Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis.

Tamanho: px
Começar a partir da página:

Download "Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis."

Transcrição

1 Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems de equções leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts: b b b usdo otção mtrcl, temos A.b ode A, e b b b b, sedo A mtrz dos coecetes do sstem, o vector ds cógts e b o vector dos termos depedetes. trclmete: Ab. Como sbemos os sstems podem ser clsscdos em possíves (determdos ou determdos e mpossíves. Pág de 8 - Resolução de Sstems de Equções

2 No osso estudo, pes os teressm sstems possíves determdos. Os métodos umércos pr resolver sstems leres podem dvdr-se em drectos e tertvos.. - étodos Drectos São queles que, meos de erros de rredodmeto, orecem solução ect, pós um úmero to de operções. - étodo de elmção de Guss - étodo de elmção de Guss-ord. - étodos Itertvos Permtem obter solução (com um dd precsão medte utlzção de processos de cálculos que germ um sucessão de promções covergetes pr solução do problem. Estes métodos estão sujetos um erro de tructur pelo cto de, determd ltur, termos de prr o processo de gerção dests promções. Os métodos tertvos são utlzdos, prcplmete, pr sstems de grdes dmesões possm precer em problems de várs cêcs, como egehr, ecoom, ísc. A su prcpl vtgem é cldde com que podem ser mplemetdos lgum sotwre (est questão será vst s uls prátcs. Pág de 8 - Resolução de Sstems de Equções

3 A (promção à solução de um sstem Ab obtd por um método tertvo, cosste em clculr um sequêc (, (,..., de promções de. Em gerl, será ecessáro escolher um promção cl ( que drá orgem tods s resttes: ( ( ( ( (4 (5 (6... Pretede-se que est sucessão de promções sucessvs sej covergete pr solução ect do sstem e esse cso é ecessáro estbelecer crtéro pr trucr sucessão, sto é, estbelecer um crtéro que permt prr o processo de cálculo, medte um precsão pré-ded. Os crtéros de covergêc ms utlzdos são: m (k- ε m - (k- ε ode ε é o erro dmtdo. Pág de 8 - Resolução de Sstems de Equções

4 .. - étodo de cob Sej A.b um sstem de equções leres de equções, com cógts e supohmos que :,,..., e det(a. Cosderemos mtrz A, decompost d orm segute: AD - E - F ode D é mtrz dgol: ; E é mtrz trgulr eror: ; F é mtrz trgulr superor: sto é, se j se j Ej e Fj. - j se j < - j se j > O sstem A.b é equvlete (D-E-F. b, ms (D-E-F. b D. - (E F. b D. b (E F. D - [ b (E F.] Pág 4 de 8 - Resolução de Sstems de Equções

5 A relção teror tem como bse órmul de recorrêc do método de cob: D - [ b (E F. ], em que é promção gerd terção k. Ou sej, dode,... b b b ( b... ( b... ( b Em gerl, -ésm promção é dd por:. (b j j,,..., j Fórmul de recorrêc Pág 5 de 8 - Resolução de Sstems de Equções

6 Pág 6 de 8 - Resolução de Sstems de Equções Eemplo: Cosderdo promção cl ( [ ] T, resolv pelo método de cob (dus terções o sstem ler: - 4 z z y z y

7 Pág 7 de 8 - Resolução de Sstems de Equções.. - étodo de Guss -Sedel Derv do método de cob, com o objectvo de celerr covergêc do método teror. Sej A.b um sstem de equções leres de equções, com cógts e supohmos que :,,..., e det(a. Cosderemos, como trás, decomposção d mtrz A, AD-E-F. O sstem A.b é equvlete (D-E-F. b, e (D-E-F. b (D-E. - F. b (D-E. b F. Cosderdo (D-E. b F. ( é o vlor de terção k D. b E. F. D - (b E. F. Ou sej, (k (k (k (k (k (k b b b.

8 dode... ( b... ( b... ( b Em gerl, -ésm promção é dd por: (b j j j j,,..., j j Fórmul de recorrêc Pág 8 de 8 - Resolução de Sstems de Equções

9 Pág 9 de 8 - Resolução de Sstems de Equções Eemplo: Cosderdo promção cl ( [ ] T, resolv pelo método de Guss - Sedel (dus terções o sstem ler: - 4 z z y z y

10 .. Covergêc dos métodos tertvos Tto o método de cob como o de Guss - Sedel são métodos do tpo:. C À mtrz chm-se mtrz de terção. Em cd um destes métodos: (k étodo de cob: D [ b ( E F. ], logo D.( E F. étodo de Guss - Sedel: (D-E. bf. (D-E - (b F.. ogo: (D-E -.F Se à equção. (k- C subtrrmos em mbos os membros. C, obtemos: -. (k- C - (. C -. (k ( (k- - e.e (k-. (eq. em que e represet o erro cometdo terção k. ogo, e (k-.e (k- é o erro cometdo terção k-, e substtudo e (k- (eq., obtemos e.e (k-. Procededo sucessvmete dest orm obtemos: e k.e (, k,,... Pág de 8 - Resolução de Sstems de Equções

11 Deção - O método tertvo é covergete se lm e. k Teorem : É codção ecessár e sucete pr que o método tertvo, de mtrz de terção, sej covergete que: lm k k. Teorem : Dd mtrz de terção, s sucessvs potêcs k, k,,... covergem pr mtrz ul se e só se os vlores própros de orem em módulo meores que um. Isto é, o método tertvo que teh como mtrz de terção será covergete se e só se ρ ( < ode ρ ( m{ λ }. A ρ ( chm-se ro espectrl d mtrz. Como prátc, ão cohecemos os vlores própros d mtrz, é útl cohecer codções sucetes de covergêc. Um dels é est: Teorem : Se mtrz dos coecetes do sstem A.b é estrtmete dgol domte por lhs ou por colus (EDD ou EDDC etão o método tertvo coverge. Pág de 8 - Resolução de Sstems de Equções

12 Estrtmete dgol domte por lhs (EDD: > j, pr,..., Estrtmete dgol domte por colus (EDDC: j j jj > j, pr j,..., j Eemplo: 4 y z y z - z Pág de 8 - Resolução de Sstems de Equções

13 - Resolução de Sstems de Equções Não eres Cosdere-se o sstem de equções ão leres com cógts segute: (,,...,... (,,...,... (,,..., Com X [... ] T e [... ] T Podemos brevr escrevedo F(X. ( F. Ao cotráro dos sstems de equções leres, é muto dícl em gerl demostrr estêc e ucdde dos zeros de F(X. O sstem ( só em csos ecepcolmete smples é que dmte um solução lítc, dí que os métodos hbtulmete empregues são métodos tertvos ou umércos. Estes sstems reuem certs dculddes: estêc de covergêc, ou ão, rpdez de covergêc (cso hj, ecessdde de ter um estmtv cl, dmesoldde do sstem... Pág de 8 - Resolução de Sstems de Equções

14 Pág 4 de 8 - Resolução de Sstems de Equções. - étodo de Newto Vmos, o cpítulo teror, o método de Newto-Rphso pr resolução de equções (, com um vrável. Este método cosste em promr ução pelo seu desevolvmeto em sére de Tylor trucd prtr do termo que evolve prmer dervd Geerlzdo o cso -dmesol: Se z é rz do sstem F( (, Sej o jcobo ssocdo o sstem ( e h o cremeto terção k. Por smplcdde remos deotr F( por F. Etão, ( otção mtrcl h F, org equção F h. ( - (. ( - ( ( ' ξ ξ (. -.(z ( ( ( j j j j z j j j ( ( (

15 Se ôr vertível, h - F (, ms h -, pelo que (k - F - (, (k - ( F, k,,,... órmul de recorrêc Do poto de vst computcol, o cálculo d vers de um mtrz é sempre descoselhável, dí que ( é ms ecz por morr o úmero de operções ecessárs à obteção de. N prátc, o método de Newto (k - ( F, k,,,... obtem-se resolvedo e, lmete: h F (k h, k,,,... Pág 5 de 8 - Resolução de Sstems de Equções

16 Algums dculddes deste método: clculr dervds (pr clculr o jcobo ; resolver, em cd terção, um sstem de equções lgébrcs (o que requer muts operções rtmétcs por terção, se or eto por métodos drectos; dculdde em estbelecer um bo estmtv cl, o que pode ser determte pr ssegurr covergêc do método. Em cotrprtd, O método de Newto possu um covergêc rápd. Pág 6 de 8 - Resolução de Sstems de Equções

17 Pág 7 de 8 - Resolução de Sstems de Equções Eemplo: Aplcr o método de Newto à resolução do sstem ão ler, 6, utlzdo ( [ ] T. Resolução: Começmos por der F( e ( 4 ( ; F( ª Iterção: ( [ ] T ( e 5 F( F ( ( ( ( De F h pr k, temos que 5 h F h ( ( ( ( - F ( ( h ( ( ( -

18 De h pr k, temos que ( ( h ( - ( ( ( Erro: h má { -,, } ª Iterção: ( [ ] T 4 - F( e ( 4 8 De h F pr k, temos que ( h ( F ( 4 8 h ( h ( ( ( - ( F ( De h pr k, temos que ( ( h ( ( ( ( Erro: h má {.88, -.47, -.5 }.47 Pág 8 de 8 - Resolução de Sstems de Equções

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............ b b b usdo

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

integração são difíceis de serem realizadas. Por exemplo, como calcular

integração são difíceis de serem realizadas. Por exemplo, como calcular 89. INTERPOAÇÃO Objetvo: Ddo um cojuto de + otos G; o lo e um cojuto de uções Ecotrr um ução gg que melhor reresete esse cojuto de ddos de cordo com lgum crtéro. Deção : Sejm os + otos. Dzemos que ução

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

Capítulo 4: Interpolação Polinomial. 1. Introdução

Capítulo 4: Interpolação Polinomial. 1. Introdução Cpítulo 4: Iterpolção Poloml. Itrodução Supohmos que cohecemos ução em pes em potos do tervlo [b] e que pretedemos cohece-l em qulquer outro poto desse tervlo. Pr tl vmos com bse os potos cohecdos costrur

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

Análise Numérica. Departamento de Engenharia Civil. Ana Maria Faustino

Análise Numérica. Departamento de Engenharia Civil. Ana Maria Faustino Aálse Numérc Deprtmeto de Eger Cvl 4 A Mr Fusto Aálse Numérc Teor de erros - DEC Teor de erros Tpos de erro Erros de rredodmeto úmero to de dígtos π.4 Erros de tructur úmero to de termos! órmul de Tlor

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3 DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Uesp UNIVERIDADE ETADUAL PAULITA CAMPU DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Cálculo Nuérco stes de Equções Leres Prof. Dr. G. J. de e Deprteto de Mteátc Edção CAPÍTULO ITEMA DE EQUAÇÕE LINEARE.. INTRODUÇÃO

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos NTEGRAÇÃO NUMÉRCA Pro. Luc Moter moter@com.ums.r Fculdde de Computção Fcom/UFMS Métodos Numércos tegrção Numérc tegrl ded Aplcções Métodos tegrção Numérc Fórmul ude Newto Cotes oes Método dos Trpézos Método

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

MNE 707 Análise Numérica. Notas de Aula Prof. Volmir Eugenio Wilhelm Curitiba, Pr

MNE 707 Análise Numérica. Notas de Aula Prof. Volmir Eugenio Wilhelm Curitiba, Pr MNE 77 Aálse Numérc Nots de Aul 7 Prof. Volmr Eugeo Wlelm Curt, Pr Volmr Eugêo Wlelm PPGMNE UFPR MNE77 Isttução de Eso: UNIVERSIDADE FEDERAL DO PARANÁ Progrm: MÉTODOS NUMÉRICOS EM ENGENHARIA (46P) Nome:

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Reolução de Stem Lere..- Mtrze e Vetore..- Reolução de Stem Lere de Equçõe Algébrc por Método Eto (Dreto)..3- Reolução de Stem Lere de Equçõe Algébrc

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Cálculo Automático de Estruturas MÉTODOS NUMÉRICOS. J P Moitinho de Almeida. E M B Ribeiro Pereira

Cálculo Automático de Estruturas MÉTODOS NUMÉRICOS. J P Moitinho de Almeida. E M B Ribeiro Pereira Cálculo Automátco de Estruturs MÉTODOS NUMÉRICOS J P Motho de Almed E M B Rbero Perer 6 Not trodutór Estes potmetos form edtdos pel prmer vez em Outubro de 986 pr o Curso de Cálculo Automátco de Estruturs,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ESCO POIÉCNIC D UNIVERSIDDE DE SÃO PUO PQI álse de Processos d Idústr Químc Egehr Químc. EPUSP el 9 ; F 88; v.prof. uco Gulerto, trv. º8 CEP 8-9 São Pulo SP Brsl. SogWo.Pr@pol.usp.r.. Prof. Sog Wo Pr Sstems

Leia mais

Cálculo Numérico I. Manuel Bernardino Lino Salvador

Cálculo Numérico I. Manuel Bernardino Lino Salvador Cálculo Numérco I Muel Berrdo Lo Slvdor São Crstóvão/SE 9 Cálculo Numérco Elorção de Coteúdo Muel Berrdo Lo Slvdor Cp Hermeso Alves de Meezes Coprgt 9, Uversdde Federl de Sergpe / CESAD. Neum prte deste

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES Ojetvo: Forms e resolver os sstems e equções leres resulttes o proesso e sretzção Rever os segutes métoos: Guss Seel Jo e SOR Apresetr o métoo: TDMA MATRIZES ESPECIAIS

Leia mais

VI - Integração Numérica

VI - Integração Numérica V - tegração Numérca C. Balsa & A. Satos. trodução São, este mometo, coecdos dos aluos métodos aalítcos para o cálculo do tegral dedo b ( d a sedo ( cotíua e tegrável o tervalo [ ab] ;. Cotudo, algumas

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Índice. 1 Trigonometria e funções trigonométricas. 2 Geometria analítica. 3 Sucessões. 4 Funções reais de variável real.

Índice. 1 Trigonometria e funções trigonométricas. 2 Geometria analítica. 3 Sucessões. 4 Funções reais de variável real. Ídce Trgoometr e uções trgoométrcs Teste de Autovlção Teste de Autovlção Teste de Autovlção Geometr lítc Teste de Autovlção Teste de Autovlção Sucessões Teste de Autovlção Teste de Autovlção 7 Fuções res

Leia mais

CAPÍTULO 3. O Método das Diferenças Finitas

CAPÍTULO 3. O Método das Diferenças Finitas CAÍULO O Método ds Dfereçs Fts Nesse cpítlo é presetdo o Método de Dfereçs Fts e s plcção problems de egehr prcplmete em de dfsão de clor em regme trstóro.. rocesso de dscretzção A solção lítc ds eqções

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2015 DA FUVEST-FASE 2. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA FUVEST-FASE POR PROFA MARIA ATÔIA C GOUVEIA M gu bo ccueêc de ceto em O e o tgec o ldo BCdo tâgulo ABC o poto D e tgec et AB o poto E Os potos A D e O

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Mríl Brsl Xver REITORA Prof. Rues Vlhe Fosec COORDENADOR GERA DOS CURSOS DE MATEMÁTICA MATERIA DIDÁTICO EDITORAÇÃO EETRONICA Odvldo Teer opes ARTE FINA DA CAPA Odvldo Teer opes REAIZAÇÃO BEÉM PARÁ BRASI

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1

Matrizes - revisão. No caso da multiplicação ser possível, é associativa e distributiva Não é, em geral, comutativa 2013/03/12 MN 1 Mtrizes - revisão No cso d multiplicção ser possível, é ssocitiv e distributiv A ( BC) ( AB) C A( B C) AB AC Não é, em gerl, comuttiv AB BA 03/03/ MN Mtrizes - revisão A divisão de mtrizes ão é um operção

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A

Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Á R E A, S O M A D E R I E M A N N E A I N T E G R A L D E F I N I D A Prof. Beito Frzão Pires - hors. áre A oção de áre de um polígoo ou região poligol) é um coceito bem cohecido. Começmos defiido áre

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j lustermg lusterg Herárquco Aglomertvo Mtrz e roxme: NxN D: me e roxme ou smlre etre os rões e. Atrbur um rão or cluster N clusters. Ecotrr o r e clusters e ms semelhtes mtrz e smlre e utálos um úco cluster.

Leia mais

CAP. VI Integração e diferenciação numéricas. 1. Introdução

CAP. VI Integração e diferenciação numéricas. 1. Introdução CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

Sistemas de Equações Algébricas

Sistemas de Equações Algébricas CURSO DE NIVELAMENTO 00 - PEQ/COPPE/UFRJ PROF. ARGIMIRO SISTEMA DE EQUAÇÕES ALGÉBRICAS Mtemát Aul Sstems de Equções Algérs Cosderdo o prolem de um retor otíuo de tque gtdo (CSTR) ãosotérmo, om propreddes

Leia mais

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004

Análise Numérica (3) Sistemas de equações lineares V1.0, Victor Lobo, 2004 Aálise Numéric (3) Sistems de equções lieres V.0, Victor Lobo, 004 Sistems de fiições Equção Lier Form mtricil: A X=B Sistem de equções icógits + +... + + +... +... + +... + Form mtricil: AX=B Utilidde

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Apêndice A - Ajuste de funções a um conjunto de pontos experimentais

Apêndice A - Ajuste de funções a um conjunto de pontos experimentais Rotero de Físc Epermetl II 45 Apêdce A - Ajuste de fuções um cojuto de potos epermets Fote: Fudmetos d Teor de Erros José Herque Vuolo Edtor Edgr Blücher Ltd 99 N eperêc sobre o empuo medmos dus grdezs

Leia mais

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP CLEBER ALMEIDA DE OLIVEIRA Isttuto Tecológco de Aeroáutc ITA, Prç Mrechl Edurdo Gomes, 50 - Vl ds Acács - São José dos Cmpos - SP cleber@t.br

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP

CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP CONSIDERAÇÕES SOBRE A OBTENÇÃO DE VETORES DE PRIORIDADES NO AHP AUTORES: CLEBER ALMEIDA DE OLIVEIRA cleber@t.br Isttuto Tecológco de Aeroáutc ITA, Prç Mrechl Edurdo Gomes - São José dos Cmpos - SP MISCHEL

Leia mais

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202

MÉTODOS NUMÉRICOS. Prof. Ionildo José Sanches Prof. Diógenes Cogo Furlan. Universidade Federal do Paraná Departamento de Informática CI-202 Uversdde Federl do Prá Deprteto de Iforátc CI- MÉTODOS NUMÉRICOS Prof. Ioldo José Sches Prof. Dógees Cogo Furl E-Ml: oldo@oldo.cjb.et URL: http://www.oldo.cjb.et/etodos/ CURITIBA 7 SUMÁRIO INTRODUÇÃO...

Leia mais

SISTEMAS DE LEONTIEF SINOPSE 1 AS MATRIZES DE LEONTIEF E JONES. = 1, 2,..., n em proporções fixas, ou seja, a quantidade de unidades. ,..., x n.

SISTEMAS DE LEONTIEF SINOPSE 1 AS MATRIZES DE LEONTIEF E JONES. = 1, 2,..., n em proporções fixas, ou seja, a quantidade de unidades. ,..., x n. SSTEMS DE EONTEF Jorge Pulo rúo Nl de Jesus de Souz SNOPSE O oetvo deste rtgo é presetr lgus resultdos clásscos pr estêc de soluções ão egtvs pr sstems leres comus em álse de sumo-produto O teto é dvddo

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Cap 6. Substituição de Equipamentos

Cap 6. Substituição de Equipamentos Egehr Ecoômc Demétro E. Brct Cp 6. Substtução de Equpmetos 6. REOÇÃO E SUBSTTUÇÃO DE EQUPETOS o problem de reovção ou de reposção, desej-se sber qul o tempo ótmo pr se coservr um equpmeto, ou sej, qul

Leia mais

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Áre e Teorem Fudmetl

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

Interpolação Polinomial e Quadratura Numérica

Interpolação Polinomial e Quadratura Numérica CURSO DE NIVELAMENTO AO M. SC./PEQ- PROF. EVARISTO Iterpolção Poloml e Qudrtur Numérc Teorem de Weerstrss: se f() é um fução cotíu em um tervlo fechdo [, ], etão pr cd >, este um polômo de gru () tl que:

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Problemas fundamentais da teoria da aproximação func/onal

Problemas fundamentais da teoria da aproximação func/onal 18 GAZETA DE MA TEM ATIÇA 2 5 ) ( A - se) l + (T _ y) * + ( Z - z) K=O p 1 1 " 1 d p 1 df-j pl - p ds T d íj (A'~ «)> -f (Y - y) ft + (2-z)v = - 3 1 e resolve-se rapdamete. X x + Aa + B\ r = y + Aß + Bp,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS

EXERCÍCIOS DE EQUAÇÕES DE DIFERENÇAS FINITAS MP Cálculo de Dfereçs Fs Bcreldo e Esísc IME/USP EXERCÍCIOS DE EQUÇÕES DE DIFERENÇS FINITS SOLUÇÕES E SUGESTÕES Bblogrf: [ETS] ppled Ecooerc Te Seres, Wler Eders, Cper : Dfferece Equos (dspoível e p://cgcpeuspbr/cdf/

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais