Método de Eliminação de Gauss

Tamanho: px
Começar a partir da página:

Download "Método de Eliminação de Gauss"

Transcrição

1 étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem ler A Pr resolvê-lo, procedemos como segue: º Psso: A A () () é chmdo elemeto pvot. Se, podemos colocr zeros o de, e efectum-se s segutes operções: m,,3,..., () j j m j,, j,3,..., () m,,3,..., Aálse Numérc

2 Aálse Numérc étodo de Elmção de Guss º Psso: A ( ) () A Se (), podemos colocr zeros o de (), e efectum-se s segutes operções: () () () () 3 () () () m j m m j j j 3,...,, 3,...,,, 3,...,, () () () () () ()

3 étodo de Elmção de Guss Otém-se o sstem equvlete: [ A ] Prossegudo o processo, chegmos, o psso -, o sstem A () (), ode ( ) ( ) [ A ] () 3 () 3 33 É-se ssm coduzdo um sstem ler equvlete o sstem cl, cuj mtrz é trgulr superor. Este sstem pode fclmete ser resolvdo, começdo com () / () e clculdo-se -, -,...,, sucessvmete. () 3 ( ) 3 () ( ) () 3 () () 3 () 3 Aálse Numérc 3

4 étodos de Fctorzção U Estes métodos cosstem em decompor mtrz A um produto de dus mtrzes U, ou sej AU, ode é um mtrz trgulr feror e U um mtrz trgulr superor. Supodo que estem s mtrzes e U, etão pr resolver o sstem A st resolver os dos sstems g e Ug. Estem várs mers de se ecotrr mtrzes e U de modo que AU. l l l u U u u ª lh de U: u, u,, u º colu de : k h k de U : ukj kj lkrurj, j k, k +,, r u u u l 3, l3,, l Colu k de : l k k ( k r l k u rk ) / u kk, k +, k +, Aálse Numérc 4

5 Aálse Numérc 5 étodos de Fctorzção U Pode mostrr-se que se o método de elmção de Guss for plcdo o sstem A sem troc de lhs etão AU ode 3 3 m m m m m m ) ( () () ) ( A U

6 Pesqus de Pvot Devdo os erros de rredodmeto, o método de Elmção de Guss pode coduzr soluções erróes. Ou sej podemos ter prolems de stldde umérc. As téccs de pesqus de pvot surgem um tettv de morr o efeto de propgção dos erros de rredodmeto. Pesqus prcl de pvot: cosste em escolher pr elemeto pvot, o k-psso do método de Elmção de Guss, o elemeto de mor vlor soluto colu k. Aálse Numérc 6

7 trzes especs trz de dgol domte: A j j j,,,, dgol domte por lhs jj j,,,, j dgol domte por colus trz de dgol estrtmete domte: Se s desgulddes cm o sl for susttuído por > ( ou sej, desguldde estrt sempre) Aálse Numérc 7

8 trzes especs trz defd postv: A smétrc. A sumtrz A k, costtuíd pels k prmers lhs e k prmers colus de A, verfc: det(a k )>, k,,..., Oservções: Se A é smétrc e os vlores própros de A são postvos etão A é defd postv. Se A é defd postv etão os elemetos d dgol são postvos. Teorem: Sej A um mtrz de um dos dos tpos segutes: () smétrc defd postv () de dgol estrtmete domte por lhs ou colus. Etão A é ão sgulr e, lém dsso, o método de Elmção de Guss (tmém o método U) pode ser plcdo o sstem ler A sem troc de lhs. Ou sej o processo é estável em relção à propgção dos erros de rredodmeto, ão sedo precso usr ehum técc de pesqus de pvot. Aálse Numérc 8

9 Norms de Vectores Um orm em IR é um fução deotd por. com vlores em IR, stsfzedo: N., IR N. N3. α α, α IR IR N4. + y + y,, y IR Em IR usremos s segutes orms: I. (orm mám) II. III. m { } (orm utár) (orm Eucld) Aálse Numérc 9

10 Norms de trzes Um orm de mtrz é um fução defd o cojuto ds mtrzes qudrds res com vlores em IR stsfzedo: : A, A : A A 3: αa α A, α IR A 4: A + B A + B, A e B 5: A B A B, A e B 6: A A e A Dd um orm vectorl., plcção stsfz s codções -6. A m A (orm turl ou duzd) Aálse Numérc

11 Norms de trzes Pr orm vectorl m { } tem-se: A m j j (orm ds lhs) Pr orm vectorl tem-se A m j j (orm ds colus) À orm vectorl. está ssocd orm mtrcl A T ρ( AA ) ( ) T ode ρ AA é o ro espectrl d mtrz produto de A por A T. ρ(a)m m λ, λ é vlor própro de A. Aálse Numérc

12 Codcometo de Sstems leres vector promção pr e- erro de e - erro soluto de e ' erro reltvo de Sej A um mtrz ão sgulr. O úmero de codção de A é defdo por: cod(a) A A -, ode. é um orm turl de mtrzes. Sej solução ect do sstem A e solução otd do sstem perturdo A. Etão cod(a). Se cod(a) (pequeo) o sstem é um sstem em codcodo. Se cod(a)>>> (grde) o sstem é ml codcodo (um grde sesldde do sstem peques perturções). Aálse Numérc

13 étodos tertvos pr sstems leres Sstem ler A A C + d ode C é um cert mtrz proprd e d um vector. O método tertvo ssocdo é (k+) C (k) + d, k,,,... Oteção de métodos tertvos d form (k+) C (k) + d, k,,,... A + N, ode é um mtrz vertível A ( + N) A - - N+ - (k+) - - N (k) + -, k,,,... e (o) promção cl Aálse Numérc 3

14 Aálse Numérc 4 étodos de Jco e Gus-Sedel Nos métodos de Jco e Guss-Sedel escolh ds mtrzes e N é sed guldde A + D + U. Ao sstem ler A ssocmos s mtrzes, U, D defds do segute modo: A + D + U 3 U D

15 étodo de Jco (k+) - - N (k) + - Fzedo D e N + U result o método de Jco: (k+) -D - ( + U ) (k) + D - trz de terção C J -D - ( + U ) (estmos supor que os elemetos d dgol são dferetes de zero) Epressão gerl do método de Jco: j j ( k + ),,,..., j ( k ) j Aálse Numérc 5

16 étodo de Guss-Sedel (k+) - - N (k) + - Fzedo D + e N U result o método de Guss-Sedel: (k+) -(D + ) - U (k) + (D + ) - trz de terção C GS -(D + ) - U Epressão gerl do método de Guss-Sedel: ( k + ) j j j j + ( k + ),,,..., j ( k ) j Aálse Numérc 6

17 Covergêc dos métodos tertvos Teorem: (Codção sufcete de covergêc) Sej o sstem ler A e supohmos que o mesmo teh sdo trsformdo o sstem equvlete C + d () ode C é um mtrz qudrd e d um vector. Cosderemos o método tertvo (k + ) C (k) + d () com () um vector qulquer de IR. Se este lgum orm duzd (orml) de mtrzes tl que C <, etão o método tertvo () coverge pr solução do sstem () qulquer que sej o vector () ddo. E têm-se s fórmuls de erro (I) - (k + ) C - (k) (II) - (k + ) C k + - () (III) ( k + ) C C ( k + ) ( k ) Aálse Numérc 7

18 Covergêc dos métodos tertvos Coroláro: O método tertvo (k + ) C (k) + d coverge pr solução do sstem C + d qulquer que sej o vector () ddo se lgum ds codções se verfcm: () C < () C < Os: Pode ão se dr () em () e o método ser covergete. Teorem: (Crtéro de covergêc do método de Jco) Cosdere o sstem ler A. Se A é um mtrz de dgol estrtmete domte por lhs ou por colus etão o método de Jco coverge pr solução de A, qulquer que sej o vector cl (). Teorem: (Crtéro de covergêc do método de Guss-Sedel) Cosdere o sstem ler A. Se A é um mtrz de dgol estrtmete domte por lhs ou por colus etão o método de Guss-Sedel coverge pr solução de A, qulquer que sej o vector cl (). Aálse Numérc 8

19 Covergêc dos métodos tertvos Teorem: (Crtéro de covergêc pr o método de Guss-Sedel) Se A é smétrc e defd postv etão o método de Guss-Sedel plcdo o sstem A coverge pr solução do mesmo, qulquer que sej o vector cl (). Teorem:( Codção ecessáro e sufcete de covergêc) O método tertvo defdo por (k + ) C (k) + d coverge pr solução do sstem ler A, qulquer que sej o vector cl () se e só se ρ(c) <. Aálse Numérc 9

20 Aálse Numérc étodo de Newto pr Sstems ão eres ( + ) -[J( () )] - F( () ) ode F[f f... F ]T, [... ] T e mtrz Jco de F Cálculo de ( + ) f f f f f f f f f J ) ( + + d F d J ) ( ) ( ) ( ) ( ) ( ) (

Método de Eliminação de Gauss. Método de Eliminação de Gauss

Método de Eliminação de Gauss. Método de Eliminação de Gauss Método de Elimição de Guss idei básic deste método é trsormr o sistem b um sistem equivlete b, ode é um mtriz trigulr superior, eectudo trsormções elemetres sobre s lihs do sistem ddo. Cosidere-se o sistem

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis.

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis. Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems de equções leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............

Leia mais

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............ b b b usdo

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

MNE 707 Análise Numérica. Notas de Aula Prof. Volmir Eugenio Wilhelm Curitiba, Pr

MNE 707 Análise Numérica. Notas de Aula Prof. Volmir Eugenio Wilhelm Curitiba, Pr MNE 77 Aálse Numérc Nots de Aul 7 Prof. Volmr Eugeo Wlelm Curt, Pr Volmr Eugêo Wlelm PPGMNE UFPR MNE77 Isttução de Eso: UNIVERSIDADE FEDERAL DO PARANÁ Progrm: MÉTODOS NUMÉRICOS EM ENGENHARIA (46P) Nome:

Leia mais

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3 DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA

Unesp. Sistemas de Equações Lineares. Cálculo Numérico. Prof. Dr. G. J. de Sena CAMPUS DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Uesp UNIVERIDADE ETADUAL PAULITA CAMPU DE GUARATINGUETÁ FACULDADE DE ENGENHARIA Cálculo Nuérco stes de Equções Leres Prof. Dr. G. J. de e Deprteto de Mteátc Edção CAPÍTULO ITEMA DE EQUAÇÕE LINEARE.. INTRODUÇÃO

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

integração são difíceis de serem realizadas. Por exemplo, como calcular

integração são difíceis de serem realizadas. Por exemplo, como calcular 89. INTERPOAÇÃO Objetvo: Ddo um cojuto de + otos G; o lo e um cojuto de uções Ecotrr um ução gg que melhor reresete esse cojuto de ddos de cordo com lgum crtéro. Deção : Sejm os + otos. Dzemos que ução

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ESCO POIÉCNIC D UNIVERSIDDE DE SÃO PUO PQI álse de Processos d Idústr Químc Egehr Químc. EPUSP el 9 ; F 88; v.prof. uco Gulerto, trv. º8 CEP 8-9 São Pulo SP Brsl. SogWo.Pr@pol.usp.r.. Prof. Sog Wo Pr Sstems

Leia mais

A Integral Definida. A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais

A Integral Definida.  A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais A Itegrl Defd wwwcttmtr/log Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz som de mutos termos Assm, pr epressr ts soms, troduzmos otção greg, cujo símolo é que correspode à letr S pr sgfcr

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai

Universidade Federal da Bahia UFBA. Adriano Pedreira Cattai Uversdde Federl d Bh UFBA Deprtmeto de Mtemátc Cálculo Dferecl e Itegrl II :: 6. Adro Pedrer Ctt http://www.luospgmt.uf.r/droctt/ [clcr Eso ] Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes

Módulo de Matrizes e Sistemas Lineares. Operações com Matrizes Módulo de Mtrzes e Sstems Lneres Operções com Mtrzes Mtrzes e Sstems Lneres Operções com Mtrzes 1 Exercícos Introdutóros Exercíco 1. Encontre o vlor de () 2 A. 1/2 A. 3 A. Exercíco 2. Determne ) A + B.

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet

SISTEMAS LINEARES. Cristianeguedes.pro.br/cefet SISTEMAS LINEARES Cristieguedes.pro.r/cefet Itrodução Notção B A X Mtricil Form. : m m m m m m m A es Mtri dos Coeficiet : X Mtri dsvriáveis : m B Termos Idepede tes : Número de soluções Ddo um sistem

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES Ojetvo: Forms e resolver os sstems e equções leres resulttes o proesso e sretzção Rever os segutes métoos: Guss Seel Jo e SOR Apresetr o métoo: TDMA MATRIZES ESPECIAIS

Leia mais

Principio da Indução Finita (PIF)

Principio da Indução Finita (PIF) Arquvo ceddo or Alex Perer Bezerr Lst de Dscussão OBM Prco d Idução Ft (PIF) ) Axom d Bo Ordem em N: Cd sucojuto ão vzo de N ossu um meor( ou rmero) elemeto O xom d o ordem em N frm que se A é um sucojuto

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS

MÉTODOS ITERATIVOS PARA RESOLUÇÃO DE SISTEMAS MÉTODO ITRATIVO PARA ROLUÇÃO D ITMA ) NORMA D UMA MATRIZ: ej A=[ ij ] um mtriz de ordem m: Norm lih: A má i m j ij Norm colu: A má jm i ij emplos: I) A 0 A A má má ; 0 má{4 ; } 4 0 ; má{; 5} 5 Os.: por

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexdde de Algortmos Prof. Dego Buchger dego.uchger@outlook.com dego.uchger@udesc.r Prof. Crsto Dm Vscocellos crsto.vscocellos@udesc.r Aálse de Complexdde de Tempo de Algortmos Recursvos Algortmos Recursvos

Leia mais

Cálculo Automático de Estruturas MÉTODOS NUMÉRICOS. J P Moitinho de Almeida. E M B Ribeiro Pereira

Cálculo Automático de Estruturas MÉTODOS NUMÉRICOS. J P Moitinho de Almeida. E M B Ribeiro Pereira Cálculo Automátco de Estruturs MÉTODOS NUMÉRICOS J P Motho de Almed E M B Rbero Perer 6 Not trodutór Estes potmetos form edtdos pel prmer vez em Outubro de 986 pr o Curso de Cálculo Automátco de Estruturs,

Leia mais

Análise Numérica. Departamento de Engenharia Civil. Ana Maria Faustino

Análise Numérica. Departamento de Engenharia Civil. Ana Maria Faustino Aálse Numérc Deprtmeto de Eger Cvl 4 A Mr Fusto Aálse Numérc Teor de erros - DEC Teor de erros Tpos de erro Erros de rredodmeto úmero to de dígtos π.4 Erros de tructur úmero to de termos! órmul de Tlor

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

Cálculo Numérico I. Manuel Bernardino Lino Salvador

Cálculo Numérico I. Manuel Bernardino Lino Salvador Cálculo Numérco I Muel Berrdo Lo Slvdor São Crstóvão/SE 9 Cálculo Numérco Elorção de Coteúdo Muel Berrdo Lo Slvdor Cp Hermeso Alves de Meezes Coprgt 9, Uversdde Federl de Sergpe / CESAD. Neum prte deste

Leia mais

SISTEMAS DE LEONTIEF SINOPSE 1 AS MATRIZES DE LEONTIEF E JONES. = 1, 2,..., n em proporções fixas, ou seja, a quantidade de unidades. ,..., x n.

SISTEMAS DE LEONTIEF SINOPSE 1 AS MATRIZES DE LEONTIEF E JONES. = 1, 2,..., n em proporções fixas, ou seja, a quantidade de unidades. ,..., x n. SSTEMS DE EONTEF Jorge Pulo rúo Nl de Jesus de Souz SNOPSE O oetvo deste rtgo é presetr lgus resultdos clásscos pr estêc de soluções ão egtvs pr sstems leres comus em álse de sumo-produto O teto é dvddo

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Método de Dereças Ftas Alcado às Equações Derecas Parcas. 4.- Aromação de Fuções. 4..- Aromação or Polômos: Iterolação. 4..- Ajuste de Dados: Mímos

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Newton. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de Newto Professor Volmir Eugêio Wilhelm Professor Mri Klei Poliomil Revisão No eemplo só se cohece fução pr 5 vlores de - ós de iterpolção Desej-se cohecer o vlor d fução em

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Mríl Brsl Xver REITORA Prof. Rues Vlhe Fosec COORDENADOR GERA DOS CURSOS DE MATEMÁTICA MATERIA DIDÁTICO EDITORAÇÃO EETRONICA Odvldo Teer opes ARTE FINA DA CAPA Odvldo Teer opes REAIZAÇÃO BEÉM PARÁ BRASI

Leia mais

MATLAB - Trabalho Prático 4

MATLAB - Trabalho Prático 4 U N I V E R S I D A D E D A B E I R A I N T E R I O R Deprtmeto de Egehri Electromecâic CONTROLO DE SISTEMAS (Lortório) MATLAB - Trlho Prático Todos os eercícios devem ser escritos um script.m. Deverão

Leia mais

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA ssoição de resistêis em série um ligção de resitêis em série, orrete que flui o iruito é mesm e pode-se oter um resistêi uivlete do ojuto. CCTOS S D COT COTÍ...... (... )... lise de Ciruitos 0 lise de

Leia mais

Sistemas de Equações Algébricas

Sistemas de Equações Algébricas CURSO DE NIVELAMENTO 00 - PEQ/COPPE/UFRJ PROF. ARGIMIRO SISTEMA DE EQUAÇÕES ALGÉBRICAS Mtemát Aul Sstems de Equções Algérs Cosderdo o prolem de um retor otíuo de tque gtdo (CSTR) ãosotérmo, om propreddes

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.4 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão4 Nome: Nº Turm: Professor: José Tioco /4/8 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

Revisão de Álgebra Linear

Revisão de Álgebra Linear UleseMG Curso de Especlzção em Auomção e Corole Revsão de Álger Ler Deção de mrz Um mrz rel ou comple é um ução que cd pr ordedo,j o cojuo S m ssoc um úmero rel ou compleo. Um orm muo comum e prác pr represer

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

2- Resolução de Sistemas de Equações Lineares

2- Resolução de Sistemas de Equações Lineares - Resolução de Sistems de Equções ieres Um sistem de equções lieres, com m equções e vriáveis, é escrito gerlmete como: m m m m ode ij são coeficietes m i j são vráveis j i são costtes m i A resolução

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Reolução de Stem Lere..- Mtrze e Vetore..- Reolução de Stem Lere de Equçõe Algébrc por Método Eto (Dreto)..3- Reolução de Stem Lere de Equçõe Algébrc

Leia mais

Capítulo 5.1: Revisão de Série de Potência

Capítulo 5.1: Revisão de Série de Potência Cpítulo 5.: Revisão de Série de Potêci Ecotrr solução gerl de um equção diferecil lier depede de determir um cojuto fudmetl ds soluções d equção homogêe. Já cohecemos um procedimeto pr costruir soluções

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

CAP. VI Integração e diferenciação numéricas. 1. Introdução

CAP. VI Integração e diferenciação numéricas. 1. Introdução CAP. VI Integrção e dferencção numércs. Introdução Se um função f é contínu num ntervlo [ ; ] e é conecd su prmtv F, o ntegrl defndo dquel função entre e pode clculr-se pel fórmul fundmentl do cálculo

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

PESQUISA OPERACIONAL Dualidade. Professor Volmir Wilhelm Professora Mariana Kleina

PESQUISA OPERACIONAL Dualidade. Professor Volmir Wilhelm Professora Mariana Kleina PESQUISA OPERACIOAL Duldde Professor Volr Wlhel Professor Mr Kle Duldde A d prole de progrção ler (prole de progrção ler prl) orrespode u outro (dul) fordo o pr de proles dus: pl prl pl dul Prof. Volr

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA

CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA PMR Mecânc Computconl CAPÍTULO IV DIFERENCIAÇÃO NUMÉRICA O problem de derencção numérc prentemente é semelnte o de ntegrção numérc ou sej obtendo-se um polnômo nterpoldor ou outr unção nterpoldor d unção

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Áre e Teorem Fudmetl

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Módulo 01. Matrizes. [Poole 134 a 178]

Módulo 01. Matrizes. [Poole 134 a 178] ódulo Note em, leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi pricipl d cdeir hm-se à teção pr importâci do trlho pessol relizr pelo luo resolvedo os prolems presetdos iliogrfi, sem

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

DISTRIBUIÇÃO HIPERGEOMÉTRICA

DISTRIBUIÇÃO HIPERGEOMÉTRICA 7 DISTRIBUIÇÃO HIPERGEOMÉTRICA Cosdere-se uma população fta costtuída por N elemetos dstrbuídos por duas categoras eclusvas e eaustvas de dmesões M e N M, respectvamete. Os elemetos da prmera categora

Leia mais

Sistemas de Equações Algébricas

Sistemas de Equações Algébricas EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Cpítulo 5 Sstems de Equções Algérs Cosderdo ovmete o prolem de um retor otíuo de tque gtdo (CSTR) ão-sotérmo, om propreddes físs

Leia mais

Capítulo 4: Interpolação Polinomial. 1. Introdução

Capítulo 4: Interpolação Polinomial. 1. Introdução Cpítulo 4: Iterpolção Poloml. Itrodução Supohmos que cohecemos ução em pes em potos do tervlo [b] e que pretedemos cohece-l em qulquer outro poto desse tervlo. Pr tl vmos com bse os potos cohecdos costrur

Leia mais