CAP. VI Integração e diferenciação numéricas. 1. Introdução

Tamanho: px
Começar a partir da página:

Download "CAP. VI Integração e diferenciação numéricas. 1. Introdução"

Transcrição

1 CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo ntegrl: I f d F F. 6. No entnto, em mutos csos, o processo nteror pode ser compleo ou mesmo não ser possível de relr porque é mpossível encontrr um prmtv de f epress nltcmente, ou f pode pens ser conecd num número fnto de pontos como, por eemplo, no cso de ddos eperments. Em qulquer dos csos é mprescndível oter métodos numércos, pr um cálculo promdo de 6.. A ntegrção numérc de um função permte o cálculo de um promção do ntegrl defndo epresso em 6. com se em pens lguns vlores d função ntegrr. A técnc normlmente utld consste em susttur função ntegrnd f por outr, g, que prom f no ntervlo [ ; ], e sej ms fclmente ntegrável, e estelecer f d g d. Os polnómos consttuem promções roáves e são de fácl ntegrção. Estes fctos justfcm grnde mportânc dos polnómos no âmto dos métodos numércos. Estem númers póteses de ntegrção numérc, e serão vsts neste cpítulo três forms de o fer, tods els pertencendo o grupo ds Págn de Integrção e Dferencção Numércs

2 fórmuls de Newton-Côtes que empregm vlores de f, onde os vlores de são gulmente espçdos. Serão estudds regr dos trpéos e ª e ª regrs de Smpson, Pr otenção ds fórmuls de Newton-Côtes, é utldo o polnómo nterpoldor de Gregor-Newton: Pn!! n... n n! onde. Apromndo função f em 6. pelo polnómo de Gregor-Newton, e ntegrndo-o, oter-se-ão s fórmuls de Newton-Côtes.. Regr dos trpéos No cso ms smples de ntegrção de Newton-Côtes, função f é promd pel rect que une os pontos, f e, f. Geometrcmente regr trpeodl prom áre so curv de f mednte áre de um trpéo. O erro será ddo pel áre que fc entre s dus curvs. Anltcmente Pr determnr regr dos trpéos consder-se o polnómo de Gregor- Newton de gru, ou sej, rect. Fendo n em 6. e susttundo em 6. tem-se: I f d P d d. Págn de Integrção e Dferencção Numércs

3 Como temos que dd. Efectundo um mudnç no ntervlo de ntegrção, sto é, pssndo do ntervlo [, ] pr o ntervlo [, ] tem-se: Ou sej, Ms, I d d. então, I I, 6. que é fórmul dos trpéos ou regr dos trpéos. Erro de Trunctur A dferenç entre o ntegrl ecto de f áre so curv de f e o ntegrl promdo é o erro de ntegrção. Tl erro é devdo o erro de trunctur cometdo n promção d função ntegrnd pelo polnómo de Gregor-Newton. Pr determnr este erro st ntegrr o erro de trunctur do polnómo nterpoldor. Tem-se que f '' ξ E T <!, < ξ Págn de Integrção e Dferencção Numércs

4 Então, E f '' ξ d f '' ξ d!! f ''! E ξ E f '' ξ! E O erro de trunctur é então ddo por: E f '', ξ f '' ξ 6 E f '' ξ, ξ. 6. ξ ou Nots:. Se f ξ> tem-se um erro por ecesso e se f ξ< tem-se um erro por defeto.. Pelo fcto de o erro depender d ª dervd de f, conclumos que o erro é ero se f fôr um polnómo de gru, sto é, regr dos trpéos ntegr, de form ect, polnómos de gru. Fórmul Compost A equção 6. mostr que o erro d fórmul dos trpéos é proporconl f pens se nul qundo f se nul,.e., qundo f for lner e dmnu proporconlmente qundo - é pequeno. No cso de - não ser sufcentemente pequeno o erro de ntegrção E pode não stsfer precsão desejd. Pr dmnur o erro pode-se Págn de Integrção e Dferencção Numércs

5 sudvdr o ntervlo ncl [ ; ] em n suntervlos [ ; ] de mpltude constnte e plcr fórmul 6. cd suntervlo. n Tem-se então que I... n n I... n n I... n n, que é regr dos trpéos compost. Erro de Trunctur O erro totl cometdo é som dos erros cometdos n plcção d fórmul dos trpéos cd suntervlo. EE E...E n-, onde E é o erro cometdo o plcr regr dos trpéos em cd suntervlo [ ; ], ou sej, E f '', ξ ξ. n Tem-se então que E f '' ξ. Como f é contnu este ξ, tl que nf '' ξ f '' ξ. n Ou sej, tem-se, n E f ''ξ, ξ. Como E f ''ξ, ξ. n n Págn 5 de Integrção e Dferencção Numércs

6 Como o erro é nversmente proporconl o qudrdo de n, o erro tende pr ero à medd que o número de suntervlos ument. Eemplo : Utlndo regr dos trpéos compost e consderndo ses suntervlos clcule I.6. d.6. Utlndo ses suntervlos temos:.. 6 Ou sej, Então, I 5. I.6768 I Vlor ecto do ntegrl:.6. 6 I d ln.8... Págn 6 de Integrção e Dferencção Numércs

7 Págn 7 de Integrção e Dferencção Numércs O erro cometdo no cálculo numérco do ntegrl é: Erro Regrs de Smpson N tenttv de melorr promção trpeodl poder-se-á utlr polnómos de ordem superor. As regrs de Smpson otêm-se promndo função f por polnómos nterpoldores de gru superor ou gul. Assm, se se utlr um polnómo nterpoldor de Gregor-Newton de gru dos, P, pr promr f,.e.,! P f tem-se que d d P d f I!. Efectundo um mudnç de vrável tem-se que: dd, e lém dsso, Ou sej, d d I!!! I 8 I.

8 Ms, então,, I I que não é ms do que fórmul de Smpson smples ou regr de Smpson smples. Enqunto regr trpeodl prom, em cd ntervlo de mpltude, áre so curv f pel áre de um trpéo, regr de Smpson utl áre so um práol pr promr áre so curv em dos ntervlos djcentes. Erro de Trunctur Tl como pr regr dos trpéos, pr determnr o erro cometdo o utlr regr de Smpson, st ntegrr o erro de trunctur d promção polnoml. f ''' ξ Tem-se que E T, < ξ <.! Assm, o erro cometdo n ntegrção é ddo por E d f ''' ξ f ''' ξ d!! E f ''' ξ! Ou sej, tem-se que o erro de ntegrção é nulo, pode-se ssm conclur que o erro não depende de Págn 8 de Integrção e Dferencção Numércs f ''' ξ E T <!, < ξ.

9 Clcule-se então E ET d v f ξ com ET, < ξ <,! sto é, clcule-se o erro de ntegrção com um erro de trunctur d promção polnoml menor. Neste cso tem-se E f ξ d! v 5 E 9 f v ξ, ξ, que é o erro cometdo qundo se utl fórmul de Smpson n ntegrção numérc. Ser de esperr que, tl como regr dos trpéos é ect pr polnómos do prmero gru, regr de Smpson fosse ect pr polnómos de gru ou menor. A dedução d fórmul do erro mostrou que regr de Smpson tmém é ect se f é um polnómo de gru ou nferor. Fórmul Compost Pr oter fórmul compost de Smpson deve-se sudvdr o ntervlo de ntegrção [, ] em n suntervlos de gul mpltude, e cd pr de suntervlos plcr regr de Smpson smples. Otém-se então, I... n n n I... n n n, que é regr de Smpson compost, tmém conecd pel regr do. Págn 9 de Integrção e Dferencção Numércs

10 Note-se que regr de Smpson é plcd pres de suntervlos, como tl pr se poder plcr referd regr o número de suntervlos dsponíves tem de ser pr. Erro de Trunctur Tl como pr regr dos trpéos compost, o erro totl pr regr de Smpson compost, otém-se somndo os erros cometdos n plcção d regr de Smpson cd pr de suntervlos. Tem-se então que 5 n / v E f, ξ 9 ξ. Como f v é contnu este ξ, tl que Ou sej, n f v n / v ξ f ξ. 5 v E f ξ, ξ. 8n Eemplo Clcule um vlor promdo de π, sendo que: π plcndo regr de Smpson com qutro suntervlos. Pr n tem-se que.5. Dvdndo o ntervlo [, ] em suntervlos e clculndo f otém-se segunte tel de vlores: Págn de Integrção e Dferencção Numércs / d

11 .5 Então, π /. Logo: π.6. Do mesmo modo que se deduu regr de Smpson nteror, utlndo um polnómo nterpoldor de Gregor-Newton de gru dos, é possível dedur outrs regrs utlndo polnómos nterpoldores de Gregor-Newton de gru superor. Por eemplo, se utlrmos um polnómo de Gregor- Newton de gru três pr nterpolr função f, otemos segunte regr de Smpson: I... n n 8 que é conecd pel regr dos /8. n Págn de Integrção e Dferencção Numércs

12 Dferencção Numérc A dervd de um função f num ponto defne-se por: f f lm. O ojectvo nest secção é clculr um promção este vlor sem ter de clculr o respectvo lmte e controlr o erro cometdo ness promção. Consderemos o polnómo nterpoldor de Lgrnge de gru, P, sej [; ] um ntervlo de números res e f um função contínu, tl que f e f tmém são contínus. Sejm ]; [ e um número rel tl que ]; [. Então: f P e f f f α,! erro pr lgum α ] ; [. Dervndo epressão nteror, otem-se f f f Susttundo nest epressão por fcmos com f α f α f f f }{{ f α. } promção erro cometdo Reescrevendo fórmul d promção cegmos : f f f, que cmmos fórmul de dferencção de dos pontos. Este é o cso ms smples, em que pens são conecdos pontos. Com um rcocíno nálogo, dedumos o cso em que são conecdos n pontos: f k n f j L j k f n α n k j k j n! j j promção erro NOTA: em gerl, otemos resultdos tnto ms precsos quntos ms pontos utlrmos.

13 Anlsemos o cso em que n, ou sej, qundo conecemos pontos, que vmos supôr gulmente espçdos:,,... Otemos, pel fórmul nteror: f k j f j L j k f α k! n k j k j, j e susttundo k por, e otemos, respectvmente: f [ f f f ] f α ; f [ f f ] 6 f α ; c f [ f f f ] 6 f α Procedendo às mudnçs de vrável em e em c e otemos pens dus epressões dstnts: f [f f ] promção f [f f f ] promção 6 f α ; erro f α. erro que são s epressões de três pontos pr promr f Com um rcocíno deste tpo, poderímos clculr outrs epressões pr outros números de pontos. Por eemplo, pr 5 pontos: f [f 8f 8f f ] promção f 5 α ; erro f [5f 8f 6f 6f f ] promção 5 f α. erro

14 Dervd de ordem superor à prmer Como no cso d prmer dervd, podemos clculr promções à dervd de ordem de um função, prtndo do polnómo de Tlor de gru em torno do ponto,, onde queremos clculr dervd. Neste cso temos: f [f f f ] promção f α ; erro Eercíco: Consdere função f, d qul se conecem os seguntes vlores: Clcule promções o vlor de f. utlndo s fórmuls de dos pontos; três pontos; c cnco pontos.. A tel fo construíd com se n função f e. Compre os resultdos otdos n líne nteror com o vlor rel de f... Clcule um promção do vlor de f. e compre com o seu vlor rel.

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33

MÉTODOS NUMÉRICOS. Integração Numérica. por Chedas Sampaio. Época 2002/2003. Escola Náutica I.D.Henrique 1de 33 Métodos umércos - ntegrção umérc Escol áutc.d.henrque MÉTODOS UMÉRCOS ntegrção umérc por Cheds Smpo Époc /3 Escol áutc.d.henrque de 33 Sumáro Regrs áscs Regrs do Rectngulo Regr do Trpézo Regr de Smpson

Leia mais

Integração Numérica Regras de Newton-Cotes

Integração Numérica Regras de Newton-Cotes Integrção Numérc Regrs de Newton-Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

Integração Numérica Regras de Newton-Cotes

Integração Numérica Regras de Newton-Cotes Integrção Numérc Regrs de Newton-Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

Integração Numérica Regras de Newton-Cotes

Integração Numérica Regras de Newton-Cotes Integrção Numérc Regrs de Newton-Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

Integração Numérica Regras de Newton Cotes

Integração Numérica Regras de Newton Cotes Integrção Numérc Regrs de Newton Cotes Aproxmr função ntegrnd por um polnómo nterpoldor, utlzndo pr nós de nterpolção os extremos do ntervlo e nós gulmente espçdos no nteror do ntervlo If ( ) fxdx ( )

Leia mais

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x).

Muitas vezes, conhecemos a derivada de uma função, y = f (x) = F(x), e queremos encontrar a própria função f(x). Integrção Muts vezes, conhecemos dervd de um função, y f (x) F(x), e queremos encontrr própr função f(x). Por exemplo, se semos que dervd de um função f(x) é função F(x) 2x, qul deve ser, então, função

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações Unversdde do Vle do Ro dos Snos UNISINOS Progrm de Pós-Grdução em Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e comportmento de sstems térmcos. Ddos representdos

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

CÁLCULO I 1 o Semestre de 2012 O CÁLCULO DE ÁREAS

CÁLCULO I 1 o Semestre de 2012 O CÁLCULO DE ÁREAS CÁLCULO I o Semestre de Prof. Muríco Fr 4 Sére de Eercícos : Integrção 4- O CÁLCULO DE ÁRES (I) Áre é medd de um espço de dus dmensões. O vlor d áre sgnfc qunts vezes esse espço é mor do que um medd pdrão.

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2016 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Eme Nconl de Mtemátc A 06 ( ạ fse) GRUPO I (Versão ). Sbemos que P(A) =, P(B) = e P(A B) = 5 0 6 Assm, P(A B) P(A B) = = 6 P(B) 6 P(A B) = 6 0 P(A B) = 6 0 P(A B) = 0 Tem-se que

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

Essa idéia leva à fórmula familiar para a área A de um círculo em termos de seu raio r:

Essa idéia leva à fórmula familiar para a área A de um círculo em termos de seu raio r: 5 INTEGRAIS DEFINIDAS, INDEFINIDAS E SUAS APLICAÇÕES O conceto de ntegrl tem sus orgens no Método d Eustão, tendo Arqumedes como um de seus grndes desenvolvedores. A motvção deste método fo o cálculo de

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T

TÓPICOS. Exercícios. Os vectores que constituem as colunas da matriz, 1 = [ 2 0 1] T Note em: letur destes pontmentos não dspens de modo lgum letur tent d logrf prncpl d cder Chm-se tenção pr mportânc do trlho pessol relzr pelo luno resolendo os prolems presentdos n logrf, sem consult

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória

Revisão de Matemática Simulado 301/302. Fatorial. Análise combinatória Revsão de Mtemátc Smuldo / Ftorl Eemplos: )! + 5! =! b) - Smplfcr (n+)! (n-)! b) Resolv s equções: (+)! = Permutção Smples Análse combntór Permutções são grupmentos com n elementos, de form que os n elementos

Leia mais

6º Teste de avaliação versão1. Grupo I

6º Teste de avaliação versão1. Grupo I Escol Secundár com 3º cclo D. Dns 0º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. 6º Teste de avaliação versão2. Grupo I Escol Secundár com 3º cclo D. Dns 10º Ano de Mtemátc A 6º Teste de vlção versão Grupo I As cnco questões deste grupo são de escolh múltpl. Pr cd um dels são ndcds qutro lterntvs, ds qus só um está corret.

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos NTEGRAÇÃO NUMÉRCA Pro. Luc Moter moter@com.ums.r Fculdde de Computção Fcom/UFMS Métodos Numércos tegrção Numérc tegrl ded Aplcções Métodos tegrção Numérc Fórmul ude Newto Cotes oes Método dos Trpézos Método

Leia mais

PARTE I. Figura Adição de dois vetores: C = A + B.

PARTE I. Figura Adição de dois vetores: C = A + B. 1 PRTE I FUNDENTS D ESTÁTIC VETRIL estudo d estátc dos corpos rígdos requer plcção de operções com vetores. Estes entes mtemátcos são defndos pr representr s grndes físcs que se comportm dferentemente

Leia mais

MATRIZES. pela matriz N = :

MATRIZES. pela matriz N = : MATQUEST MATRIZES PROF.: JOSÉ LUÍS MATRIZES - (CEFET-SP) Se A, B e C são mtres do tpo, e, respectvmente, então o produto A. B. C: ) é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; é mtr do tpo ; não é defndo.

Leia mais

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores

Eixos e árvores Projeto para eixos: restrições geométricas. Aula 4. Elementos de máquinas 2 Eixos e árvores Exos e árvores Projeto pr exos: restrções geométrcs Aul 4 Elementos de máquns Exos e árvores 1 Exos e árvores Projeto pr exos: restrções geométrcs o Deflexões e nclnções: geometr de um exo corresponde

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

SOCIEDADE PORTUGUESA DE MATEMÁTICA

SOCIEDADE PORTUGUESA DE MATEMÁTICA SOCIEDADE PORTUGUESA DE MATEMÁTICA Propost de Resolução do Exme de Mtemátc A - º ANO Códgo 65 - Fse - 07 - de junho de 07 Grupo I 5 6 7 8 Versão A B D A B C D C Versão D D B C C A B A Grupo II. 0 5 5 5

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação:

Capítulo 4. Vetores. Recursos com copyright incluídos nesta apresentação: Cpítulo 4 Vetores Reursos om oprght nluídos nest presentção: Grndes eslres: mss, volume, tempertur,... Epresss por um número e undde Grndes vetors: deslomento, forç,... Requerem módulo, dreção, sentdo

Leia mais

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67

Cinemática de Corpos Rígidos Cinética de Corpos Rígidos Métodos Newton-Euler Exemplos. EESC-USP M. Becker /67 SEM004 - Aul Cnemátc e Cnétc de Corpos Rígdos Prof. Dr. Mrcelo Becker SEM - EESC - USP Sumáro d Aul ntrodução Cnemátc de Corpos Rígdos Cnétc de Corpos Rígdos Métodos Newton-Euler Eemplos EESC-USP M. Becker

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

REGRESSÃO LINEAR. À variável Y cujo comportamento se pretende estudar dá-se o nome de variável dependente.

REGRESSÃO LINEAR. À variável Y cujo comportamento se pretende estudar dá-se o nome de variável dependente. REGRESSÃO LINEAR N tm N lq À vrável Y cuo comportmento se pretende estudr dá-se o nome de vrável dependente. O comportmento dest vrável depende de outrs vráves X chmds vráves ndependentes. A modelção do

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Matemática /09 - Integral de nido 68. Integral de nido

Matemática /09 - Integral de nido 68. Integral de nido Mtemátic - 8/9 - Integrl de nido 68 Introdução Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I = [; b] e tl que f () ; 8 [; b]: Se dividirmos [; b] em n intervlos

Leia mais

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações

Universidade do Vale do Rio dos Sinos UNISINOS Programa de Pós-Graduação em Engenharia Mecânica. Ajuste de equações 7//4 Unversdde do Vle do Ro dos Snos UNISINOS Progr de Pós-Grdução e Engenhr Mecânc Ajuste de equções Ajuste de curvs Técnc usd pr representr crcterístcs e coportento de sstes tércos. Ddos representdos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A

1a Verificação Refino dos Aços I EEIMVR-UFF, Setembro de 2011 Prova A 1 Verfcção Refno dos s I EEIMVR-UFF, Setembro de 11 Prov A 1. Clcule o vlor de γ no ferro, 168 o C, com os ddos fornecdos n prov. Vmos em ul que o S G e o γ estão relcondos trvés de, 5585γ G R ln M Logo,

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

2 Teoria de membranas elásticas

2 Teoria de membranas elásticas Teor de membrns elástcs teor de membrn pr mters ltmente deformáves dfere d elstcdde clássc, á que s deformções n superfíce méd d membrn deformd são em módulo mores que undde. Dentro dests crcunstâncs utlz-se

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2]

6 Cálculo Integral. 1. (Exercício VI.1 de [1]) Considere a função f definida no intervalo [0, 2] por. 1 se x [0, 1[ 3 se x ]1, 2] 6 Cálculo Integrl. (Eercício VI. de []) Considere função f definid no intervlo [, ] por se [, [ f () = se = 3 se ], ] () Mostre que pr tod decomposição do intervlo [, ], s soms superior S d ( f ) e inferior

Leia mais

CAPÍTULO 4: ENERGIA DE DEFORMAÇÃO

CAPÍTULO 4: ENERGIA DE DEFORMAÇÃO Curso de ngenhr Cvl nversdde stdul de rngá Centro de ecnolog Deprtmento de ngenhr Cvl rof. omel Ds nderle CÍO : N D DFOÇÃO rof. omel Ds nderle. nerg de Deformção d rlho reldo pel forç durnte o longmento

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Solução da Terceira Lista de Exercícios Profa. Carmem Hara

Solução da Terceira Lista de Exercícios Profa. Carmem Hara Exercíco 1: Consdere grmátc G xo: B ǫ ǫ B B Introdução eor d Computção olução d ercer Lst de Exercícos Prof. Crmem Hr. Mostre um dervção ms esquerd d plvr. B B B B B. Quntos pssos de dervção tem o tem

Leia mais

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex

Lista de Exercícios - Otimização Linear Profa. Maria do Socorro DMAp/IBILCE/UNESP. Método Simplex Lst de Eercícos - Otmzção Lner Prof. Mr do Socorro DMAp/IBILCE/UNESP Método Smple Ref.: Bzr, M. e J.J. Jvs - Lner Progrmmng nd Network Flows - John Wley, 77. ) Resolv o problem bo pelo método smple começndo

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS

MÉTODO DE HOLZER PARA VIBRAÇÕES TORCIONAIS ÉODO DE HOZE PAA VIBAÇÕES OCIONAIS Este método prómdo é dequdo pr vgs com crcterístcs não unformes centuds, ou sstems com um número grnde de msss concentrds. Substtu-se o sstem contínuo por um sstem dscreto

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Capítulo III INTEGRAIS DE LINHA

Capítulo III INTEGRAIS DE LINHA pítulo III INTEGRIS DE LINH pítulo III Integris de Linh pítulo III O conceito de integrl de linh é um generlizção simples e nturl do conceito de integrl definido: f ( x) dx Neste último, integr-se o longo

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFESSORES: Glória Márcia, Enaldo Vergasta. 1 a LISTA DE EXERCÍCIOS NIESIDADE FEDEAL DA BAHIA DEPATAMENTO DE MATEMÁTICA MATA7 ÁLGEBA LINEA A POFESSOES: Glór Márc Enldo ergst LISTA DE EXECÍCIOS ) Sejm A B e C mtres nversíves de mesm ordem encontre epressão d mtr X nos tens

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja,

Capítulo 5 AJUSTAMENTO DOS VETORES OBSERVADOS. os possíveis vetores de serem formados entre as estações, ou seja, 5 Cpítulo 5 JUSMENO DOS EORES OBSERDOS Como resultdo do processmento de fses observds por R, R 3, receptores, em um mesm sessão, obter-se-ão os vlores ds componentes de todos os possíves vetores de serem

Leia mais

Resolução 2 o Teste 26 de Junho de 2006

Resolução 2 o Teste 26 de Junho de 2006 Resolução o Teste de Junho de roblem : Resolução: k/m m k/m k m 3m k m m 3m m 3m H R H R R ) A estti globl obtém-se: α g = α e + α i α e = ret 3 = 3 = ; α i = 3 F lint = = α g = Respost: A estrutur é eteriormente

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

LISTA DE EXERCÍCIOS #5 - ELETROMAGNETISMO I

LISTA DE EXERCÍCIOS #5 - ELETROMAGNETISMO I STA DE EXERCÍCOS #5 - EETROMAGNETSMO 1. Dds s confgurções de corrente o, otenh o cmpo mgnétco correspondente. () Fo reto e longo, percorrdo por corrente. () Solenode de seção trnsversl constnte, com n

Leia mais