A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes"

Transcrição

1 Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse ; Veruscha Rocha Mederos Adreolla ; Glberto Mazoco Jub 3 INTRODUÇÃO Defe-se por echete, o extravasameto de agua excedete de um ro que atge o seu leto maor excepcoal. Os prcpas mpactos sobre a população cosstem os prejuízos com perdas materas e humaas, terrupção da atvdade ecoômca das áreas udadas, cotamação de doeças de veculação hídrca e a cotamação da agua pela udação de deposto de materal tóxco, estações de tratameto, etre outros. O ro Itajaí-Açu, stuado a Baca Hdrográfca do Alto Vale do Itajaí, em Sata Catara, sofre freqüetemete com o feômeo das echetes em resposta às precptações tesas, o qual pela terveção atrópca por meo dos mas dferetes usos como cultvo, morada, stalações dustras. A rregulardade do eveto dá uma margem de seguraça quato à ocupação dessas áreas. De acordo com BIEMBEGUT (999, a modelagem matemátca sempre esteve presete a cração das teoras cetífcas. Modelagem matemátca é represetar segudo um modelo. A modelagem pode ser vsta como o esforço de descrever matematcamete o que é escolhdo ou surge aturalmete. Para BASSANEZI (994 a modelagem matemátca cosste a arte de trasformar problemas da realdade em problemas matemátcos. E resolver terpretado suas soluções a lguagem do mudo real. Sedo assm, este trabalho teve como objetvo a utlzação da modelagem para a smulação de evetos hdrológcos extremos, as echetes, para auxlar a tomada de decsão. Acadêmca do Isttuto Federal Catarese - Campus Ro do Sul. Lcecatura em Matemátca. E- mal: Professor Oretador Dra Eg. Agrôoma, Pós- doutorada da UFPR, Curtba PR Isttuto Federal Catarese. E-mal: 3 Professor Oretador, Msc. Professor de Eso Básco, Técco e Tecológco do Isttuto Federal Catarese - Campus Ro do Sul. E-mal:

2 Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 PROCEDIMENTOS METODOLÓGICOS O trabalho fo desevolvdo a regão do Alto Vale do Itajaí, stuado a Baca Hdrográfca Alto Vale do Itajaí, em Sata Catara, os mucípos localzados às marges do Ro Itajaí-Açu. O método de prevsão fo desevolvdo através de uma sére croológca de dados de cotas máxmas de echetes, coletados e adqurdos em órgão da Uão do Govero Federal, a partr dos quas elaborou-se um modelo matemátco correlacoado potos da pluvosdade e do ível do ro do Ro Itajaí-Açu. O modelo matemátco apreseta resultados satsfatóros para a prevsão de echetes do Vale. O motorameto do grade volume de chuvas e o movmeto das águas dos Ros que compõem a baca do Alto vale ocorre de forma permaete. Duas grades barrages de Ituporaga e Taó, protegem o Ro Itajaí- Açu. Coforme a elevação do ível do Ro o poto de motorameto a cdade de Ro do Sul ca-se o fechameto ou abertura das comportas das barrages. Fo realzada uma modelagem matemátca cosstdo a utlzação de uma curva modelada a partr da correlação lear smples e mostrado o comportameto do ível do Ro a Cdade de Ro do Sul as echetes de 00, 005, 00 e 0. O modelo fo utlzado a partr dos dados coletados das 9 horas do da de outubro de 00 às h do da 08 de outubro de 00, das 7 horas do da 5 de setembro de 005 às 7h do da 0 de setembro de 005, das 7 horas do da 7 de abrl de 00 às 7h do da 06 de mao de 00, das 0 horas do da 9 de setembro de 0 às 7h do da 3 de setembro de 0. RESULTADOS E DISCUSSÕES O modelo a segur cosste a utlzação de uma curva modelada a partr da correlação lear smples. Estabelecer uma relação fucoal etre duas varáves x e y a partr de um cojuto de dados observados x y. O problema cosste em dados pares de valores ( x y, ( x, y,..., (,,, x y das varáves x e y determar os parâmetros de uma formula empírca que represete essa relação fucoal. Sabedo que exste essa relação de depedêca lear de y em relação à x pretede se estabelecer os parâmetros a e b para que a fórmula ax + b melhor represete os valores de y. A escolha da formula empírca, deomada fução de

3 Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 ajuste, é realzada a partr de cosderações teórcas que possam fudametar sua eleção. Não exstdo tas cosderações, a partr do gráfco de potos x, y (dagrama de dspersão determa se o tpo de curva (curva de ajuste que melhor reproduza a sua dstrbução. A segur a fução de ajuste será expressa como Y (x e os valores calculados, a partr desta, para abcssas x como Y ( ( Y( = Y( x Os valores observados apresetam reflexos de fatores secudáros e erros de medção pelo que a curva de ajuste ão passara pelos potos P x, y. Procura se que as dfereças etre os valores de x e ( Y sejam as meores possíves. O ajuste Lear é aplcar o crtéro dos mímos quadrados o ajuste a uma reta Y ( x = a( x + b mplca determar o valor dos parâmetros a e b que mmzem a soma S a, b = [ Y y ] = ( [( ax + b y ]. = O método dos mímos quadrados trata se a ao ajuste de um cojuto de dados para uma combação lear de s fuções ϕ, ϕ,..., ϕs : Y ( x = aϕ ( x + aϕ ( x asϕs ( x O problema pode ser cohecdos valores y,...,, y y correspodete as abscssas x..., x x, determar os coefcetes,,... a a, a que mmzam a soma. [ y S( a,..., a = a ϕ ( x ] s = = O valor mímo da soma S a,..., a é atgdo o poto em que se ( s aulam ao mesmo tempo as dervadas ( =,,..., s a s a = = {[( a ϕ ( x + aϕ ( x +..., asϕs ( x y ] ϕ ( x } = 0, =,,..., s Este cojuto de s equações leares forma o segute sstema: ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ϕ, ϕ ( ( a ϕ, y a ϕ, y = a ( ϕ, y

4 Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 Ode ϕ j, ϕ = [ ϕ ( x j ( x ] e ϕ j, y = ( ϕ = ( [ ϕ ( x y ].A solução do = sstema def os parâmetros a, a,... a, do ajuste. Mutas vezes é possível trasformar um ajuste ão lear em lear através de uma troca de varáves. Essa metodologa fo amplamete usada devdo à dfculdade, o caso ão lear, de obter o poto mímo da soma dos quadrados dos resíduos S = a, a..., a. A troca de varáves permte coverter o problema um ( s ajuste a uma parábola. Y ( x =. ax + bx + c Na fgura, fo estabelecda a correlação etre a cota máxma atgda pelo ível do ro e o tempo para retorar ao ível ormal após o térmo das chuvas fo possível estabelecer os segutes resultados. Coefcete de Determação (R² = 0,936 Fução Y = 9e 0,5x 0,059x +, 85 Ode: Y = ível do ro; x = tempo em horas; Fgura - Correlação etre a cota máxma atgda pelo ível do ro e o tempo para retorar ao ível ormal após o térmo das chuvas. Os coefcetes de determação (R² dcam uma forte correlação etre o ível do ro e o tempo para retorar ao ível ormal após o térmo das chuvas, a correlação apresetou 93,60% de depedêca, possvelmete devdo a grade volume das chuvas ocorrdo o período. A fluêca de outras varáves ão são cosderadas o modelo, porém o aumeto da população e as costruções a margem do ro, sem matas clares em suas marges, são fatores que fluecam a

5 Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 velocdade da água o leto do ro. Neste setdo, pode-se projetar o tempo que o ro gastará para voltar o leto ao ível ormal a partr do mometo que atge a cota máxma e a paralzação da chuva. Segudo CHRISTOFOLETTI (999, os modelos matemátcos para prevsão geralmete são costruídos embasados em aálses de regressão. Embora o modelo teha sdo obtdo através do método de regressão, apresete bom desempeho, prcpalmete as correlações, este apreseta algumas lmtações, sobretudo quato à dstrbução espacal da chuva sobre a Baca do Vale do Itajaí, o tempo de pluvometra e a quatdade precptada. As lmtações dos modelos hdrológcos também foram apotadas por TUCCI (998, que apesar de cosderarem uma ferrameta extremamete útl que permte, através da equacoalzação dos processos, represetar, eteder e smular o comportameto de uma baca hdrográfca, afrmam ser mpossível ou vável traduzr todas as relações exstetes etre os dferetes compoetes da baca hdrográfca em termos matemátcos. CONSIDERAÇÕES FINAIS O modelo pode ser adotado para a prevsão de echetes do Ro Itajaí- Açu, sobretudo, a cdade de Ro do Sul, porém é ecessáro adotar marges de erro o mometo de alerta à população. REFERÊNCIAS BORCHE,ALEJANDRO. Métodos Numércos. Porto Alegre: Edtora da UFRGS,008. BASSANEZI, R.C. Eso-apredzagem com Modelagem Matemátca. 3. Ed. São Paulo: Cotexto, 006. BIEMBENGUT, M.S.; HEIN, N. Modelagem Matemátca o Eso. 3 ed. São Paulo: Cotexto, 003. CHRISTOFOLETTI, A. Modelagem de Sstemas Ambetas. São Paulo: Edgard Blücher, 999. TUCCI, C.E.M. Modelos Hdrológcos. 0. ed. Porto Alegre: UFRGS, 998. TUCCI, C.E.M. Hdrologa Cêca e Aplcação.. ed. Porto Alegre: UFRGS, 000.

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA

Marília Brasil Xavier REITORA. Prof. Rubens Vilhena Fonseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA Maríla Brasl Xaver REITORA Prof. Rubes Vlhea Foseca COORDENADOR GERAL DOS CURSOS DE MATEMÁTICA MATERIAL DIDÁTICO EDITORAÇÃO ELETRONICA Odvaldo Texera Lopes ARTE FINAL DA CAPA Odvaldo Texera Lopes REALIZAÇÃO

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN

EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN EVAPOTRANSPIRAÇÃO DE REFERÊNCIA UTILIZANDO MÉTODOS DE TANQUE CLASSE A PROPOSTOS PELA FAO, NA REGIÃO DE MOSSORÓ, RN Tayd Dayvso Custódo Pexoto ; Sérgo Luz Agular Leve ; Adre Herma Frere Bezerra 3 ; José

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS

PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS PROCEDIMENTOS DE CÁLCULO DE INCERTEZA DE MEDIÇÃO EM MEDIÇÕES DIRETAS E INDIRETAS Prof José Leoardo Noroha M Eg Departameto de Egehara de Prodção Escola Federal de Egehara de Itabá EFEI RESUMO: Neste trabalho

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000 Aas III Smpóso Regoal de Geoprocessameto e Sesorameto Remoto Aracaju/SE, 25 a 27 de outubro de 2006 UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 99-2000 OLIVEIRA,

Leia mais

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA

OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA OTIMIZAÇÃO DE UMA COLUNA DE DESTILAÇÃO V-104 STABILIZER DE PRODUÇÃO DE LPG - GÁS LIQUEFEITO DE PETRÓLEO CAMPO PETROLÍFERO DO MALONGO/CABINDA/ANGOLA KÁTIA MARIANA SILIVELI EPALANGA - Egehera Químca Dssertação

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo.

Palavras-Chave: Teoria das Restrições, Decisões a Longo Prazo, Simulação de Monte Carlo. Teora das Restrções e Decsões de Logo Prazo: Camho para a Covergêca Autores PABLO ROGERS Uversdade Federal de Uberlâda ERNANDO ANTONIO REIS Uversdade Federal de Uberlâda Resumo Advogam os crítcos da Teora

Leia mais

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa

Orientadora: Profª Drª Maria Adélia Oliveira M. da Cruz Co-Orientadores: Prof Dr. Paulo de Paula Mendes Prof Dr. Manoel da Cunha Costa UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO - UFRPE PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO - PRPPG PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA (NÍVEL: MESTRADO) Dssertação apresetada ao Programa de Pós-Graduação

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM

FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM FERRAMENTA AVALIATIVA DINÂMICA A PARTIR DA TEORIA DE RESPOSTA AO ITEM Fabríca D. Satos, Lucla G. Rbero, Leoardo G. de R. Guedes, Weber Marts Uversdade Católca de Goás, Departameto de Computação Uversdade

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil

Educação e Pesquisa ISSN: 1517-9702 revedu@usp.br Universidade de São Paulo Brasil Educação e Pesqusa ISS: 1517-972 revedu@usp.br Uversdade de São Paulo Brasl Helee, Otavao Evolução da escolardade esperada o Brasl ao logo do século XX Educação e Pesqusa, vol. 38, úm. 1, marzo, 212, pp.

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão

Relatório Final da disciplina de Probabilidades e Estatística. Economia Gestão Informática e Gestão Relatóro Fal da dscpla de Probabldades e Estatístca Ecooma Gestão Iformátca e Gestão Docetes: Paulo Ifate (resposável) Iês Sousa Das Ao Lectvo 007/008 Ídce Relatóro Crítco de Leccoação Programa detalhado

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

Notas em Matemática Aplicada 9

Notas em Matemática Aplicada 9 Notas em atemátca Aplcada 9 Edtado por Elaa XL de Adrade Uversdade Estadual aulsta - UNES São José do Ro reto, S, Brasl Rubes Sampao otfíca Uversdade Católca do Ro de Jaero Ro de Jaero, RJ, Brasl Geraldo

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA

APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA APOSTILA DE ESTATÍSTICA APLICADA A ADMINISTRAÇÃO, ECONOMIA, MATEMÁTICA INDUSTRIAL E ENGENHARIA SONIA ISOLDI MARTY GAMA

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A.

MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS. M. Z. Nascimento, A. F. Frère e L. A. MÉTODO COMPUTACIONAL AUTOMÁTICO TICO PARA PRÉ-PROCESSAMENTO PROCESSAMENTO DE IMAGENS RADIOGRÁFICAS M. Z. Nascmeto, A. F. Frère e L. A. Neves INTRODUÇÃO O cotraste as radografas vara ao logo do campo de

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

DESENVOLVIMENTO DE UMA PLATAFORMA COMPUTACIONAL GRÁFICA PARA ESTUDOS DE FLUXO DE CARGA DE SISTEMAS DE POTÊNCIA

DESENVOLVIMENTO DE UMA PLATAFORMA COMPUTACIONAL GRÁFICA PARA ESTUDOS DE FLUXO DE CARGA DE SISTEMAS DE POTÊNCIA DESENVOLVIMENTO DE UMA PLATAFORMA COMPUTACIONAL GRÁFICA PARA ESTUDOS DE FLUXO DE CARGA DE SISTEMAS DE POTÊNCIA Thales Lma Olvera, Geraldo Caxeta Gumarães, Márco Augusto Tamashro Uversdade Federal de Uberlâda,

Leia mais

ANAIS O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES

ANAIS O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES O JOGO DA LOGÍSTICA E SUAS VARIANTES NO PROBLEMA DE LOCALIZAÇÃO DE INSTALAÇÕES MARCOS RICARDO ROSA GEORGES ( marcos.georges@puc-campas.edu.br, marcos_georges@yahoo.com.br ) PUC-CAMPINAS Resumo Este artgo

Leia mais

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi

Projeção Populacional 2013-2020 para a Cidade do Rio de Janeiro: uma aplicação do método AiBi ISSN 1984-7203 Projeção Populacoal 2013-2020 para a Cdade do Ro de Jaero: uma aplcação do método AB Nº 20130102 Jaero - 2013 Iva Braga Ls 1, Marcelo Pessoa da Slva, Atoo Carlos Carero da Slva, Sérgo Gumarães

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron

UNIVERSIDADE ESTADUAL PAULISTA ESTIMAÇÃO DE RIGIDEZES DE MANCAIS DE ROTORES POR ANÁLISE DE SENSIBILIDADE. Leonardo Caldiron uesp UNIVERIDADE ETADUA PAUITA FACUDADE DE ENGENHARIA DE IHA OTEIRA PROGRAA DE PÓ-GRADUAÇÃO E ENGENHARIA ECÂNICA ETIAÇÃO DE RIGIDEZE DE ANCAI DE ROTORE POR ANÁIE DE ENIBIIDADE eoardo Cadro Dssertação apresetada

Leia mais

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica

Avaliação da Localização de Base de Atendimento para Equipamentos de Movimentação de uma Empresa Siderúrgica Avalação da Localzação de Base de Atedmeto para Equpametos de Movmetação de uma Empresa Sderúrgca Leadro Ferades da Slva Leadro.Ferades@cs.com.br UFF Ilto Curty Leal Juor ltocurty@gmal.com UFRJ Paul Adrao

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas

Variância estatística associada a métodos semi-empíricos para estimativa da capacidade de carga de estacas Teora e Prátca a Egehara vl,.0, p.6-67, ovemro, 0 arâca estatístca assocada a métodos sem-empírcos para estmatva da capacdade de carga de estacas Statstcal varace assocated wth sem-emprcal methods for

Leia mais

ANÁLISE E MODELAGEM ESPACIAL PARA A INCIDÊNCIA DE AIDS NOS MUNICÍPIOS DO ESTADO DO RIO DE JANEIRO, 2009-2011

ANÁLISE E MODELAGEM ESPACIAL PARA A INCIDÊNCIA DE AIDS NOS MUNICÍPIOS DO ESTADO DO RIO DE JANEIRO, 2009-2011 ANÁLISE E MODELAGEM ESPACIAL PARA A INCIDÊNCIA DE AIDS NOS MUNICÍPIOS DO ESTADO DO RIO DE JANEIRO, 2009-2011 A. T. J. Alves* e F. F. Nobre* *Programa de Egehara Bomédca COPPE/UFRJ, Ro de Jaero, Brasl e-mal:

Leia mais

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL Dese de Mrada e Slva Correa Vâa Barcellos Gouvêa Campos Isttuto Mltar de Egehara Resumo Neste trabalho apreseta-se uma aálse espacal

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Técnicas de Estimação no Âmbito da Pós-estratificação

Técnicas de Estimação no Âmbito da Pós-estratificação Téccas de Estmação o Âmbto da Pós-estratfcação por Aa Crsta Maro da Costa Dssertação apresetada como requsto parcal para a obteção do grau de Mestre em Estatístca e Gestão de Iformação pelo Isttuto Superor

Leia mais

Modelo Computacional Unidimensional do Transporte de solutos na Zona Não-saturada do Solo

Modelo Computacional Unidimensional do Transporte de solutos na Zona Não-saturada do Solo ISSN 984-828 Modelo Computacoal Udmesoal do Trasporte de solutos a Zoa Não-saturada do Solo Mara de ourdes Pmetel Pzarro Academa da Força Aérea 64-, Prassuuga, SP E-mal: malu@vgaova.com.br Edso Wedlad,

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

1.1 Apresentação. do capítulo

1.1 Apresentação. do capítulo apítulo Matemátca Facera. Apresetação do capítulo A Matemátca Facera trata da comparação de valores moetáros que estão dspersos ao logoo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas

Leia mais

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA

MODELO DE ISING BIDIMENSIONAL SEGUNDO A TÉCNICA DE MATRIZ DE TRANSFERÊNCIA UIVERSIDADE ESTADUAL DO CEARÁ RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA DE MATRIZ DE TRASFERÊCIA FORTALEZA CEARÁ 4 RAFAEL DE LIMA BARBOSA MODELO DE ISIG BIDIMESIOAL SEGUDO A TÉCICA

Leia mais

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda

Uma Metodologia de Busca Otimizada de Transformadores de Distribuição Eficiente para qualquer Demanda 1 Uma Metodologia de Busca Otimizada de Trasformadores de Distribuição Eficiete para qualquer Demada A.F.Picaço (1), M.L.B.Martiez (), P.C.Rosa (), E.G. Costa (1), E.W.T.Neto () (1) Uiversidade Federal

Leia mais

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas.

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas. Físca plcada à Egehara vl II aulo Medes ENTRÓIDES Neste capítulo pretede-se troduzr o coceto de cetróde, em especal quado aplcado para o caso de superfíces plaas. Este documeto, costtu apeas um strumeto

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

UMA NOVA METODOLOGIA PARA TREINAMENTO EM REDES NEURAIS MULTI CAMADAS

UMA NOVA METODOLOGIA PARA TREINAMENTO EM REDES NEURAIS MULTI CAMADAS UMA OVA METODOLOGIA PARA TREIAMETO EM REDES EURAIS MULTI CAMADAS Luz Carlos C. Pedroza Pedroza@cefet-rj.br CEFET-RJ Av. Maracaã, 229 Ro de Jaero, CEP 2027-0 Carlos E. Pedrera pedrera@ele.puc-ro.br DEE

Leia mais

de Energia Geração Térmica

de Energia Geração Térmica Sstema Itegrado de Plaeameto e Comercalzação de Eerga Geração Térmca Rafael de Souza Favoreto, CEHPAR LACTEC; Marcelo Rodrgues Bessa, CEHPAR LACTEC; Wlso Tadeu Pzzatto, COPEL; Luz Roberto Morgester Ferrera,

Leia mais

Capítulo 1 Matemática Financeira

Capítulo 1 Matemática Financeira apítulo Matemátca Facera. Apresetação do capítulo A matemátca facera trata da comparação de valores moetáros ao logo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas de vestmeto e

Leia mais

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3

Ana Clara P. Campos 1 Denise Nunes Viola 1 Moacyr Cunha Filho 2 Guilherme Vilar 2 Vanessa Van Der Linden 3 Idetfcação da exstêca de padrão espacal aleatóro a dstrbução dos pacetes portadores de doeça geétca rara com defcêca físca da Assocação de Assstêca à Craça Defcete (AACD) de Perambuco Aa Clara P. Campos

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Elaborado: 2002 Ultima atualização: 23/12/2004

Elaborado: 2002 Ultima atualização: 23/12/2004 Elaborado: 2002 Ultma atualzação: 23/12/2004 Cadero de Fórmulas Apresetação Sstema Nacoal de Atvos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil RAI - Revsta de Admstração e Iovação ISSN: 809-2039 campaaro@uove.br Uversdade de São Paulo Brasl Cotador, José Luz; Cotador, José Celso; Herques de Carvalho, Marcus Fabus; Olvera Costa Neto, Pedro Luz

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais