Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química"

Transcrição

1 Cpítulo VIII Equilíbrio de istribuição Alyticl Chemistry - Robert V. ilts. V Nostrd, ISBN eprtmeto de Químic 1

2 As váris técics de extrção e cromtogrfi de prtição, evolvem prtição dos solutos etre dois líquidos imiscíveis. Soluto X soluto solúvel em dus fses imiscíveis. X X 1 fse fse 1 X X 1 Coeficiete de Prtição Pr soluções diluíds em que forç ióic é bix, temos: [ X ] [ X ] 1 - [X] bix s fses - mesm form moleculr s fses - fse 1 e fse imiscíveis eprtmeto de Químic

3 Não existe coveção pr. No etto, é hbitul represetr form: X [ ] Coeficiete de Prtição X [ ] etermição do Coeficiete de Prtição Exemplo 1: 50 ml de um solução uos de I é gitd com 0 ml de tetrcloreto de crboo té se tigir o equilíbrio. A cocetrção iicil de I fse uos é de 1.97x10 - M e pós o equilíbrio cocetrção fse uos desceu pr 5.30x10-4 M. Clcule o coeficiete de prtição pr I etre tetrcloreto de crboo e águ. eprtmeto de Químic 3

4 Equilíbrio de distribuição: I CCl 4 H O I [ ] I [ ] CCl 4 HO I º de mmoles iiciis (fse uos) 1.9x10 - x º de mmoles fiis (fse uos) 5.3x10-4 x º de mmoles trsferids pr fse âic [ I ] [ I ] 4 CCl HO eprtmeto de Químic 4

5 Exemplo : 75 ml de um solução uos que cotem g de I é gitd com 5 ml de tetrcloreto de crboo. Após o equilíbrio, qul percetgem de I foi removid d fse uos? 90.6 MM (I ) 53.8 [ I ] X grms 53.8 grms mole 0.05 l CCl4 / [ I ] grms X 53.8 grms mole l HO / X grms 53.8 grms / mole 0.05 l X grms 53.8 grms / mole l eprtmeto de Químic 5

6 X grms X grms X x X X 0.19/ grms de I fse âic % remoção (0.081/ ) x % 96.3 % do I que se ecotrv fse uos foi trsferido pr fse âic. eprtmeto de Químic 6

7 Exemplo 3: Que volume de tetrcloreto de crboo é ecessário pr extrir 99.9% de I de 80 ml de um soluçõ uos de I M º mmoles I iiciis fse M x 80 ml.904 º mmoles I o equilíbrio fse âic x º mmoles I o equilíbrio fse vol vol 883 ml eprtmeto de Químic 7

8 Rzão de istribuição A expressão do coeficiete de prtição descreve o equilíbrio, pes o cso em que existe mesm espécie moleculr em mbs s fses. Se est espécie estiver evolvid um recção diciol, um ou em mbs s fses, rzão etre tods s forms dess espécie um fse em relção tods outrs outr fse, ão é umericmete igul o coeficiete de prtição e, lém disso, ão é um vlor costte; depede ds codições recciois. Experimetlmete é muito mis fácil qutificr cocetrção totl, C, de um soluto um liquído, do que determir cocetrção d espécie moleculr. Rzão de istribuição cocetrção totl de X fse cocetrção totl de X fse 1 eprtmeto de Químic 8

9 C C Rzão de istribuição A rzão etre e é idêtic à existete etre est e est. qudo X ão está evolvido em recções diciois qudo X existe em váris forms, um ou em mbs s fses. eprtmeto de Químic 9

10 Relções etre e Equilíbrio ácido-bse HA âic uos [ HA] [ HA] + H A [ HA] HA H + + A - [ HA] [ HA] [ HA] + A [ HA] [ HA] + H + [ HA] [ HA] 1 + H + + H + H + eprtmeto de Químic 10

11 Exemplo 1: O coeficiete de prtição do ácido bezóico etre 1-octol e águ é de Clcule o vlor d rzão de distribuição do ácido bezoico etre estes dois solvetes ph6.0. HBz octol águ HBz H + + Bz - eprtmeto de Químic 11

12 [ HBz] oct 1.88 HBz [ ] H + H + + H Bz HBz + [ ] 5 6 (1.88)( ) 6 5 ( ) ( ) eprtmeto de Químic 1

13 Exemplo : O coeficiete de prtição (águ/tetrcloreto de crboo) do ácido rutéico é de 58.4 pr soluções ácids e eutrs. Num solução de 1.00x10 - M de NOH, o vlor d rzão de distribuição é de Clcule o vlor d costte de dissocição pr o ácido rutéico, H RuO 5. H RuO 5 CCl 4 uos H RuO 5 H + + HRuO 5 - [ HRuO5] [ H RuO ] 4 5 CCl 58.4 [ H RuO ] [ H RuO ] 5 CCl + HRuO eprtmeto de Químic 13

14 Em soluções eutrs e ácids, H RuO 5 ão se dissoci, rzão pel qul rzão de distribuição é costte ests codições. Portto: 58.4 Cosiderdo pes 1ª dissocição, temos: [H + ] 1.00x10-1 M + H + H + 1 (58.4)( ) 1 ( ) x10-1 eprtmeto de Químic 14

15 Polimerizção fse âic A costte dieléctric dos liquídos âicos é meor do que d águ. Assim, lgus compostos polres têm tedêci polimerizr os solvetes âicos. X X X X p p âic âic X [ X ] [ X ] uos p [ X ] [ X ] X uos [ X] + [ X ] [ X ] [ X] + p [ X] [ X ] ( ) [ X] 1+ p [ X] [ X ] eprtmeto de Químic 15

16 + p [X] é mis fácil determir [X] Logo: + p. [X] + p [X] > eprtmeto de Químic 16

17 Formção de iões complexos fse uos M âic M + X est [ M ] [ M ] uos MX est [ MX ] [ M ][ X ] [ M ] [ ] + [ ] M MX [ M ] M M X [ ] + [ ][ ] est [ M ] ( ) + X [ M] 1+ est [ X] 1 [ ] est eprtmeto de Químic 17

18 istribuição de queltos metálicos HX MX âic (HX) (MX ) uos HX H + + X - M + + X - MX est [ MX ] C C MX M + M( ) M( ) [ ] + ( HX ) [ HX ] [ HX ] ( MX ) MX [ ] MX [ ] eprtmeto de Químic 18

19 est [ MX ] + M X eprtmeto de Químic + H X [ HX ] resolvedo est em relção [M + ] e substituido equção d rzão d distribuição: resolvedo em relção [X - ] e substituido equção d rzão d distribuição: [ MX ] [ MX ] [ MX ] + [ MX ] + est X [ MX ] [ MX ] est [ HX] H + 19

20 Simplificção d equção d rzão de distribuição: miori dos queltos metálicos, têm est muito elevds. Assim, podemos cosiderr que em solução o ião metálico existe todo form de quelto metálico. o quelto metálico o ser um espécie eutr terá grde tedêci pr ser extrído pr fse âic. N fse uos, podemos cosiderr que [MX ] <<< [M + ], o que sigific que o 1º termo o deomidor d rzão de distribuição poderá ser desprezdo: est [ MX ] [ MX ] [ HX ] H + (MX) [ HX ] ( MX ) est H + determição de [HX] ão é fácil f. uos eprtmeto de Químic 0

21 ( MX ) HX [ ] est ( HX ) H + eprtmeto de Químic 1

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire

Universidade Salvador UNIFACS Cursos de Engenharia Métodos Matemáticos Aplicados / Cálculo Avançado / Cálculo IV Profa: Ilka Rebouças Freire Uiversidde Slvdor UNIFACS Cursos de Egehri Métodos Mtemáticos Aplicdos / Cálculo Avçdo / Cálculo IV Prof: Ilk Rebouçs Freire Série de Fourier Texto : Itrodução. Algus Pré-requisitos No curso de Cálculo

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

elementares nao elementar

elementares nao elementar I. Defiições e estequiometri Um processo químico evolve lém de reções químics, feômeos de superfície e feômeos de trsporte de mss e de eergi. s reções químics evolvids este processo são defiids pel estequiometri,

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

Capítulo 2: Resolução Numérica de Equações

Capítulo 2: Resolução Numérica de Equações Cpítulo : Resolução Numéric de Equções.. Riz de um equção Em muitos prolems de egehri há ecessidde de determir um úmero ξ pr qul ução sej zero, ou sej, ξ. A ξ chmmos riz d equção ou zero d ução. Equções

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n!

LISTA P1T3. Professores: David. Matemática. 2ª Série. n 1. = n! Mtemátic Professores: Dvid 2ª Série LISTA P1T3 FORMULÁRIO C, p! = p!( p)!! = p p!( p)!! α! β! δ! Tp+ 1 =.. b p P P α, β, δ = A, p PROBABILIDADES =!! = ( p)! p p 1. (PUC-SP 2010) Um luo prestou vestibulr

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares;

Redes elétricas Circuitos que contém resistências e geradores de energia podem ser analisados usando sistemas de equações lineares; Álger Lier Mtrizes e vetores Sistems lieres Espços vetoriis Bse e dimesão Trsformções lieres Mtriz de um trsformção lier Aplicções d Álger Lier: Redes elétrics Circuitos que cotém resistêcis e gerdores

Leia mais

ESTÁTICA DO SISTEMA DE SÓLIDOS.

ESTÁTICA DO SISTEMA DE SÓLIDOS. Definições. Forçs Interns. Forçs Externs. ESTÁTIC DO SISTEM DE SÓLIDOS. (Nóbreg, 1980) o sistem de sólidos denomin-se estrutur cuj finlidde é suportr ou trnsferir forçs. São quels em que ção e reção, pertencem

Leia mais

Resolução dos Exercícios Propostos

Resolução dos Exercícios Propostos Mtemátic Ficeir: Aplicções à Aálise de Ivestimetos 4ª. Edição Resolução dos Exercícios Propostos Etre os méritos deste livro, que fzem dele um dos preferidos pelos estudtes e professores, está explicr

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

Turno Disciplina Carga Horária Licenciatura Plena em

Turno Disciplina Carga Horária Licenciatura Plena em Curso Turo Discipli Crg Horári Licecitur Ple em Noturo Mtemátic Elemetr III 60h Mtemátic Aul Período Dt Coordedor.. 0 6/0/006 ª. feir Tempo Estrtégi Recurso Descrição (Produção) Descrição (Arte) :0 / :

Leia mais

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias

Métodos Matemáticos Aplicados a Processos Químicos e Bioquímicos. Capítulo III : Equações Diferenciais Ordinárias J.L. de Medeiros & Oféli Q.F. rújo DISCILI Métodos Mtemáticos plicdos rocessos Químicos e Bioquímicos Cpítulo III : Equções Difereciis Ordiáris José Luiz de Medeiros e Oféli Q.F. rújo Egehri Químic FRJ

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO DEEC / Secção de Eergi Eergis Reováveis e Produção Descetrlizd INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS Rui M.G. Cstro (Com bse um texto

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

QUI346 MÉTODOS DE SEPARAÇÃO CROMATOGRAFIA. Conceitos Prévios. Extração L-L. 10/05/2015 Mauricio X. Coutrim

QUI346 MÉTODOS DE SEPARAÇÃO CROMATOGRAFIA. Conceitos Prévios. Extração L-L. 10/05/2015 Mauricio X. Coutrim QUI346 MÉTODOS DE SEPARAÇÃO CROMATOGRAFIA Conceitos Prévios Extração L-L 10/05/2015 Mauricio X. Coutrim CROMATOGRAFIA Princípio CROMATOGRAFIA É UMA TÉCNICA DE SEPARAÇÃO (com diversos mecanismos) Definição:

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas

José Álvaro Tadeu Ferreira. Cálculo Numérico Notas de aulas UNIVERSIDADE FEDERA DE OURO PRETO Istituto de Ciêcis Ets e Biológics Deprtmeto de Computção José Álvro Tdeu Ferreir Cálculo Numérico Nots de uls Resolução de Sistems de Equções ieres Simultâes Ouro Preto

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT

DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT DENÚNCIAS DE CORRUPÇÃO CONTRA O GOVERNO LULA E O PT GOVERNO FEDERAL COM MAIS CASOS DE CORRUPÇÃO, em Mrço de 2006 - [estimuld e únic, em %] Em 1º lugr Som ds menções Bse: Totl d mostr Collor Lul FHC 11

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

APLICAÇÕES DO CÁLCULO INTEGRAL

APLICAÇÕES DO CÁLCULO INTEGRAL 9 APLICAÇÕES DO CÁLCULO INEGRAL Gil d Cost Mrques Fudmetos de Mtemátic I 9. Cálculo de áres 9. Áre d região compreedid etre dus curvs 9. rlho e Eergi potecil 9.4 Vlores médios de grdezs 9.5 Soms 9.6 Propgção

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente 1 PROPORCIONALIDADE Rzão Rzão entre dois números é o quociente do primeiro pelo segundo número. Em um rzão A rzão temos que: ntecedente é lid como está pr. : ou consequente Proporção Chmmos de proporção

Leia mais

Revisão de Álgebra Matricial

Revisão de Álgebra Matricial evisão de Álgebr Mtricil Prof. Ptrici Mri ortolo Fote: OLDINI, C. e WETZLE, F.; Álgebr Lier. ª. ed. São Pulo. Editor Hrbr, 986 Álgebr Mtricil D Mtemátic do º. Gru: y ( y ( De( : y Em ( : ( Em ( : y y 8

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

Integrais de funções complexas

Integrais de funções complexas Cpítulo 4 Itegris de fuções complexs 4 Itrodução Um primeir referêci itegris de fuções complexs e lgums ds sus plicções prece um trlho de L Euler presetdo à Acdemi ds Ciêcis de S Petersurgo em 777, emor

Leia mais

2- Resolução de Sistemas de Equações Lineares

2- Resolução de Sistemas de Equações Lineares - Resolução de Sistems de Equções ieres Um sistem de equções lieres, com m equções e vriáveis, é escrito gerlmete como: m m m m ode ij são coeficietes m i j são vráveis j i são costtes m i A resolução

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

Capítulo III. Circuitos Resistivos

Capítulo III. Circuitos Resistivos Cpítulo III Ciruitos esistivos. Itrodução Neste pítulo serão estudds s leis de Kirhhoff, utilizdo-se de iruitos resistivos que são mis filmete lisdos. O estudo desss leis é plido em seguid s deduções de

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga

Somas de Riemann e Integração Numérica. Cálculo 2 Prof. Aline Paliga Soms de Riem e Itegrção Numéric Cálculo 2 Prof. Alie Plig Itrodução Problems de tgete e de velocidde Problems de áre e distâci Derivd Itegrl Defiid 1.1 Áres e distâcis 1.2 Itegrl Defiid 1.1 Áres e distâcis

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

massa molar do monómero: M 0 grau de polimerização: polímero de massa molar: M = N.M 0

massa molar do monómero: M 0 grau de polimerização: polímero de massa molar: M = N.M 0 ASSA OLAR mss molr do moómero: gru de olmerzção: olímero de mss molr: DISTRIBUIÇÃO DE ASSAS OLARES cdes de mss molr dstrução d mss molr Schulz dstruto umer eght 4 8 8 6 6 4 4 4 6 8 4 6 molr mss Fuções

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

TÓPICO 3: DIFUSÃO MOLECULAR EM ESTADO ESTACIONÁRIO

TÓPICO 3: DIFUSÃO MOLECULAR EM ESTADO ESTACIONÁRIO TÓPICO 3: DIFUÃO MOLECULR EM ETDO ETCIOÁRIO I. DIFUÃO EM REGIME PERMETE EM REÇÃO QUÍMIC; II. DIFUÃO EM REGIME PERMETE COM REÇÃO QUÍMIC HETEROGÊE; III. DIFUÃO EM REGIME PERMETE COM REÇÃO QUÍMIC HOMOGÊE.

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM

MT DEPARTAMENTO NACIONAL DE ESTRADAS DE RODAGEM Inspeção visul de emblgens de microesfers de vidro retrorrefletivs Norm Rodoviári DNER-PRO /9 Procedimento Págin de RESUMO Este documento, que é um norm técnic, estbelece s condições que devem ser observds

Leia mais

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos

6.1 Recursos de Curto Prazo ADMINISTRAÇÃO DO CAPITAL DE GIRO. Capital de giro. Capital circulante. Recursos aplicados em ativos circulantes (ativos ADMINISTRAÇÃO DO CAPITAL DE GIRO 6.1 Recursos de curto przo 6.2 Administrção de disponibiliddes 6.3 Administrção de estoques 6.4 Administrção de conts 6.1 Recursos de Curto Przo Administrção Finnceir e

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas.

Lista de Problemas H2-2002/2. LISTA DE PROBLEMAS Leia atentamente as instruções relativas aos métodos a serem empregados para solucionar os problemas. List de Prolems H 0/ List sugerid de prolems do livro texto (Nilsson& Riedel, quint edição) 4.8, 4.9, 4., 4.1, 4.18, 4., 4.1, 4., 4.3, 4.3, 4.36, 4.38, 4.39, 4.40, 4.41, 4.4, 4.43, 4.44, 4.4, 4.6, 4.,

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Capítulo zero Glossário

Capítulo zero Glossário Cpítulo zero Glossário Esse cpítulo é formdo por tems idispesáveis à mtemátic que, certmete, você deve Ter estuddo de um ou outr form durte su vid escolr. Sempre que tiver dúvids o logo do restte do teto

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

COMPORTAMENTO NÃO-NEWTONIANO

COMPORTAMENTO NÃO-NEWTONIANO COMPORTAMENTO NÃO-NEWTONIANO Reo-fluidificção: viscosidde diminui com o umento d velocidde de deformção. Estável: fluidificção é independente do tempo. Regressiv: fluidificção diminui à medid que o tempo

Leia mais

1.14 Temas Diversos a Respeito dos Condutos Forçados

1.14 Temas Diversos a Respeito dos Condutos Forçados .4 Tems iersos Respeito dos Condutos Forçdos escrg ire Velocidde Máxim Aplicndo Bernoulli H P tm A g P tm B g V = 0 (níel de águ considerdo constnte) Tem-se ue: B g(h ) Exemplo : ul o olume diário ornecido

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

Problemas de Máximos e Mínimos

Problemas de Máximos e Mínimos UNIVERSIDADE DE LISBOA FACULDADE de CIÊNCIAS DEPARTAMENTO de MATEMÁTICA Problems de Máimos e Míimos Belmiro d Silv Ferreir Mestrdo Mtemátic pr Professores Lisbo 0 UNIVERSIDADE DE LISBOA FACULDADE de CIÊNCIAS

Leia mais

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, = TESTES:

Leia mais