uenes. A parr da época fo calculada a lnha de ase e o respecvo lme superor de confança a 95%, quer para as axas provsóras quer para as defnvas, com o ojecvo de permr a comparação enre os respecvos valores nas váras semanas e faclar a nerpreação dos resulados (Fg.1. CÁLCULO DA LNHA DE BASE E DO RESPECTVO LMTE SUPEROR DO NTERVALO DE CONFANÇA A 95% Para o cálculo da lnha de ase e do respecvo lme superor do nervalo de confança a 95% foram ulzadas as esmavas das axas de ncdênca semanas no período compreenddo enre as épocas de grpe (90/ e (0/0.

2 Para exclur do cálculo as semanas com valores da axa guas ou superores a 50/10 5 fo ulzada a função ndcarz (. ( O méodo que a segur se descreve fo ulzado, de forma dênca, para as axas provsóras e para as defnvas. As semanas foram ndexadas de 1 a 4, (1,, 4, ndcando sequencalmene as semanas da época de grpe. Defnu-se que: é a esmava da axa de ncdênca, provsóra ou defnva, de grpe, oda na época ( 90/,,0/0, para a semana 1,,,4. Calculou-se, depos, para cada semana, a méda das axas nferores a : ( 0 / 0 90 / N em que 1,,4 1 ( 0 se se <

3 e em que 0 / 0 N ( 90 / Oeve-se, desa forma, uma sére de valores 1,...,, que corresponde à lnha de ase das 4 axas de ncdênca semanas da grpe, provsóras ou defnvas, para o período compreenddo enre a 40ª semana e a 1ª semana da época de grpe em esudo. A lnha de ase resulane é rregular. Com o ojecvo de a alsar ulzou-se um modelo padrão para o respecvo comporameno ao longo desas semanas, ajusando o segune modelo polnomal cúco: 0 1 ε em que 1,,4 e ε é o erro aleaóro ε Resularam daqu as segunes esmavas: para as axas provsóras ε sendo R ajusado 0. 8 para as axas defnvas ε sendo R ajusado 0. 84

4 em que R ajusado é a proporção de varação das axas explcada pelo modelo. Passaremos enão a desgnar a lnha de ase resulane da aplcação do modelo por. Temos, enão, para as axas provsóras: em que 1, 4 e para as axas defnvas: em que 1, 4 Ovemos, assm, em cada uma das suações (axas provsóras ou defnvas uma nova sére de valores, 1,...,, correspondenes às 4 semanas que vão da 40ª à 1ª semana da 4 época de grpe em esudo. CÁLCULO DO LMTE SUPEROR O NTERVALO DE CONFANÇA A 95% A esmava do lme superor do nervalo de confança a 95%, para esa lnha de ase, fo oda da segune forma: S Sup (95 S em que 1,, 4

5 e em que S é a esmava do desvo-padrão das esmavas das axas de ncdênca da grpe, nferores a S 0 / / ( ( K em que K e ( 14 K K K 0/ / K As esmavas odas para o desvo-padrão foram: Para as axas provsóras: S 1 Para as axas defnvas: S 11. ÁREA DE ACTVDADE BASAL Para faclar a nerpreação gráfca da evolução das esmavas semanas das axas de ncdênca de síndroma grpal desgnaremos por área de acvdade asal o espaço compreenddo enre a lnha de ase e o lme superor do respecvo nervalo de confança a 95%.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras

Análise do Desempenho dos Gestores de Fundos, baseada nas Transações e nas Participações das Carteiras Vâna Sofa Sequera Umbelno Análse do Desempenho dos Gesores de Fundos, baseada nas Transações e nas Parcpações das Careras Dsseração de Mesrado apresenado à Faculdade de Economa da Unversdade de Combra

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

S&P Dow Jones Indices: Metodologia da matemática dos índices

S&P Dow Jones Indices: Metodologia da matemática dos índices S&P Dow Jones Indces: Meodologa da maemáca dos índces S&P Dow Jones Indces: Meodologa do índce Ouubro 2013 Índce Inrodução 3 Dferenes varedades de índces 3 O dvsor do índce 4 Índces ponderados por capalzação

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros e Racionais ESTATÍSTICA. Professor Luiz Antonio de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos e Raconas APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA CONTÍNUA PROGRESSÃO ARITMÉTICA DISTRIBUIÇÃO DE REQUÊCIAS

Leia mais

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO

ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO ESTUDO COMPARATIVO DE SISTEMAS DE AERAÇÃO PARA A ESTAÇÃO DE TRATAMENTO DE ESGOTOS SUZANO Roque Passos Pvel Escola Polécnca da Unversdade de São Paulo - EPUSP Pedro Alem Sobrnho Escola Polécnca da Unversdade

Leia mais

Tráfego em Redes de Comutação de Circuitos

Tráfego em Redes de Comutação de Circuitos Caracerzação do ráfego nálse de ssemas de esados nálse de ráfego em ssemas de erda nálse de ráfego em ssemas de araso Bloqueo em ssemas de andares múllos Máro Jorge Leão Inenconalmene em branco Caracerzação

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

PREVISIBILIDADE NO MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA NO BRASIL

PREVISIBILIDADE NO MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA NO BRASIL Salvador, BA, Brasl, 08 a de ouubro de 03. PREVISIBILIDADE O MERCADO DE COMMODITIES: UM ESTUDO APLICADO AO PREÇO DA SOJA O BRASIL Everon Anger Cavalhero (UFPEL ) ecavalhero@cvsm.com.br Kelmara Mendes Vera

Leia mais

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA

ipea COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA COEFICIENTES DE IMPORTAÇÃO E EXPORTAÇÃO NA INDÚSTRIA Paulo Mansur Levy Mara Isabel Fernans Serra Esa noa em como objevo dvulgar resulados relavos ao comporameno das exporações e mporações produos ndusras

Leia mais

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido.

Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. Erro! Indicador não definido. A Prevsão com o Modelo de Regressão.... Inrodução ao Modelo de Regressão.... Exemplos de Modelos Lneares... 3. Dervação dos Mínmos Quadrados no Modelo de Regressão... 6 4. A Naureza Probablísca do Modelo

Leia mais

CIRCULAR Nº 3.568, DE 21 DE DEZEMBRO DE 2011

CIRCULAR Nº 3.568, DE 21 DE DEZEMBRO DE 2011 CAPÍTULO : Crculares não Codfcadas 2 CIRCULAR Nº 3.568, DE 2 DE DEZEMBRO DE 20 Alera dsposvos das Crculares ns. 3.36, de 2 de seembro de 2007, 3.388, de 4 de unho de 2008, 3.389, de 25 de unho de 2008,

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Desconcentração e interiorização da economia fluminense na última década

Desconcentração e interiorização da economia fluminense na última década DSCONCNTRAÇÃO INTRIORIZAÇÃO DA CONOMIA FLUMINNS NA ÚLTIMA DÉCADA PAULO MARCLO SOUZA; NIRALDO JOSÉ PONCIANO; MARLON GOMS NY; HNRIQU TOMÉ MATA; UNIVRSIDAD FDRAL DA BAHIA SALVADOR - BA - BRASIL pmsouza@uenf.br

Leia mais

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A.

Despacho n.º 13/06. 2. A presente resolução entra em vigor no dia seguinte ao da sua publicação. João Renato Lima Presidente do C.A. Despacho n.º 13/06 De enre as arbuções da Agênca de Regulação Económca desaca-se a compeênca de fxar as arfas e os mecansmos de reajuses a serem pracados pela oncessonára do servço públco de ranse e dsrbução

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005

Impacto da Educação Defasada sobre a Criminalidade no Brasil: 2001-2005 1 Impaco da Educação Defasada sobre a Crmnaldade no Brasl: 2001-2005 Evandro Camargos Texera Ana Lúca Kassouf Seembro, 2011 Workng Paper 010 Todos os dreos reservados. É probda a reprodução parcal ou negral

Leia mais

COMPARATIVO ENTRE MÉTODOS DE CÁLCULO DE PERDAS EM TRANSFORMADORES ALIMENTANDO CARGAS NÃO-LINEARES

COMPARATIVO ENTRE MÉTODOS DE CÁLCULO DE PERDAS EM TRANSFORMADORES ALIMENTANDO CARGAS NÃO-LINEARES COMARAVO ENRE MÉODOS DE CÁLCULO DE ERDAS EM RANSFORMADORES ALMENANDO CARGAS NÃO-LNEARES GUMARÃES, Magno de Bastos EEEC/ UFG/ EQ magnobg@otmal.com. NRODUÇÃO LSA, Luz Roberto EEEC/ UFG lsta@eee.ufg.br NERYS,

Leia mais

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo

Denilson Ricardo de Lucena Nunes. Gestão de suprimentos no varejo Denlson Rcardo de Lucena Nunes Gesão de suprmenos no varejo semas de reposção de esoques em duas camadas e análse de esquemas de monorameno da prevsão de demanda Tese de Douorado Tese apresenada ao programa

Leia mais

ANEXO III. Nota Técnica nº 148/2010-SRE/ANEEL Brasília, 24 de maio de 2010.

ANEXO III. Nota Técnica nº 148/2010-SRE/ANEEL Brasília, 24 de maio de 2010. ANEXO III Noa Técnca nº 148/21-SRE/ANEEL Brasíla, 24 de mao de 21. M E T O D O L O G I A E Á L U L O D O F A T O R X ANEXO II Noa Técnca n o 148/21 SRE/ANEEL Em 24 de mao de 21. Processo nº 485.269/26-61

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO IX GRUPO DE ESTUDO DE OPERAÇÃO DE SISTEMAS ELÉTRICOS - GOP OTIMIZAÇÃO DA

Leia mais

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais,

RESOLUÇÃO Nº 32/2014/CONEPE. O CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO da Universidade Federal de Sergipe, no uso de suas atribuições legais, SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE SERGIPE CONSELHO DO ENSINO, DA PESQUISA E DA EXTENSÃO RESOLUÇÃO Nº 32/2014/CONEPE Aprova as Normas Geras do Processo Seletvo para

Leia mais

4 - ANÁLISE DE SÉRIES TEMPORAIS

4 - ANÁLISE DE SÉRIES TEMPORAIS INE 700 Aálse de Séres Temporas 4 - ANÁLISE DE SÉRIES TEMPORAIS Sére Temporal é um cojuo de observações sobre uma varável, ordeado o empo, e regsrado em períodos regulares. Podemos eumerar os segues exemplos

Leia mais

Autoria: Josilmar Cordenonssi Cia

Autoria: Josilmar Cordenonssi Cia Uma Possível Solução para o Equy Premum Puzzle (EPP Auora: Joslmar Cordenonss Ca Resumo MEHRA e PRESCO (985 levanaram uma quesão que aé hoje não fo respondda de forma sasfaóra: o prêmo de rsco das ações

Leia mais

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE

HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE Pesqusa Operaconal e o Desenvolvmeno Susenável 7 a /9/5, Gramado, RS HEURÍSTICA PARA O PROBLEMA DE ROTEIRIZAÇÃO E ESTOQUE André Luís Shguemoo Faculdade de Engenhara Elérca e Compuação Unversdade Esadual

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Capítulo 3-1. A 2ª Lei da Termodinâmica

Capítulo 3-1. A 2ª Lei da Termodinâmica Capítulo 3-1. A 2ª Le da ermodnâma Baseado no lvro: Atkns Pysal Cemstry Egt Edton Peter Atkns Julo de Paula 29-04-2007 Mara da Coneção Pava 1 A segunda le da termodnâma é baseada na experêna umana. odos

Leia mais

3 Planejamento da Operação Energética no Brasil

3 Planejamento da Operação Energética no Brasil 3 Planeameno da Operação Energéca no Brasl 3.1 Aspecos Geras O ssema elérco braslero é composo por dos dferenes pos de ssemas: os ssemas solados, os quas predomnam na regão Nore do Brasl e represenam cerca

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

Manual dos Indicadores de Qualidade 2011

Manual dos Indicadores de Qualidade 2011 Manual dos Indcadores de Qualdade 2011 1 Dretora de Avalação da Educação Superor Clauda Maffn Grbosk Coordenação Geral de Controle de Qualdade da Educação Superor Stela Mara Meneghel Equpe Técnca: José

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho

ESTATÍSTICA. PROBABILIDADES Professora Rosana Relva Números Inteiros AULA e Racionais 09 e 10 ESTATÍSTICA. Professor Luiz Antonio de Carvalho Professor Luz Antono de Carvalho PROBABILIDADES Professora Rosana Relva Números Interos AULA e Raconas 9 e APRESENTAÇÃO ROL:,,, 4, 4,,, DISCRETA : rrelva@globo.com PROGRESSÃO ARITMÉTICA PROGRESSÃO ARITMÉTICA

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBUAR a Fase RESOUÇÃO: Proa Mara Antôna Gouvea Questão Um quadrado mágco é uma matr quadrada de ordem maor ou gual a cujas somas dos termos de cada lnha de cada coluna da

Leia mais

1. Introdução. B = S = Valor presente esperado dos superávits futuros (1) P

1. Introdução. B = S = Valor presente esperado dos superávits futuros (1) P . Inrodução A vsão radconal da deermnação do nível de preços é baseada na eora Quanava da Moeda. Segundo essa vsão o padrão de avdade real em uma economa mplca um cero nível desejado de encaxes moneáros

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN

DINÂMICA E PREVISÃO DE PREÇOS DE COMMODITIES AGRÍCOLAS COM O FILTRO DE KALMAN XXVIII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO DINÂICA E PREVISÃO DE PREÇOS DE COODITIES AGRÍCOLAS CO O FILTRO DE KALAN Flávo Pnhero Corsn (POLI-USP) flavo.corsn@gmal.com Celma de Olvera Rbero (POLI-USP)

Leia mais

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana

Arbitragem na Estrutura a Termo das Taxas de Juros: Uma Abordagem Bayesiana Arbragem na Esruura a ermo das axas de Juros: Uma Abordagem Bayesana Márco Pole Laurn Armêno Das Wesn Neo Insper Workng Paper WPE: / Copyrgh Insper. odos os dreos reservados. É probda a reprodução parcal

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

2. REVISÃO BIBLIOGRÁFICA

2. REVISÃO BIBLIOGRÁFICA MODELO DE APOIO À DECISÃO PARA UM PROBLEMA DE POSICIONAMENTO DE BASES, ALOCAÇÃO E REALOCAÇÃO DE AMBULÂNCIAS EM CENTROS URBANOS: ESTUDO DE CASO NO MUNICÍPIO DE SÃO PAULO RESUMO Ese argo apresena uma proposa

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ

AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ AVALIAÇÃO DOS EFEITOS DA LEI KANDIR SOBRE A ARRECADAÇÃO DE ICMS NO ESTADO DO CEARÁ Alejandro Magno Lma Leão Mesre em economa pelo CAEN Audor Fscal da Recea do Esado do Ceará Fabríco Carnero Lnhares Phd

Leia mais

ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA

ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA ESTUDO SOBRE A EVASÃO ESCOLAR USANDO REGRESSÃO LOGÍSTICA: ANÁLISE DOS ALUNOS DO CURSO DE ADMINISTRAÇÃO DA FUNDAÇÃO EDUCACIONAL DE ITUVERAVA STUDY ON THE TRUANCY USING LOGISTIC REGRESSION: ANALYSIS OF THE

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

Nesse circuito, os dados indicam que a diferença de potencial entre os pontos X e Y, em volts, é a) 3,3 c) 10 e) 18 b) 6,0 d) 12.

Nesse circuito, os dados indicam que a diferença de potencial entre os pontos X e Y, em volts, é a) 3,3 c) 10 e) 18 b) 6,0 d) 12. Aprmorando os Conhecmentos de Eletrcdade Lsta 7 Assocação de esstores Prof.: Célo Normando. (UNIFO-97) O resstor, que tem a curva característca representada no gráfco abao, é componente do crcuto representado

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

A estrutura a termo de taxas de juros no Brasil: modelos, estimação, interpolação, extrapolação e testes

A estrutura a termo de taxas de juros no Brasil: modelos, estimação, interpolação, extrapolação e testes A esruura a ermo de axas de juros no Brasl: modelos, esmação, nerpolação, exrapolação e eses Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc., SUSEP/CGSOA

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

KEE WORDS: Exchange Rates, Parity, Purchasing Power, Gstav Cassel

KEE WORDS: Exchange Rates, Parity, Purchasing Power, Gstav Cassel [VIANNA, PEDRO JORGE; PARIDADE DO PODER DE COPRA: TEORIA OU ETODOLOGIA?]. Recfe. V Enconro de Economsas da Língua Poruguesa, 5-7 de novembro de 2003. TÍTULO: PARIDADE DO PODER DE COPRA: TEORIA OU ETODOLOGIA?

Leia mais

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL

ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR MEIO DOS MODELOS CAPM NÃO-CONDICIONAL E CAPM CONDICIONAL ANÁLISE DO CUSTO DE CAPITAL PRÓPRIO NO BRASIL POR EIO DOS ODELOS CAP NÃO-CONDICIONAL E CAP CONDICIONAL (Cos of equy analyss n Brazl: Non-Condonal CAP and Condonal CAP) Lumla Souza Grol 1 1 Unversdade Federal

Leia mais

Controle de Ponto Eletrônico. Belo Horizonte

Controle de Ponto Eletrônico. Belo Horizonte Controle de Ponto Eletrônco da Câmara Muncpal de Belo Horzonte Instrutor: André Mafa Latn DIVPES agosto de 2010 Objetvo Informar sobre o preenchmento da folha de frequênca; Facltar o trabalho das chefas;

Leia mais

SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER

SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER SOFTWARE PARA CÁLCULO DO ÍNDICE DE SEVERIDADE DE SECA DE PALMER Rodrgo Cézar Lmera 1, Pedro Vera de Azevedo 2, Wagner de Aragão Bezerra 3, Josefa Morgana Vturno de Almeda 3 RESUMO: A modelagem consttu-se

Leia mais

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos

Análise RFV do Cliente na Otimização de Estratégias de Marketing: Uma Abordagem por Algoritmos Genéticos Análse RFV do Clene na Omzação de Esraégas de Markeng: Uma Abordagem por Algormos Genécos Anderson Gumarães de Pnho Ponfíca Unversdade Caólca do Ro de Janero Ro de Janero RJ Brasl agp.ne@gmal.com 1. Inrodução

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais

Universidade da Beira Interior Departamento de Matemática. Ficha de exercícios nº2: Distribuições Bidimensionais Ano lectvo: 2006/2007 Unversdade da Bera Interor Departamento de Matemátca ESTATÍSTICA Fcha de exercícos nº2: Dstrbuções Bdmensonas Curso: Cêncas do Desporto 1. Consdere a segunte tabela de contngênca:

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

A Concorrência entre o Brasil. uma Aplicação do Modelo Constant-Market-Share*

A Concorrência entre o Brasil. uma Aplicação do Modelo Constant-Market-Share* A Concorrênca enre o Brasl e a Chna no ercado Sul-afrcano: uma Aplcação do odelo Consan-arke-Share* Arane Danelle Baraúna da Slva Álvaro Barranes Hdalgo 2 RESUO: O fore crescmeno da economa chnesa nos

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

Área Temática: Economia e Relações Internacionais O INTERCÂMBIO COMERCIAL RIO GRANDE DO SUL - CHINA: CONCENTRAÇÃO, DESEMPENHO E PERSPECTIVAS

Área Temática: Economia e Relações Internacionais O INTERCÂMBIO COMERCIAL RIO GRANDE DO SUL - CHINA: CONCENTRAÇÃO, DESEMPENHO E PERSPECTIVAS Área Temátca: Economa e Relações Internaconas O INTERCÂMBIO COMERCIAL RIO GRANDE DO SUL - CHINA: CONCENTRAÇÃO, DESEMPENHO E PERSPECTIVAS Paulo Rcardo Festel¹ Slva Zanoso Mssagga² Resumo:O objetvo deste

Leia mais

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos:

(19) 3251-1012 O ELITE RESOLVE IME 2013 DISCURSIVAS FÍSICA FÍSICA. , devido à equação (1). Voltando à equação (2) obtemos: (9) - O LIT SOLV IM DISCUSIVS ÍSIC USTÃO ÍSIC sendo nula a velocdade vercal ncal v, devdo à equação (). Volando à equação () obemos:,8 ˆj ˆj b) Dado o momeno lnear da equação () obemos a velocdade na dreção

Leia mais