Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Tamanho: px
Começar a partir da página:

Download "Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático"

Transcrição

1 Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças das cetras que pesam os costtutes com que se cofeccoa o betão, é a balaça o laboratóro que permte determar os parâmetros ecessáros para atestar a coformdade dos costtutes, assm como a do produto acabado, como por exemplo a determação da massa volúmca expermetal. A calbração das balaças deve ser realzada por um laboratóro acredtado, com uma perodcdade máxma de um ao, sedo posterormete fetas verfcações termédas pela empresa. Equato as calbrações se devem calcular os erros e as certezas assocadas às medções efectuadas ao equpameto de pesagem, as verfcações, a empresa recorredo a massas própras e adstrtas a esta tarefa lmta-se a calcular o erro dos patamares de carga verfcados. O valor destas massas deve ser cofrmado a cada ova calbração do strumeto de pesagem. As verfcações termédas são muto mportate pos permtem, o tervalo etre calbrações, cotrolar e cohecer a derva da balaça (alteração cotíua ou cremetal do strumeto de pesagem o tempo, devdo à varação das suas propredades metrológcas). A perodcdade das verfcações termédas deve ser estabelecda com base o hstórco e codções de utlzação da balaça. Este cotrolo permte detectar atempadamete avaras ou falhas. De seguda exemplfca-se o procedmeto de calbração de um strumeto de pesagem de fucoameto ão automátco (equpameto que por acção da aceleração da gravdade determa o peso da amostra, colocada sobre o seu prato de pesagem), de letura dgtal ou aalógca, e de equlíbro automátco a sua gama de fucoameto.. Metodologa A calbração de balaças basea-se um prcípo de comparação etre os valores ldos o aparelho dcador do equpameto de pesagem e o valor da massa covecoalmete verdadera (padrões de referêca), colocados sobre o receptor de carga da balaça. Ates de se proceder à calbração do equpameto, há que ter em cota os segutes aspectos:.1 Equpameto ecessáro A título dcatvo, a meor classe de exactdão de pesos padrão a utlzar uma calbração, deverá ter em cota a segute tabela: Capacdade Resolução > 10 g 10g 1g 0,1g 0,01g 1mg 0,1 mg até 0 g M1 F F F1 F1 E E até 1000 g M1 F F F1 E E - até 5000 g M1 F F F1 E - - até 0000g M1 F F1 F até g M1 F F Gradezas de fluêca Lmtes de temperatura regulametares: os strumetos para os quas ão são fxados a placa de característcas téccas os lmtes especas de temperatura, devem coservar as suas propredades metrológcas o teror do tervalo [- 10 º C, + 0 º C].

2 . Factores de fluêca Para satsfazer as exgêcas metrológcas devem ter-se em cota os segutes factores eretes aos equpametos: - estado de coservação e lmpeza acetável; - estar velado; - ão estar sujeto a vbrações, - ão sofrer corretes de ar, - sem lmtações e restrções de carácter mecâco ou eléctrco, - localzação a operação deverá ser realzada o local de stalação do equpameto, o mas possível de acordo com as codções de utlzação corretes.. Número e selecção dos potos de calbração Para o strumeto a calbrar covém regstar: o úmero mímo de potos de calbração, mas o zero. A selecção dos referdos potos de calbração correspoderão a cargas ao logo da gama de trabalho do strumeto partdo do mímo até ao máxmo, o valor da meor dvsão da escala (resolução- d) e o valor da capacdade máxma (alcace - Max). O prmero poto de calbração será gual ao alcace mímo do fabrcate (quado dspoível). Caso tal ão seja cohecdo, o prmero poto de calbração será gual a 0d ou 1 mg se 0d < 1 mg. A selecção dos potos de calbração deve ser programada de forma a mmzar a utlzação de váras cargas o mesmo poto de calbração, e de acordo com o peddo do utlzador, garatdo também o mímo de acumulação de certezas. Nos casos em que o strumeto de pesagem possu mas do que uma escala, e cosequetemete dferetes valores de dvsão, a calbração segurá a metodologa acma descrta, com a excepção de passar a cotemplar a calbração de cada escala, mas o zero. Sempre que possível os potos de calbração serão dcados pelo clete. Caso cotráro a selecção dos potos de calbração fque ao lvre arbítro do Laboratóro sempre com a auêca do clete.. Establdade do strumeto de pesagem Após a lgação à correte eléctrca, o strumeto de pesagem de dcação dgtal deve permaecer a establzar durate uma hora. Utlzar luvas de algodão e/ou pças para o mauseameto das massas padrão etre a caxa que as acodcoa e o strumeto de pesagem e vce-versa. Notar que a aqusção das leturas, ou seja, o tervalo de tempo que decorre desde a colocação da carga sobre o prato do strumeto até à letura, deve varar de 10 a 60 segudos, depededo do tempo de establzação dcado pelo fabrcate da balaça. Se aquado da specção cal se verfcar que, mesmo reudas as codções ecessáras para se realzar a calbração (de acordo com o descrto o poto.), o dspostvo dcador da balaça apreseta stabldade a letura, dever-se-á cosderar como resolução (ou meor dvsão), o meor valor que se cosegue ler, e regstar tal facto o campo de observações do regsto de calbração.. Esao prévo Ates de se car a calbração faz-se uma specção vsual da balaça. O equpameto ates de ser calbrado deve estar em estado de coservação e lmpeza acetável. Para verfcar se a balaça tem algum desvo cosderável as leturas que se realzarão, proceder-seá ao deomado esao prévo, que se deserola da segute forma:

3 1. Seleccoar uma carga aproxmadamete gual a 1/ do alcace máxmo;. Colocar, leta e cudadosamete a(s) carga(s), sobre a zoa cetral do prato do strumeto;. Dexar establzar - etre 10 a 60 s ler e regstar o valor dcado pelo strumeto;. Retrar a(s) carga(s) do prato; 5. Fazer o zero do strumeto (teclas RESET ou TARE ); 6. Seleccoar uma carga aproxmadamete gual a / do alcace máxmo; 7. Colocar, leta e cudadosamete a(s) carga(s), sobre a zoa cetral do prato do strumeto; 8. Dexar establzar - etre 10 a 60 s ler e regstar o valor dcado pelo strumeto; 9. Retrar a(s) carga(s) do prato; 10. Fazer o zero do strumeto (teclas RESET ou TARE ); 11. Realzar a regulação ou auto-regulação do strumeto, quado aplcável. Nota: O ajuste deve ser feto de acordo com as struções do fabrcate, com um peso adstrto à balaça, ou com uma carga que seja acete pelo strumeto, que em algus casos poderá ser dcada a especfcação do fabrcate. Depededo do fabrcate e do modelo do strumeto de pesagem, dever-se-á seleccoar a maor valor de carga possível detro da gama de medção, com a faldade de aumetar a exactdão essa mesma gama de medção. Em qualquer dos casos, deve-se regstar quas as cargas utlzadas e mecoar o valor total da carga o relatóro de calbração, em campo destado a este regsto. 5. Esao de excetrcdade Procede-se ao esao de excetrcdade, tal como se dca de seguda, para verfcar os desvos resultates da aplcação excêtrca da força exercda pelos pesos o prato da balaça: 1. Aplcar uma carga aproxmadamete gual a um terço do alcace máxmo (Max) ao poto 1 do receptor de carga do strumeto, de acordo com o esquema abaxo dcado;. Colocar, leta e cudadosamete a(s) carga(s), sobre a zoa cetral do prato do strumeto;. Dexar establzar - etre 10 a 60 s ler e regstar o valor dcado pelo strumeto;. Retrar a(s) carga(s) do prato; 5. Fazer o zero do strumeto (teclas RESET ou TARE ); 6. Segudo a oretação do setdo dos poteros do relógo, coloque e retre a mesma carga os potos,, e 5, regstado os valores das dcações do resultado da pesagem. O valor da excetrcdade deve ser calculado como a dfereça etre a dcação dada em cada posção excêtrca e a dcação dada ao cetro. Regsta-se o valor da excetrcdade máxma

4 Este esao ão se aplca a balaças de prato suspeso. 6. Leturas em codções de repetbldade Para garatr leturas em codções de repetbldade, em cada poto de calbração, e para uma determada carga ou combação de cargas, leva-se o strumeto a zero, coloca(m)-se a(s) carga(s) o cetro do prato, dexa-se establzar, e regsta-se o valor. Retra(m)-se a(s) carga(s) e faz-se o zero do strumeto (depededo do fabrcate do strumeto, correspoderão as teclas RESET ou TARE ). Repete-se esta sequêca o equpameto de acordo com o úmero de leturas defdo. Dever-se-á ter o cudado de cetrar a(s) carga(s), colocado-a(s) o mesmo local, tato quato for possível. Se se verfcar potualmete alguma stabldade o dspostvo dcador, dever-se-á repetr a operação de colocação da carga sobre o prato da balaça, de forma cudada, para verfcar se tal stabldade provém de vbrações troduzdas pela forma como estão a ser colocados os pesos padrão o prato da balaça. No etato, ates de se proceder à repetção desta operação, costatar a exstêca de alguma alteração as codções ambetas do local da calbração que justfquem tal stabldade (corretes de ar, vbrações troduzdas por máquas que operem juto do local da calbração), e procurar elmá-los para assm cotuar a calbração. Se persstr a stabldade do dspostvo dcador, durate as repetções, regstar os valores e cosderar que algus deles (por exemplo: para cco repetções cosderar três) correspodem a valores mas próxmos do valor covecoalmete verdadero da carga e os restates dos correspodem aos valores mas afastados. Desta forma, sem pealzar o erro de medção, pretede-se que a certeza global traduza o tervalo de valores que razoavelmete se poderão atrbur a esse patamar de carga. 7. Esao de exactdão Escolher as cargas regularmete dstrbuídas ao logo da gama de trabalho (salvo peddo expresso pelo Clete), cludo as cargas testadas o esao prévo. A calbração processar-se-á da segute forma: 1. Colocar o strumeto a zero e regstar o valor obtdo (geralmete se o valor for dferete de zero);. Seleccoar a(s) prmera(s) carga(s) que correspode(m) ao prmero poto de calbração. Regstar o(s) ses) valor(es) omal(s);. Colocar, leta e cudadosamete a(s) carga(s) correspodete(s) ao prmero poto de calbração, sobre a zoa cetral do prato do strumeto;. Dexar establzar etre 10 e 60 s ler e regstar o valor dcado o strumeto; 5. Retrar a(s) carga(s) do prato; 6. Fazer o zero do strumeto (teclas RESET ou TARE ); 7. Repetr os potos a 6, até obter o úmero prevamete defdo de leturas o strumeto. Para os restates potos de calbração, repetr os potos a 7.

5 8. Cálculo do erro de dcação O erro de dcação E, será calculado de acordo com a segute expressão matemátca, para cada poto de calbração: E = dcação carga aplcada (massa covecoal) A dcação correspode à méda das leturas efectuadas a balaça. 9. Cálculo de certezas 9.1 Fotes de certeza Relatvamete aos padrões: - certeza devda à calbração dos pesos padrão (obtda do Certfcado de Calbração dos pesos); - certeza devda à degradação dos pesos padrão. Quato ao strumeto de pesagem: - certeza devda à resolução do strumeto de pesagem; - certeza devda à dspersão das leturas dadas pelo strumeto; - certeza devda à temperatura (quado especfcada pelo fabrcate, somete para strumetos de pesagem com resolução gual ou feror a 0,01 g). 9. Cálculo da certeza a) certeza devda à calbração dos pesos padrão ( M ) Tpo B - assoca-se à certeza da últma calbração, e assumdo uma dstrbução rectagular (ou Normal, caso seja referda o Certfcado de Calbração) calcula-se a cotrbução para a certeza padrão da gradeza de saída. Na utlzação de váras cargas o mesmo poto de calbração, a cotrbução para a certeza padrão é dada por: M ) (o caso da dstrbução rectagular) 1 M M ) 1 (o caso da dstrbução Normal) M Nota: a udade será o qulograma, múltplo ou submúltplo, de acordo com a udade do strumeto de pesagem sob calbração. b) certeza devda à degradação dos pesos padrão ( D ) Tpo B - assoca-se ao erro máxmo admssível da classe de exactdão em que cada peso se sere. Assumdo uma dstrbução rectagular, calcula-se a cotrbução para a certeza padrão da gradeza de saída. Na utlzação de váras cargas o mesmo poto de calbração, a cotrbução para a certeza padrão é dada por: D ) 1 D c) certeza devda à dspersão dos resultados ( L ) Tpo A - é calculada através dos cco valores obtdos em codções de repetbldade, em cada poto de calbração: x x 1 1 u ( L )

6 A varâca será dada por : d) certeza devda à resolução do strumeto ( R ) Tpo B - é metade da resolução (R), para um strumeto de pesagem de dcação dgtal e metade da resolução cosderada para um strumeto de pesagem de dcação aalógca. A cotrbução para a certeza padrão da certeza de saída, assumdo uma dstrbução rectagular é : R ) R e)certeza devda à temperatura ( T ) Tpo B - é em parte obtda dos dados do fabrcate e assume uma dstrbução rectagular, pelo que a sua cotrbução para a certeza padrão da certeza de saída, é dada pela expressão: Em que T represeta a ampltude máxma da temperatura verfcada durate a calbração (adcoada do valor da certeza de calbração do termómetro, respectvamete ao lmte feror e superor do tervalo de varação); X, o valor médo das leturas em cada poto de calbração e o valor do coefcete de temperatura forecdo pelo fabrcate da balaça. T T X ) 9. Cálculo da certeza padrão A certeza padrão é calculada de acordo com a segute expressão : U P C ) em que C represeta o coefcete de sesbldade, e é dado pela expressão: Y C X com Y a represetar a mesurada e X as gradezas cosderadas fotes de certeza. Geralmete, este coefcete só assumrá valores dferetes de 1 (um) quado se tratar da compoete de certeza relatva à temperatura. 9. Cálculo do úmero de graus efectvos O úmero de graus efectvos será obtdo de acordo com a expressão: V ef 1 U P ( C )) NL Nota: quado se tem três fotes de certeza do mesmo tpo, com gual dstrbução e um úmero de graus de lberdade gual ou superor a 50, pelo Teorema do Lmte Cetral, tem-se que o úmero de graus efectvos é gual a 50 e o factor de expasão k da dstrbução versa de t-studet a cosderar é gual a, certeza expadda da calbração A certeza expadda é dada pela expressão U k U P, sedo k o factor de expasão obtdo da dstrbução versa de t-studet, para uma probabldade expadda de 95,5%.

7 O coefcete de expasão k deverá ser calculado com aproxmação às décmas de udade. Sempre que k seja superor a,0, deve ser mecoado o Certfcado de Calbração, à frete do respectvo valor da certeza expadda. No poto de esao zero, a massa é ula, pelo que se assume, como certeza, um valor gual ao da melhor certeza para as característcas do strumeto de pesagem, ou smplesmete metade do valor da resolução do equpameto.

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS Prof José Leoardo Noroha M Eg Departameto de Egehara de Prodção Escola Federal de Egehara de Itabá EFEI RESUMO: Neste trabalho

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

A Medição e o Erro de Medição

A Medição e o Erro de Medição A Medção e o Erro de Medção Sumáro 1.1 Itrodução 1.2 Defções 1.3 Caracterzação da qualdade de medção 1.4 O erro da medção 1.4.1 Os erros aleatóros 1.4.2 Os erros sstemátcos 1.5 O verdadero valor, o erro

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas.

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas. Físca plcada à Egehara vl II aulo Medes ENTRÓIDES Neste capítulo pretede-se troduzr o coceto de cetróde, em especal quado aplcado para o caso de superfíces plaas. Este documeto, costtu apeas um strumeto

Leia mais

Elaborado: 2002 Ultima atualização: 23/12/2004

Elaborado: 2002 Ultima atualização: 23/12/2004 Elaborado: 2002 Ultma atualzação: 23/12/2004 Cadero de Fórmulas Apresetação Sstema Nacoal de Atvos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Maríla Brasl Xaver REITORA Prof. Rubes Vlhea Foseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odvaldo Texera Lopes ARTE FINAL DA CAPA Odvaldo Texera Lopes REALIZAÇÃO

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão Relatóro Fal da dscpla de Probabldades e Estatístca Ecooma Gestão Iformátca e Gestão Docetes: Paulo Ifate (resposável) Iês Sousa Das Ao Lectvo 007/008 Ídce Relatóro Crítco de Leccoação Programa detalhado

Leia mais

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN Tayd Dayvso Custódo Pexoto ; Sérgo Luz Agular Leve ; Adre Herma Frere Bezerra 3 ; José

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA KÁTIA MARIANA SILIVELI EPALANGA - Egehera Químca Dssertação

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO;

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO; Aplcação de Motores de Méda esão dedcados acoados por versor de frequêca e utlzação de um úco projeto em dferetes solctações de carga. Gleuber Helder Perera Rodrgues Esp. Eg. WEG Brasl gleuber@weg.et Alex

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I

APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DA DISCIPLINA INFERÊNCIA ESTATÍSTICA I CURSO DE ESTATÍSTICA Prof. Paulo Rcardo Bttecourt Gumarães O SEMETRE

Leia mais

Técnicas de Estimação no Âmbito da Pós-estratificação

Técnicas de Estimação no Âmbito da Pós-estratificação Téccas de Estmação o Âmbto da Pós-estratfcação por Aa Crsta Maro da Costa Dssertação apresetada como requsto parcal para a obteção do grau de Mestre em Estatístca e Gestão de Iformação pelo Isttuto Superor

Leia mais

UMA NOVA METODOLOGIA PARA TREINAMENTO EM REDES NEURAIS MULTI CAMADAS

UMA NOVA METODOLOGIA PARA TREINAMENTO EM REDES NEURAIS MULTI CAMADAS UMA OVA METODOLOGIA PARA TREIAMETO EM REDES EURAIS MULTI CAMADAS Luz Carlos C. Pedroza Pedroza@cefet-rj.br CEFET-RJ Av. Maracaã, 229 Ro de Jaero, CEP 2027-0 Carlos E. Pedrera pedrera@ele.puc-ro.br DEE

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron uesp UNIVERIDADE ETADUA PAUITA FACUDADE DE ENGENHARIA DE IHA OTEIRA PROGRAA DE PÓ-GRADUAÇÃO E ENGENHARIA ECÂNICA ETIAÇÃO DE RIGIDEZE DE ANCAI DE ROTORE POR ANÁIE DE ENIBIIDADE eoardo Cadro Dssertação apresetada

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica

Expressão da Incerteza de Medição para a Grandeza Energia Elétrica 1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Notas em Matemática Aplicada 9

Notas em Matemática Aplicada 9 Notas em atemátca Aplcada 9 Edtado por Elaa XL de Adrade Uversdade Estadual aulsta - UNES São José do Ro reto, S, Brasl Rubes Sampao otfíca Uversdade Católca do Ro de Jaero Ro de Jaero, RJ, Brasl Geraldo

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

2. INTRODUÇÃO AOS MÉTODOS FACTORIAIS

2. INTRODUÇÃO AOS MÉTODOS FACTORIAIS . NRODUÇÃO AOS MÉODOS FACORAS CONCEOS GEOMÉRCOS. NÉRCA. Os métodos factoras de Aálse de Dados permtem descreer matrzes (segdo o modelo do Qadro Q da Fg..) de dmesão (, p) qe represetam os alores tomados

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais