[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

Tamanho: px
Começar a partir da página:

Download "[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )"

Transcrição

1 RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes pr d sstem polímero-solvete, que se eotrm tbelds pr um grde úmero de polímeros leres em város solvetes 0.5 (solvete θ ) >0.5 (bom solvete, tpmete: )

2 Problem (ul teror, exepto líe 3): Os vlores d vsosdde tríse de polestreo em bezeo, 5ºC (bom solvete), e em lohexo 34.5ºC (solvete θ), pr város pesos moleulres, eotrm-se tbel. /g mol - [η] Bz /ml g - [η] Cx /ml g - α Determe os prâmetros d equção de rk-houwk-skurd k k pr o polestreo em bezeo e em lohexo.. Por que rzão os vlores d vsosdde tríse são, pr um ddo peso moleulr, sempre e ferores es em lohexo o odo que em bezeo? 3. Determe os vlores do oefete de expsão do polestreo em bezeo pr os város pesos moleulres.

3 3. Pel defção de oefete de expsão: α Pr d peso moleulr, o vlor d vsosdde tríse é proporol o volume hdrodâmo e o ro hdrodâmo é proporol o ro de grção. Logo: Ou: [ η] R g [ η ] e [ η] R g 3 3 del R g 3 del Como um solvete θ o polímero tem dmesões ão perturbds (pseudo- des): 3/ R g R g [ η] [ η] R g 3/ 3 ( α ) α [ η] [ η] del θ R g 3/ θ del /g mol α 3 α 5./.9/

4 Que vlores médos ds msss molres dos polímeros se determm por vsosmetr? Pr um mostr moodspers ( ): η sp [ ] Vsosdde de soluções dluíds de polímero um bom solvete: (eq. de rk-houwk-skurd) K K Pr o polímero poldsperso: [ ] sp sp K η η η K Como: v K K / / Dode: K v sp η v N / v ( w /V) v N N w mss ds des de polímero de mss molr : w N (pr,0) N Como pr um bom solvete ~0 8 : w v N Como pr um bom solvete ~0.8 : v w

5 EDID D VISCOSIDDE DE SOLUÇÕES DE POLÍEROS Reservtóro (ío) (fm) Tubo plr Vsosímetros plres - Ostwld; - Hubbelohde edds dos tempos de esometo do fludo etre s mrs e Fludos Newtoos η< mp s Vsosímetros de Höppler edds dos tempos de qued de esfers etre s mrs e Fludos Newtoos 0.6 mp s<η< mp s Vsosímetros rotos edds d velodde gulr de um prte móvel seprd d prte fx pelo líqudo Fludos Newtoos e ão Newtoos

6 PROPRIEDDES COLIGTIVS Propreddes de soluções bárs de solutos ão volátes, que o lmte de dlução ft pes depedem do úmero de moléuls de soluto por udde de volume, ms ão d su turez ou tmho. Exemplos de Propreddes Colgtvs: Dmução d pressão de vpor do solvete umeto d tempertur de ebulção do solvete (elevção ebulosóp) Dmução d tempertur de fusão do solvete (depressão rosóp) Pressão osmót de soluções s propreddes olgtvs permtem determção d mss molr méd úmer de um polímero,.

7 OSOSE: (dfusão de solvete trvés de um membr sempermeável etre zos de dferetes oetrções) Exemplo: Céluls de glóbulos vermelhos em solução Solução hpertó Solução sotó Solução hpotó s éluls eolhem, por dfusão d águ de detro (ode su oetrção é meor) pr for trvés d membr elulr (osmose)

8 PRESSÃO OSÓTIC Osmometr (osmómetro de membr) Solução dluíd de polímero (omprtmeto B) embr sem-permeável (permeável pes o solvete) solvete (omprtmeto ) Se membr pes permte pssgem de moléuls de solvete etre os dos omprtmetos do osmómetro, r-se um fluxo ds moléuls de solvete do omprtmeto (que otém pes solvete) pr o omprtmeto B (osmose).

9 pressão osmót π é pressão que tem que ser pld à solução pr prr o fluxo de solvete. No equlíbro, o potel químo do solvete os dos omprtmetos e B tem de ser gul: Pr soluções des tem-se: * (ode μ Substtudo em (): μ μ B μ μ () * μ + l x é o potel químo do solvete puro) Do ldo d solução (B): *, *, B P ) μ ( PB ) + l ( x (o omprtmeto há pes solvete puro) *, B *, x < lx < 0 μ ( P ) > μ ( P ) ( B O potel químo do solvete vem dmuído por efeto d preseç do soluto, ms umetdo pel mor pressão sobre solução devdo à pressão osmót: *, B *, μ ( P ) μ ( P + π ) B dfereç de pressão de vpor do solvete o equlíbro é pressão osmót, π

10 tededo que: d μ SdT + VdP Pr o solvete tempertur t ostte: t dμ V dp d Itegrdo: P B dμ VdP P P P B V t. μ ( PB ) μ( P ) V ( PB P ) Vπ ou: μ B ) + ( P ) μ ( P V π *, B *, μ B ) ( P ) μ ( P + V π tededo que: μ *, *, B *, *, ( P ) μ ( P B ) + l x μ ( P ) μ ( P ) + V π + l ( x V π l x π l x V

11 Relção de π om oetrção de soluto (polímero) Pr soluções dluíds: x << e x e x x (pldo l) x l( x ) l x π l x Como x V V + π V π x ( ( V ) ) V V V ( e π V V V oetrção do polímero (kg m -3 ) mss molr do polímero )

12 Portto, sedo oetrção de polímero e su mss molr méd, tem-se: π ou π pr soluções dluíds de um polímero om mss molr méd, π/ é um ostte dd tempertur. Pr soluções ms oetrds de polímero s terções bárs e terárs etre des ão podem ser gords e π/ pode desevolver-se em sére de potês de : π , 3 º, 3º oefetes de vrl, que medem s terções bárs e terárs etre moléuls l de polímero. Verf se que: >0 Bos solvetes 0 Solvete θ <0 us solvetes

13 Qul mss molr méd que se obtém pr um solução de polímero por osmometr? Pr solução tem-se: π Pr um mostr moodspers tem-se: Pr um mostr poldspers tem-se: Substtudo expressão de : π π π π π N úmero de moles de polímero de mss molr : N /V N N

14 π G DE SSS OLRES QUE SE PODE OBTER POR OSOETRI: Lmte superor ( < g mol -, depededo d sesbldde d do meddor de pressão). Lmte feror ( > g mol -, depededo ds membrs, que ão podem ser permeáves o polímero).

15 RESUINDO: Exemplos de tés pr determr: w de um polímero Vsosmetr de soluções dluíds Osmometr de soluções de um polímero PRESSÃO OSÓTIC SOLUÇÕES DE POLÍEROS Pr soluções muto dluíds: Pr soluções ms oetrds: π π/ é um ostte um dd tempertur. π , 3 º, 3º oefetes de vrl, que medem s terções bárs e terárs etre moléuls de polímero. >0 Bos solvetes; 0 Solvete θ; <0 us solvetes

16 PROBLE: pressão osmót de soluções de polestreo em tolueo fo medd à tempertur de 30 ºC, tedo-se obtdo os vlores ddos tbel. / (kg m -3 ) π / P Determe o peso moleulr médo do polímero e o segudo oefete de vrl.

17 RESOLUÇÃO pressão osmót de um solução polmér éd dd d pel expressão: π π (P) - pressão osmót, (kg m -3 ) - oetrção de polímero, R - ostte dos gses perfetos, T - tempertur bsolut, - peso moleulr médo do polímero, 3 - segudo e terero oefetes de vrl. represetção gráf de π / em fução de é um fução qudrát: π + + 3

18 Represetção qudrát: π Coefete de ordem zero: / Coefete de ordem : Coefete de ordem : 3 Pelo que: / kg - mol 38 kg mol - 3.8x0 5 g mol - π/( T)/(mol kg - ) x0-4 kg - mol kg - m 3 3.3x0-4 kg - m 3 mol x0 kg mol kg m.6x0 kg m mol Represetção ler: π + Orded orgem: / Coefete gulr: Pelo que: Y E-4 X Y E-4 X+.5569E-5 X (kg m -3 ) teção às uddes dos oefetes de vrl!!! / kg - mol 400 kg mol - 4.0x0 5 g mol - º oefete de vrl 5.6x0-4 kg - m 3 mol

19 PR RESPONDER E DUS LINHS: prtr de medds de pressão osmót de soluções de polestreo ( 400 kg mol - ) em tolueo, 30 o C, determou-se pr o º oefete de vrl o vlor 5.6x0-4 kg - m 3 mol. O que pode olur sobre quldde do solvete ests odções?

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Capítulo 5. Misturas Simples

Capítulo 5. Misturas Simples Capítulo 5. Misturas Simples aseado o livro: tkis Physical Chemistry Eighth Editio Peter tkis Julio de Paula 04-06-2007 Maria da Coceição Paiva 1 Misturas Simples Para iterpretar termodiamicamete o efeito

Leia mais

CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO

CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIBRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO CÁLCULO DA INCERTEZA DE MEDIÇÃO NA CALIRAÇÃO DE MEDIDAS MATERIALIZADAS DE VOLUME PELO MÉTODO GRAVIMÉTRICO NORMA N o NIE-DIMEL-043 APROVADA EM AGO/03 N o 00 0/09 SUMÁRIO Objetvo 2 Cmo Alcção 3 Resosbld

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3

CAP. 5 DETERMINANTES 5.1 DEFINIÇÕES DETERMINANTE DE ORDEM 2 EXEMPLO DETERMINANTE DE ORDEM 3 DETERMINNTES CP. DETERMINNTES. DEFINIÇÕES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é por defção plcção: : M IK IK ( ) DETERMINNTES DETERMINNTE DE ORDEM O ermte de um mtrz qudrd de ordem é

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

Análise de Componentes Principais

Análise de Componentes Principais PÓS-GRADUAÇÃO EM AGRONOMIA CPGA-CS Aálse Multvd Alcd s Cêcs Agás Aálse de Comoetes Pcs Clos Albeto Alves Vell Seoédc - RJ //008 Coteúdo Itodução... Mt de ddos X... 4 Mt de covâc S... 4 Pdoção com méd eo

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N

Conceitos básicos População É constutuida por todos os elementos que são passíveis de ser analisados de tamanho N sísc Coceos áscos opulção É cosuud por odos os elemeos que são pssíves de ser lsdos de mho mosrgem Sucojuo d populção que é eecvmee lsdo com um ddo mho mosr leór mosr ode cd elemeo d populção êm hpóeses

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 16/05/09

P2 - PROVA DE QUÍMICA GERAL - 16/05/09 P2 - PROVA DE QUÍMICA GERAL - 16/05/09 Nome: GABARITO Nº de Matrícula: Turma: Assiatura: Questão Valor Grau Revisão 1 a 2,5 2 a 2,5 3 a 2,5 4 a 2,5 Total 10,0 Costates: R 8,314 J mol -1 K -1 0,0821 atm

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Uversdde de São ulo Isttuto de Físc FÍSIC MODERN I U 5 rof. Márc de lmed Rzzutto elletro sl 0 rzzutto@f.us.br o. Semestre de 08 ág do curso: htts:edscls.us.brcoursevew.h?d=695 0008 OERDORES OBSERVÁVEIS

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química Cpítulo VIII Equilíbrio de istribuição Alyticl Chemistry - Robert V. ilts. V Nostrd, ISBN 0-44-158-4 eprtmeto de Químic 1 As váris técics de extrção e cromtogrfi de prtição, evolvem prtição dos solutos

Leia mais

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem

Aula 07 Análise no domínio do tempo Parte II Sistemas de 2ª ordem Aula 07 Aálise o domíio do tempo Parte II Sistemas de ª ordem Aálise o domíio do tempo - Sistemas de ª ordem iput S output Sistema de seguda ordem do tipo α G(s) as + bs + c Aálise o domíio do tempo -

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1)

Proposta de resolução do Exame Nacional de Matemática A 2017 (1 ạ fase) GRUPO I (Versão 1) Propost de resolução do Exme Ncol de Mtemátc A 07 ( ạ fse) GRUPO I (Versão ). Pretede-se determr qutos úmeros turs de qutro lgrsmos, múltplos de, se podem formr com os lgrsmos de 9. Nests codções, só exste

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS

SOLUÇÕES e GASES- EXERCÍCIOS RESOLVIDOS rof. Vieira Filho SOLUÇÕES e GSES- EXERCÍCIOS RESOLVIDOS SOLUÇÕES. em-se 500g de uma solução aquosa de sacarose (C O ), saturada a 50 C. Qual a massa de cristais que se separam da solução, quado ela é

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

Cap 6. Substituição de Equipamentos

Cap 6. Substituição de Equipamentos Egehr Ecoômc Demétro E. Brct Cp 6. Substtução de Equpmetos 6. REOÇÃO E SUBSTTUÇÃO DE EQUPETOS o problem de reovção ou de reposção, desej-se sber qul o tempo ótmo pr se coservr um equpmeto, ou sej, qul

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

AULAS 7 A 9 MÉDIAS LOGARITMO. Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições:

AULAS 7 A 9 MÉDIAS LOGARITMO.  Para n números reais positivos dados a 1, a 2,..., a n, temos as seguintes definições: 009 www.cursoglo.com.br Treimeto pr Olimpíds de Mtemátic N Í V E L AULAS 7 A 9 MÉDIAS Coceitos Relciodos Pr úmeros reis positivos ddos,,...,, temos s seguites defiições: Médi Aritmétic é eésim prte d som

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

QUÍMICA FÍSICA Mestrado Integrado em Engª Biológica (2014 2015)

QUÍMICA FÍSICA Mestrado Integrado em Engª Biológica (2014 2015) QUÍMICA FÍSICA Mestrado Integrado em Engª Biológica (2014 2015) Docentes: Laura Maria Ilharco e mail: lilharco@tecnico.ulisboa.pt Extensão: 3220 (Complexo Interdisciplinar) Pedro Paulo (laboratório) e

Leia mais

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e P O R T A R I A n 2 0 1, d e 1 8 d e j u l h o d e 2 0 1 3. A P r o c u r a d o r a d a R e p ú b l i c a q u e e s t a s u b s c r e v e, e m e x e r c í c i o n a P r o c u r a d o r i a d a R e p ú

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

MÉTODOS GRÁFICOS 1. INTRODUÇÃO:

MÉTODOS GRÁFICOS 1. INTRODUÇÃO: MÉTODO GRÁFICO. INTRODUÇÃO: Um gráfco é um mer coveete de se represetr um relção etre vlores epermets ou vlores teórcos) de dus ou ms grdezs, de form fcltr vsulzção, terpretção e obteção d fução mtemátc

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

As propriedades coligativas não dependem da natureza química do soluto, mas apenas do número de partículas do soluto presente em relação ao total.

As propriedades coligativas não dependem da natureza química do soluto, mas apenas do número de partículas do soluto presente em relação ao total. ula: 17 Temática: Propriedades Coligativas das Soluções s propriedades coligativas não dependem da natureza química do soluto, mas apenas do número de partículas do soluto presente em relação ao total.

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Cap. 3 A Variável Tempo

Cap. 3 A Variável Tempo Egehr Ecoômc Cp. 3 rável Tempo 3. EQUILÊNCI, O LOR DO DINHEIRO NO TEMPO Imgemos um stução qul eu já sb hoje que detro de um o tere de efetur um pgmeto o vlor de.00 res. Se dspuser de dhero hoje, será que

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA ssoição de resistêis em série um ligção de resitêis em série, orrete que flui o iruito é mesm e pode-se oter um resistêi uivlete do ojuto. CCTOS S D COT COTÍ...... (... )... lise de Ciruitos 0 lise de

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

1ª Lista de Exercícios - GABARITO

1ª Lista de Exercícios - GABARITO Uversdde Federl de Ms Gers Deprtmeto de Cê d Computção Algortmos e Estruturs de Ddos II ª Lst de Exeríos - GABARIO Est lst deverá ser etregue pr os professores durte ul do d de setembro de 0. Não serão

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnr 6 de junho de ots de ul de Físc. OMTO, TOQU MOMTO GU... OMTO... O rolmento descrto como um combnção de rotção e trnslção... O rolmento sto como um rotção pur... 3 ener cnétc... 3 TOQU...

Leia mais

INCLUSO. consulte RELÓGIO DIGITAL. Vinhedo Tel: 55 (19) 3886-3003 Daniela - (19) 3515-5673

INCLUSO. consulte RELÓGIO DIGITAL. Vinhedo Tel: 55 (19) 3886-3003 Daniela - (19) 3515-5673 ML E 9.9.235.582 O V - º37 - BL/MO/JUHO/2013 V E O O HOW-OOM EEL E M E OM.04 07 quím E LO.01 lu MELHO EÇO MEO OVE!!! M u MEO E EEU.02.08 MEE f EE ul l B Ep p qu m: m Vál 01 /m 3013 /julh 2013 LUO ul ELO

Leia mais

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires

VA L O R M É D I O D E U M A F U N Ç Ã O. Prof. Benito Frazão Pires 3 VA L O R M É D I O D E U M A F U N Ç Ã O Prof. Beito Frzão Pires 3. médi ritmétic A médi ritmétic (ou simplesmete médi) de vlores y, y 2,..., y é defiid como sedo o úmero y = y + y 2 + + y. () A médi

Leia mais

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas.

onde d, u, v são inteiros não nulos, com u v, mdc(u, v) = 1 e u e v de paridades distintas. !"$# &%$" ')( * +-,$. /-0 3$4 5 6$7 8:9)$;$< =8:< > Deomiaremos equação diofatia (em homeagem ao matemático grego Diofato de Aleadria) uma equação em úmeros iteiros. Nosso objetivo será estudar dois tipos

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Produção Período/Módulo: 6º Período Disciplin/Unidde Curriculr: Simulção de Sistems de Produção

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Interpolação Métodos de Lagrange. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Métodos de grge Professor Volmir Eugêio Wilhelm Professor Mri Klei Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução f() que ão se cohece. São cohecidos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Uversdde Federl Fluese UFF Volt Redod RJ INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Prof. Dor Cesr Lobão Trblo orgl preprdo por: Prof. Ioldo José Sces e Prof. Dógees Lgo Furl Uversdde Federl do Prá. Deprteto de

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação;

REDES DE NOVA GERAÇÃO. m a i o r q u a l i d a d e, m a i s r a p i d e z, mais inovação; R E D E S D E N O V A G E R A Ç Ã O D E S A F I O e O P O R T U N I D A D E A P D C, 3 1 D E M A R Ç O D E 2 0 0 9 A S O N A E C O M A C R E D I T A Q U E A S R d N G S Ã O U M A O P O R T U N I D A D

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais