Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) b) (-2) d) e) (0,1) -2.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2."

Transcrição

1 Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) - i) 6 - g) (-) - j) (,) k) l) (-) 6 6 m) h) i) j) (0,) - n) k) 6 - l) (-) - o) (-,) 0 p) 0 q) (-) 0 6 m) n)

2 o) (,) - p) - q) (-) - ) Clcule s potêncis. (0,) b) (,) r) (-, ) s) t) (0,) - ) Devido o desgste, o vlor de um crro vi diminuindo com o tempo. A cd no que pss, o vlor fic multiplicdo por 0,. Se hoje o crro vle R$ 0 000,00, qunto vlerá dqui nos? (-) e) (0,...) 0 g) 0 h) 6 i) (,) j) k) (-) l) ) Clcule 0 (,) n pr: n = 0 b) n = n = n = m) n) (0,) o) (0,) 0 p) (,...) q) 6 ) Vmos clculr o vlor de: x x x +, pr x = - b) x + 0x 000, pr x = r) s) t) (0,) -

3 6) Clcule o vlor de: + b). -. (-) e) (-) +. (-). (-) 6 (+) (-) 0 ) No vácuo, luz percorre km cd segundo. Um no-luz é distânci que luz percorre em um no. Expresse um no-luz em quilômetros, n notção científic. Aproxime o coeficiente usndo um cs deciml. b) A quntos quilômetros d Terr está um estrel que del dist 6 nos-luz? ) Aplique s proprieddes ds potêncis:.. - ) Clcule: x x +, pr x = b) x + x, pr x = 0, x + x +, pr x = 0, b) :. b. c (. x) e) : x x x +, pr x = - ) Clcule, expressndo o resultdo em notção científic: (,. ). (6. ) g) h) (x ) - b) (,. ) : (,. ) (,. - ). (,. -6 ) (6. ). (,. 6 ) ) N tbel é dd decomposição em ftores primos do inteiro p. Copie e complete escrevendo decomposição do inteiro n, sendo n = p. ) Clcule, reduzindo um só potênci:. b) : e) 60 : Decomposição em ftores primos De p De n = p..?..? ª. b. c. d? 0 : g) ( )

4 ) Verddeiro ou flso? (Fç os cálculos, se necessário.) e) b ( ) ( ) - b) (x) = x (. ) =. ( : ) = : e) ( + ) = + g) x h) i) b c j) ( - ) : ( ) - ( ) = ) Clcule s expressões: ) Qul é o número mior?,. 6 ou,. b) 6,6. - ou,. - b) ) Qul é o número menor?,. - ou. - b),. ou, e) - - ( - - ). ( ) g) ( + ) ( + ) Exercícios Propostos h) (. ) (. ) 6) Clcule e respond usndo notção cientific: ( ) : ( ) b) (, 6 ) (, ) (, ) : ( 6 ) ( - ) ( - ) ) Aplique s proprieddes e reduz um só potênci: 6 b) 6 : (x ) ) Que número positivo deve ser colocdo no lugr do? (?) = 0 b) (?) = 6 (?) = (?) = e) (?) = (?) = g) (?) = h) (?) = 0,0

5 0) Qul é o expoente? B? = b)? = 0,00? = 6? = e) 0,0?? ) Clcule s potêncis em cd crtão: A b) (-6) (-) b) 0 0 e) (,) 0 0 g) 0 h) 0 i) 0 j) (-,) 0 (-) e) (0,) C (0,) - g) b) 6 - (-) - h) i) e) j)

6 ) Clcule s expressões: (0,) (0,) ) Um molécul de sl de cozinh pes, x - g. Qunts moléculs existem em kg de sl? Respond b) 0 n notção científic ( x n, sendo ). (,) ( + - ) ) Clcule o vlor de (-) n + (-) n + (-) n, sendo: ) Reduz um só potênci: b) (-). (-) n ímpr b) n pr ) Simplifique s expressões: b b : b) (x - + y - ) (x + y) - ) Clcule: (, x ) (,0 x ) b) (,6 x - ) (, x - ) (, x ) (, x - ) (,0 x ) : (,0 x ) 0) Simplifique: ( b - ). ( - b ) - b) b : - ( ) 6) Respond: ) N ret numéric estão ssinldos lguns pontos: Por qunto devemos multiplicr pr obter 6? b) Por qunto devemos dividir pr obter? ) Tendo em vist que usndo potêncis de : 60, fç proximção, Entre quis pontos consecutivos deve ser ssinldo o n n número resultnte do cálculo de? n b) 6

7 ) Clcule o vlor de x x + x -, pr x = -. Dê respost n form deciml. 6) Clcule s potêncis em cd crtão: A ) Clcule s expressões seguintes e respond: Qul tem o mior vlor? E o menor? 0 + (-) 0 + (-) b) ( ) e) b) (-) (-) e) (0,) b) (0,) (,) (-,) e) (-0,) B ) Clcule: (0,) (0,) b) (0,) +. (,). (,). (,) ) Qunto é o expoente?? = b)? = 0 b) - - e) (-) - C? = e)? = 000 (-) - b) D? = 0, (0,) - e) (-)

8 ) Qul é mior: ou ( )? ) Por qunto devemos multiplicr pr obter? ) Simplifique: x. x. x b) 6 ( ). - e) ) Reduz um só potênci, plicndo s proprieddes:.. b).. b e) ( - ) - ) Clcule x, de modo que x- =. 0) Simplifique s expressões: b c c b xy x y b) ) Clcule x y y x y x pr x = 0, e y =,. 6) Clcule: (-) n+ (-) n+ (-) n+ (-) n-, sendo: n ímpr b) n pr xy x y 6x : y ) Respond às questões: n+ é qunts vezes n? b) n + n+ + n+ é qunts vezes n? ) Como = 0, em lgums situções usmos proximção. Um multimilionário decidiu, no di 0 de bril, fzer um doção de 0 reis pr 000 instituições de cridde no mundo. Qunto recebeu cd um, proximdmente?

9 GABARITO: Exercícios de sl ) Gb: R$ 0,00 ) QUADRO A b) e), 000 g) 6 h) 6 i) 6 j), k) l) m) 6 n) o) p) 0 q) r) s) 000 t) 0,006 QUADRO B b) 0 6 e) 0 6 g) h) i) 6 j) k) l) 6 m) 6 n) o) p) q) r) s) ) Gb: 0 b), ) Gb: 0 b) 0 ) Gb: 0,0 b),6,6 e) 6 g) 0 h) i),6 j) k) l) m) n) 0,00 o) 0,000 p),... q) 6 r) 6 s) t) 6) Gb: b) e) 0 ) Gb: b),, 0 ) Gb:, b),,, ) Gb:, b) 0 e) g) 6 t) 6

10 ) Gb: ) Gb:, g) 0 h) 0 i) 00 b), ) Gb: b) ( b x e) b), Exercícios propostos 6) Gb: b),, ) Gb: b) e) j) 0 b) B g) 6 h) x ) Gb: Decomposição em ftores primos De p ) Gb: V b) F V V e) F F ) Gb: De n = p ª. b. c b c. d d (ou pens - ) ) Gb: b) x 6 e) b g) (x) h) b i) c j) ) Gb: b) g) h) 0, 0) Gb: b) - 6 e) 0 ) Gb: b) 6 A 6 e) 0,06 0,00 e) 0 g) h) 0 i) j) C 6 b) 6 e) 6 ) Gb: 0,06 b), 6 e) b) 6,6 6 g) h) 6, 6

11 ) Gb: b) ) Gb: b b ) Gb: 0, entre A e B ) Gb:,00 ) Gb: b) e) B 0, b) 0,00, e) 6 0) Gb: b c b) y 6 b) xy ) Gb: b), 0, = e) 6, e) 0,0 C 6y ) Gb: b), 6) Gb: b) ) Gb: b), ) Gb: moléculs ) Gb: 6 ) Gb: 6 b) 6 ) Gb: b) b) 6 e) D ) Gb: Cd um recebe 6 reis ) Gb: b) ( b) e) ) Gb: x = b) ( ) 6 0 e) b) 6 e) ) Gb: > 6 ) Gb: 0, 0 6) Gb: b) 0 0) Gb: 6) Gb: ) Gb: b A ) Gb: x b) b b) b) 6 6

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Universidade Federal da Bahia

Universidade Federal da Bahia Universidde Federl d Bhi Instituto de Mtemátic DISCIPLINA: MATA0 - CÁLCULO B UNIDADE II - LISTA DE EXERCÍCIOS Atulizd 008. Coordends Polres [1] Ddos os pontos P 1 (, 5π ), P (, 0 ), P ( 1, π ), P 4(, 15

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA A HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA B HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA C HORÁRO SEGUNDA

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Licenciatura em Engenharia Electrónica

Licenciatura em Engenharia Electrónica Licencitur em Engenhri Electrónic Circuitos Electrónicos Básicos Lbortório Montgens mplificdors de fonte comum, port comum e dreno comum IST2012 Objectivos Com este trblho pretendese que os lunos observem

Leia mais

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data:

Falando. Matematicamente. Teste Intermédio. Escola: Nome: Turma: N.º: Data: Mtemticmente Flndo lexndr Conceição Mtilde lmeid Teste Intermédio vlição MTEMTICMENTE FLNDO LEXNDR CONCE ÇÃO MT LDE LME D lexndr Conceição Mtilde lmeid VLIÇÃO Escol: Nome: Turm: N.º: Dt: MTEMÁTIC.º NO

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana.

PROCESSO SELETIVO/2006 RESOLUÇÃO 1. Braz Moura Freitas, Margareth da Silva Alves, Olímpio Hiroshi Miyagaki, Rosane Soares Moreira Viana. PROCESSO SELETIVO/006 RESOLUÇÃO MATEMÁTICA Brz Mour Freits, Mrgreth d Silv Alves, Olímpio Hiroshi Miygki, Rosne Sores Moreir Vin QUESTÕES OBJETIVAS 0 Pr rrecdr doções, um Entidde Beneficente usou um cont

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidde Estdul do Sudoeste d Bhi Deprtmento de Estudos Básicos e Instrumentis 3 Vetores Físic I Prof. Roberto Cludino Ferreir 1 ÍNDICE 1. Grndez Vetoril; 2. O que é um vetor; 3. Representção de um

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

Lista 5: Geometria Analítica

Lista 5: Geometria Analítica List 5: Geometri Anlític A. Rmos 8 de junho de 017 Resumo List em constnte tulizção. 1. Equção d elipse;. Equção d hiperból. 3. Estudo unificdo ds cônics não degenerds. Elipse Ddo dois pontos F 1 e F no

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes:

Questão 01. Questão 02. Calcule o determinante abaixo, no qual. cis e i 3. 1 i. Resolução: z a bi z a bi. Soma das raízes: Questão 01 O polinômio P ( ) 10 0 81 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do polinômio. p ( ) 10 0 81 z bi z bi 1 z bi z ( ) bi z rel

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

Resumo da última aula. Compiladores. Conjuntos de itens LR(0) Exercício SLR(1) Análise semântica

Resumo da última aula. Compiladores. Conjuntos de itens LR(0) Exercício SLR(1) Análise semântica Resumo d últim ul Compildores Verificção de tipos (/2) Análise semântic Implementção: Esquems -tribuídos: Mecnismo bottom-up direto Esquems -tribuídos: Mecnismo top-down: Necessit grmátic não recursiv

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

Quantidade de oxigênio no sistema

Quantidade de oxigênio no sistema EEIMVR-UFF Refino dos Aços I 1ª Verificção Junho 29 1. 1 kg de ferro puro são colocdos em um forno, mntido 16 o C. A entrd de oxigênio no sistem é controld e relizd lentmente, de modo ir umentndo pressão

Leia mais

b para que a igualdade ( ) 2

b para que a igualdade ( ) 2 DATA DE ENTREGA: 0 / 06 / 06 QiD 3 8º ANO PARTE MATEMÁTICA. (,0) Identifique o monômio que se deve multiplicr o monômio 9 5 8 b c. 5 b pr obter o resultdo. (,0) Simplifique s expressões bixo. ) x + x(3x

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações // Aul : Revisão de Probbilidde e sttístic Prof. Leonrdo Menezes Tóicos em Telecomunicções Sumário O que é esttístic O que é robbilidde Vriáveis letóris Distribuição de Probbilidde Alicções Mementos O

Leia mais

e dx dx e x + Integrais Impróprias Integrais Impróprias

e dx dx e x + Integrais Impróprias Integrais Impróprias UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Integris imprópris

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 6 ) RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 0 De 869 té hoje, ocorrerm s seguintes munçs e moe no Brsil: () em 94, foi crio o cruzeiro, c cruzeiro

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais