Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética"

Transcrição

1 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic Químic estud os sistems químicos de um form gerl, tedo ou ão ocorrido um reção químic. Por outro ldo, iétic Químic estud form como ocorrem s reções químics e su velocidde, trvés de um estudo qutittivo ds vrições de cocetrção com o tempo. s pricipis difereçs etre TDQ e Q (iétic Químic) são: Termodiâmic Químic stud o sistem do poto de vist mcroscópico (do poto de vist de um Observdor extero ) iétic Químic stud o sistem do poto de vist microscópico (do poto de vist de um Observdor Itero ) stud s codições em que um reção é relizável ( G eergi livre de Gibbs) stud se um reção tige o gru máximo de vço e permite clculr qul é esse vlor. stud durção de um reção químic stud o comportmeto do meio reciol o logo do tempo stud os ftores que podem vecer Iérci Químic O objetivo pricipl d ciétic é o estudo d velocidde ds reções químics, tedo como objetivos secudários: ) O desevolvimeto de métodos experimetis que permitm medir s velociddes ds reções, desde s mis lets té s mis explosivs; b) O estudo dos ftores que ifluecim s velociddes ds reções; c) O estudo do cmiho percorrido pels reções. Usulmete, litertur de gehri Químic dot o termo gehri ds eções Químics qudo se refere à iétic Químic VLOIDD D ÇÃO velocidde de um reção é defiid como sedo dimiuição d cocetrção de um dos regetes uidde de tempo. s cocetrções são ormlmete expresss em mol por litro (mol/l) e o tempo em miutos (mi) ou segudos (s). meir mis usul de se medir velocidde de um reção químic é relção etre cocetrção de um dos regetes do meio reciol e o tempo. velocidde isttâe de um reção é usulmete clculd prtir d evolução d ocetrção o logo do tempo. epresetdo-se por cocetrção do regete e por t o tempo, velocidde de um reção químic é defiid como sedo: Velocidde - d O sil egtivo represet que cocetrção do regete dimiui em fução do tempo. Tempo velocidde de um reção químic é represetd pel letr r (do iglês rte). form usul qul se preset é: -r - d ots de ul Prof. Dr. Mrco toio Pereir

2 equção de velocidde é form com qul se represet mtemticmete velocidde de um reção químic. O formto mis usul pr equção de velocidde é: -r, ode: -r é velocidde d reção express em fução d espécie químic em relção o tempo. Portto, tem-se: -r - d m resumo, velocidde de um reção é express em fução de e i : velocidde f (, i ) Ode: é costte de velocidde e i represet s cocetrções dos regetes,,... o tempo t. tempertur costte, cosider-se costte de velocidde ( ) como costte. m fução disto, form mis usul de represetção d equção de velocidde de um reção é: -r f ( i ) Por exemplo, pr reção químic: + +, tem-se que: r - d este exemplo cim, reção é de primeir ordem em relção o regete, de primeir ordem em relção o regete e de ordem globl dois. De um meir gerl, tem-se que: r d b ode : ordem prcil em relção o regete b ordem prcil em relção o regete. + b ordem globl d reção costte de velocidde O termo ordem vem d mtemátic ode é utilizdo clssificção ds equções difereciis. s leis de velocidde são equções difereciis. m ciétic químic, tis equções são clssificds de cordo com ordem d reção. ordem de um reção é defiid como sedo som ds potecis dos termos de cocetrção que precem equção de velocidde d reção químic. É ormlmete, um úmero iteiro pequeo, podedo em csos especiis, ser zero ou frcioário. É importte ressltr, que ordem de reção é um grdez que ormlmete é obtid prtir de ddos experimetis, em grde prte ds vezes sem o cohecimeto rel do mecismo d reção. s uiddes d costte de velocidde de um reção químic podem ser determids de um form simples prtir do cohecimeto d ordem d reção, coforme mostrdo seguir: -r K ( mol ) ( litro )( tempo ) mol litro e mol litro mol litro 1 tempo e filmete tem-se etão que : ( ) 1 ( ) 1 mol / Litro tempo ots de ul Prof. Dr. Mrco toio Pereir

3 1.3 TIPO D ÇÃO QUIMI eções Homogêes e Heterogêes Um reção é homogêe qudo tods s espécies químics prticiptes estão em um úic fse. Um reção é heterogêe qudo pelo meos um ds espécies químics prticiptes se ecotr em um fse diferece ds demis. Um cso específico de reções, são s ctlítics, ode velocidde é lterd pel preseç, mistur regete, de espécies químics que ão são regetes e em produtos. sts espécies químics são chmds de ctlisdores e são ecotrdos o meio reciol, ormlmete, em qutiddes muito peques eções imples e Múltipls eções simples são quels s quis um equção estequiométric simples e um equção de velocidde simples represetm o dmeto d reção. (xemplo: eção Irreversível: ) eções Múltipls são quels s quis mis de um equção estequiométric ou equção de velocidde são ecessáris pr represetr o dmeto d reção. Os pricipis tipos são os seguites: eversível érie Prlelo omplexs ou + + Observção: eções Irreversíveis são quels s quis pelo meos um dos regetes é totlmete cosumido o fil d reção. eções eversíveis são quels s quis se tige o equilíbrio químico, ou sej, ode coversão dos regetes em produtos ão é complet eções lemetres e ão lemetres osideremos um reção simples: + e form com qul reção ocorre é prtir do choque etre um espécie químic e um espécie químic e que este choque origie, um úic etp, o produto, tem-se etão um reção químic elemetr, cuj equção de velocidde será do tipo: -r Portto, pr s reções elemetres, s ordes prciis dos termos de cocetrção equção d velocidde correspodem os coeficietes estequiométricos ds espécies químics evolvids. Por outro ldo, qudo ão houver est correspodêci etre os termos de cocetrção equção de velocidde e os coeficietes estequiométricos, tem-se etão um reção químic ão elemetr. Um exemplo clássico de reção ão elemetr é que ocorre etre o hidrogêio e o bromo, H + r Hr cuj equção de velocidde é 1 r Hr + 1 / [ H ][ r ] [ Hr ][ r ] Por exemplo, pr reção químic + é possível que lei de velocidde sej do tipo: (-r ) - d OU (-r ) - d, eção lemetr ots de ul Prof. Dr. Mrco toio Pereir eção ão lemetr

4 edo ssim, dite d pergut Qul equção de velocidde de um reção químic qudo se cohece pes su estequiometri?, respost corret é: ÃO I!!! um complemetção dest respost é: Pr cohecer equção de velocidde de um reção químic é ecessário ter ddos experimetis (ou sej, lgum tipo de iformção) d reção. em iformções ou ddos experimetis, pes é POIVL supor provável equção de velocidde. 1.4 TIVÇÃO D ÇÕ QUÍMI Qudo um reção químic possui um bix velocidde e se desej de lgum form celerr est velocidde, existem váris meirs pels quis est tivção pode ser feit. s forms mis comus de tivção de um reção químic são trvés d vrição d tempertur ou d itrodução de um ctlisdor o meio reciol tivção Térmic O umeto d tempertur do meio reciol fz com que eergi ciétic ds espécies químics regetes se eleve, o que ormlmete celer quebr de ligções e formção de ovs moléculs. Um lei muito tig, dos primórdios do estudo d iétic é Lei de V t Hoff Um umeto de 1º tempertur de um reção dobr su velocidde. st Lei é um referecil pois mior prte ds reções químics tem um umeto de velocidde de cerc de 1,5,5 vezes com um umeto de 1 o de tempertur. O mis importte é costtção que um umeto de tempertur provoc um umeto de velocidde d reção., destque-se, um umeto sigifictivo velocidde tivção tlític tlisdores são substâcis que permitem celerr um reção sem serem cosumids. Por exemplo: (g) + 3H (g) Fe + H 3 (g) O ctlisdor ão modific o equilíbrio d reção, ms permite tigi-lo mis rpidmete, pois ele modific o mecismo d reção, executdo- em um sequeci de etps cujs eergis de tivção são tods bem iferiores à d reção ão ctlisd. ormlmete, pes um qutidde muit peque de ctlisdor é usdo e pode trsformr um qutidde ilimitd de regetes. ots de ul Prof. Dr. Mrco toio Pereir

5 lgus outros coceitos evolvedo reções ctlítics são presetdos seguir: Iibidor - é um substâci que reduz prcilmete tividde do ctlisdor. Veeo - é substâci que reduz totlmete tividde do ctlisdor. eção uto-tlític - é reção ctlisd ou ão qul um dos produtos formdos tu fvorvelmete sobre velocidde d reção Outrs Forms de tivção lém d tivção térmic ou ctlític s reções químics podem ser tivds de outrs meirs. Detre quis se destcm: tivção Lumios cosiste tivção de certos sistems pel luz com um comprimeto de od dequdo, qul trsfere o sistem eergi lumios, que tivrá um determido regete ou um determido tipo de ligção molécul. omo exemplo, tem-se fotossítese ds plts. tivção létric pode ser feit por dois processos: (i) descrg e (ii) eletrólise. descrg pode ser rco, físc, descrg codesd etc. eletrólise cosiste plicção de um correte elétric que provoc reções o trvessr líquidos ioizdos, soluções de eletrólitos ou de sis fudidos. tivção dioquímic cosiste emissão de rios por substâcis rdiotivs turis (α, β, γ) ou rios rtificiis (rios X, elétros celerdos, êutros) que são cpzes, devido à su lt eergi, de provocr reções os sistems mis iertes. tivção por scorv ocorre qudo um reção espotâe ou que se iici fcilmete pode forecer tivção ecessári pr que outr reção ocorr. omo exemplo, pode-se citr o uso de espolets pr iicir reções de explosivos que, devido às exigêcis de segurç, são muito estáveis. 1.5 GI D TIVÇÃO Um equção de velocidde do tipo velocidde [] α [] β express depedêci d velocidde d reção com cocetrção dos regetes. este tipo de equção os termos de cocetrção e ordem ão são sesíveis vrições de tempertur e costte de velocidde () é o termo depedete d tempertur. rrheius, segud metde do século XIX, costtou que costte de velocidde de um reção vri com tempertur d seguite meir: T l ode: e são costtes e T é tempertur bsolut (Kelvi) ots de ul Prof. Dr. Mrco toio Pereir

6 prtir dest costtção experimetl, rrheius presetou Lei que é represetd mis comumete d seguite meir: e T o. ou e T ode: (ou ) ftor pré-expoecil. eergi de tivção d reção costte uiversl T tempertur bsolut (em Kelvi) oclui-se que um reção químic, do tipo: + b r + s pr ser crcterizd cieticmete ecessit que em su equção de velocidde sejm defiids s costtes,, α e β r - d e -/T. α. β O cálculo d eergi de tivção de um reção é feito prtir do uso d lei de rrheius. Dus são s meirs mis utilizds o cálculo d ergi de tivção. (i) - Qudo se tem certez bsolut que em um determido itervlo de tempertur ão há mudç o mecismo d reção, ergi de tivção pode ser determid prtir do cohecimeto ds costtes de velocidde d reção químic em somete dus temperturs cohecids. O cálculo é feito por itermédio d equção que é mostrdo pós dedução seguir: um tempertur T, tem se que... o e T um tempertur T tem-se que... o e T 1 1 T T e l ou l T T T T (ii) - Qudo se tem vários vlores pr costte de velocidde em diverss temperturs cohecids, pode-se plotr um gráfico de l x 1/T e com isto extrir os vlores d eergi de tivção e do ftor de freqüêci. e T o. que possui seguite form logrítmic: l l T st equção, su form logrítmic, pode ser represetd um gráfico de l versus 1/T. st represetção gráfic coduz um ret, qul o seu coeficiete gulr represet: m tg α -/ ots de ul Prof. Dr. Mrco toio Pereir

7 1.6 - OMO OO UM ÇÃO Um reção químic ocorre qudo três ftores evolvidos o mudo micromoleculr cotecem que são: 1 - O choque de um espécie químic com outrs ou com s predes do recipiete qul mesm estiver. - gerção de lgum meir de lgum tipo de eergi que permit que espécie químic regete tij um ptmr míimo de eergi pr que reção poss ocorrer. 3 - posição do choque. (ftor muito importte s reções orgâics ode estiverem evolvids substâcis com grdes cdeis) m relção eergi de tivção, tem-se que: eções com eergi de tivção muito peque, isto é, d ordem de 1 Kcl/mol são muito rápids. prátic ests reções são isttâes. eções com eergi de tivção médi (lgums dezes de Kcl/mol) correspoderão velociddes lts, ou ão, coforme importâci do ftor geométrico. eções com ergi de tivção d ordem de 1 Kcl serão tão lets tempertur mbiete que vid prátic té podemos dizer que reção ão é perceptível. lém disto, observ-se que velocidde d reção duplic pr cd umeto de 1º de tempertur, pes qudo eergi de tivção é de cerc de 1,4 Kcl/mol. 1.7 TQUIOMTI IÉTI oceitos Geris egete Limitte é quele que em um reção Irreversível tige coversão máxim possível de (1%) e com isto determi o fil d reção. Tempo de Mei Vid (t 1/ ) é o tempo ecessário pr que ocorr 5% d reção. Hvedo mis de um regete, o tempo de mei-vid será referete o regete limitte. (ou critico). Tempo Ifiito é o tempo o qul pr efeitos práticos, um reção é cosiderd complet (pr efeitos práticos, cosider-se, o míimo, 99,9% de reção) vço de eção qutidde de um substâci químic em um sistem reciol pode ser medid pelo úmero de moles ou pel mss desse compoete. ej reção defiid pel equção estequiométric seguite: ode : o, o, o, o úmero de moles iiciis de,, e respectivmete, presetes o iício d reção M, M, M, M pesos moleculres dos compoetes,, e, respectivmete,,, úmero de moles de,,, e respectivmete, pós decorrido um tempo t desde o iício d reção vrição do úmero de moles, trsformdos durte reção, é diretmete proporciol o gru de extesão d reção (α). Pel Lei ds Proporções Defiids, tem-se que: + b r + s ode etão α b r s ode α gru de extesão ou de vço d reção. ots de ul Prof. Dr. Mrco toio Pereir

8 m cosequêci, tem-se que b α e ( ) b α e r s + rα + ( ) e ( ) + sα oversão (ou Frção overtid) É relção etre o vço de um reção té um istte t qulquer e o vço máximo que est reção poss ter. Pr s reções irreversíveis, tem-se: α x α mx x ( t ) ( t t) e como o fil d reção, tem-se que x Pr reção em fse liquid: + b r tem-se que : X o o o o X o o e o o X mx o o mx o o stdo Gsoso Pr reções químics que ocorrem em fse gsos, é usul utilizr-se pressão prcil como prâmetro proporciol à cocetrção, desde que sej possível comphr evolução d pressão totl do sistem. Pr um gás idel, pressão prcil de um compoete é dd por: ode: p pressão prcil d espécie químic y totl frção molr d espécie químic π pressão totl do sistem p y π ots de ul Prof. Dr. Mrco toio Pereir

9 1.7.5 Diluição em istems Descotíuos É muito comum em reções químics mistur de dus ou mis soluções distits em um recipiete. prtir dest mistur é que reção ocorre. o mometo em que ocorre mistur ds dus soluções é que ocorre o IIIO D ÇÃO QUÍMI, o que ciétic é deomido de tempo zero d reção. Pr efeitos ciéticos ocetrção Iicil de um egete é quel que ele possui o mometo em que s dus soluções são misturds, pois mbs se diluem mutumete. Portto, é importte cohecer s cocetrções ds soluções isoldmete pr que prtir d regr gerl de diluição de soluções, sej possível efetivmete clculr ocetrção Iicil dos egetes Químicos o mometo em que s soluções são misturds e reção químic tem o seu iicio rel (tempo zero) solução 1 solução ej: 1 cocetrção d substci solução 1 cocetrção d substci solução cocetrção iicil d substci pr reção químic (pós mistur de mbs s soluções) V 1 volume d solução 1 V volume d solução V volume iicil d reção (V 1 + V ) regr gerl de um diluição sempre será somr os úmeros de moles de cd um ds soluções: o + 1 o V V V e que lisd sobre o coceito de cocetrção, coduz : e que coduz : V + 1 V V 1 o ots de ul Prof. Dr. Mrco toio Pereir

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ )

[ η. lim. RECAPITULANDO: Soluções diluídas de polímeros. Equação de Mark-Houwink-Sakurada: a = 0.5 (solvente θ ) RECPITULNDO: Soluções dluíds de polímeros Vsosdde tríse do polímero: 5 N V 5 (4 / 3) R 3 v h π h N v [ η ] v 5 Pode ser obtd prtr de: [ η ] lm η 0 sp / V Equção de rk-houwk-skurd: [η] K ode K e são osttes

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

Matemática. Módulo 10. Equações Diferenciais. Por

Matemática. Módulo 10. Equações Diferenciais. Por Mtemátic Módulo Equções Difereciis Por George L. Ekol, BSc,MSc. Abril 7 Module Developmet Templte C. ESTRUTURA DO MÓDULO I. INTRODUÇÂO. TÍTULO DO MÓDULO Equções Difereciis. PRÉ-REQUISITOS PARA O CURSO

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional.

COMENTÁRIO DA PROVA. I. Se a expansão decimal de x é infinita e periódica, então x é um número racional. é um número racional. COMENTÁRIO DA PROVA Como já er esperdo, prov de Mtemátic presetou um bom úmero de questões com gru reltivmete lto de dificuldde, s quis crcterístic fudmetl foi mescl de dois ou mis tems em um mesm questão

Leia mais

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes Método de Exustão dos Atigos: O Pricípio de Eudoxo-Arquimedes Joquim Atóio P. Pito Aluo do Mestrdo em Esio d Mtemátic Número mecográfico: 03037007 Deprtmeto de Mtemátic Pur d Fculdde de Ciêcis d Uiversidde

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

Capítulo zero Glossário

Capítulo zero Glossário Cpítulo zero Glossário Esse cpítulo é formdo por tems idispesáveis à mtemátic que, certmete, você deve Ter estuddo de um ou outr form durte su vid escolr. Sempre que tiver dúvids o logo do restte do teto

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Progrmção de Computdores I BCC 701 01- List de Exercícios 01 Sequêci Simples e Prte A Exercício 01 Um P. A., Progressão Aritmétic, fic determid pel su rzão (r) e pelo seu primeiro termo ( 1 ). Escrev um

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

Capítulo III. Circuitos Resistivos

Capítulo III. Circuitos Resistivos Cpítulo III Ciruitos esistivos. Itrodução Neste pítulo serão estudds s leis de Kirhhoff, utilizdo-se de iruitos resistivos que são mis filmete lisdos. O estudo desss leis é plido em seguid s deduções de

Leia mais

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA

SOLUÇÕES DE EDO LINEARES DE 2 A ORDEM NA FORMA INFINITA SOLUÇÕES DE EDO LINEARES DE A ORDEM NA FORMA INFINITA Coforme foi visto é muito simples se obter solução gerl de um EDO lier de ordem coeficietes costtes y by cy em termos ds fuções lgébrics e trscedetes

Leia mais

APOSTILA DE CÁLCULO NUMÉRICO

APOSTILA DE CÁLCULO NUMÉRICO APOSTILA DE CÁLCULO NUMÉRICO Professor: Willim Wger Mtos Lir Moitor: Ricrdo Albuquerque Ferdes ERROS. Itrodução.. Modelgem e Resolução A utilizção de simuldores uméricos pr determição d solução de um problem

Leia mais

Resolução de sistemas lineares SME 0200 Cálculo Numérico I

Resolução de sistemas lineares SME 0200 Cálculo Numérico I Resolução de sistems lieres SME Cálculo Numérico I Docete: Prof. Dr. Mrcos Areles Estgiário PAE: Pedro Muri [reles@icmc.usp.br, muri@icmc.usp.br] Itrodução Sistems lieres são de grde importâci pr descrição

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

b) Expressando cada termo em função de sua posição SEQUÊNCIAS c) Por propriedades dos termos Igualdade Lei de Formação a) Por fórmula de recorrência

b) Expressando cada termo em função de sua posição SEQUÊNCIAS c) Por propriedades dos termos Igualdade Lei de Formação a) Por fórmula de recorrência SEQUÊNCIAS Seqüêci ou sucessão é todo cojuto ordedo de úmeros que escrevemos etre prêteses e seprdos um um por vírguls ou poto e vírgul. Exemplos: (, 8, 6,,, 8,, 5) (,, 5, 7,,, 7, 9...) (4, 7, 0,, 6, 9...)

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch Cálculo II Eliezer Btist Elis Zuko Tom Márcio Rodolfo Ferdes Silvi Mrtii de Hold Jesch ª Edição Floriópolis, Govero Federl Presidete d Repúblic: Dilm V Rousseff Miistro de Educção: Aloízio Mercdte Coordedor

Leia mais

Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos

Amortização ótima por antecipação de pagamento de dívidas contraídas em empréstimos a juros compostos XXVI ENEGEP - Fortlez, CE, Brsil, 9 de Outubro de 2006 Amortizção ótim por tecipção de pgmeto de dívids cotríds em empréstimos uros compostos Lucio Ndler Lis (UFPE) luciolis@ufpe.br Gertrudes Coelho Ndler

Leia mais

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 )

Como a x > 0 para todo x real, segue que: a x = y y 1. Sendo f -1 a inversa de f, tem-se que f -1 (y)= log a ( y y 1 ) .(TA - 99 osidere s firmções: - Se f: é um fução pr e g: um fução qulquer, eão composição gof é um fução pr. - Se f: é um fução pr e g: um fução ímpr, eão composição fog é um fução pr. - Se f: é um fução

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES

1- SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES - SOLUÇÃO DE SISTEMAS LINEARES E INVERSÃO DE MATRIZES.- Métodos etos pr solução de sistems lieres Métodos pr solução de sistems de equções lieres são divididos priciplmete em dois grupos: ) Métodos Etos:

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prov QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA 1 Cofir os cmpos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que cost etiquet fixd

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. INTEGRAIS DEFINIDAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: SOMAÇÃO E ÁRAS E INTEGRAIS DEFINIDAS. PROFESSOR: MARCOS AGUIAR CÁLCULO II INTEGRAIS DEFINIDAS. NOTAÇÃO DE SOMAÇÃO

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos.

Vale ressaltar que um programa foi desenvolvido em MatLab para solucionar os sistemas de equações propostos. MSc Alexdre Estácio Féo Associção Educciol Dom Bosco - Fculdde de Egehri de Resede Cix Postl: 8.698/87 - CEP: 75-97 - Resede - RJ Brsil Professor e Doutordo de Egehri efeo@uifei.edu.br Resumo: Neste trblho

Leia mais

Resolução dos Exercícios Propostos

Resolução dos Exercícios Propostos Mtemátic Ficeir: Aplicções à Aálise de Ivestimetos 4ª. Edição Resolução dos Exercícios Propostos Etre os méritos deste livro, que fzem dele um dos preferidos pelos estudtes e professores, está explicr

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Fig. 1-1 Demonstração de luz guiada

Fig. 1-1 Demonstração de luz guiada Versão 3-b INTRODUÇÃO A omuição ópti pode ser resumid omo sedo um trsmissão de siis lumiosos que pgm e edem obedeedo determido ódigo de omuição. Ates d ieção do telégrfo sem fio já hi lgums plições de

Leia mais

Cap 5 Equivalência de Métodos

Cap 5 Equivalência de Métodos Cp Equivlêci de Métodos. INTRODUÇÃO Qudo desejmos lisr ltertivs, o primeiro poto cuidr é que els sejm compráveis. ssim, ão fz setido lisr os vlores tuis ( ) de um ssitur de dois os de um revist com um

Leia mais

Equações Diferenciais Lineares de Ordem n

Equações Diferenciais Lineares de Ordem n PUCRS Faculdade de Matemática Equações Difereciais - Prof. Eliete Equações Difereciais Lieares de Ordem Cosideremos a equação diferecial ordiária liear de ordem escrita a forma 1 d y d y dy L( y( x ))

Leia mais

PA DEFINIÇÃO E TERMO GERAL

PA DEFINIÇÃO E TERMO GERAL PA DEFINIÇÃO E TERMO GERAL EXERCÍCIOS DE MATEMÁTICA. (PUC-MG) Três úmeros turis,, b e c, estão ess ordem, em progressão ritmétic de rzão. Se ² + b² - c² = 0, som + b + c é igul : ) b) 8 c) 4 d) 3 e) 36.

Leia mais

O Uso de Modelagem Matemática no Cálculo do Volume de uma Maçã

O Uso de Modelagem Matemática no Cálculo do Volume de uma Maçã O Uso de Modelgem Mtemátic o Cálculo do Volume de um Mçã Uiversidde Federl de Uberlâdi Fculdde de Mtemátic Alessdr Ribeiro d Silv lessdrribeirosil@terr.com.br Crlos Herique Togo crlostogo@gmil.com Mile

Leia mais

O oscilador harmônico

O oscilador harmônico O oscilador harmôico A U L A 5 Meta da aula Aplicar o formalismo quâtico ao caso de um potecial de um oscilador harmôico simples, V( x) kx. objetivos obter a solução da equação de Schrödiger para um oscilador

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostil de Itrodução Aos Métodos Numéricos PARTE II o Semestre - Prof. Slete Souz de Oliveir Buffoi Ídice SISTEMAS LINEARES... INTRODUÇÃO... MÉTODOS DIRETOS: ELIMINAÇÃO DE GAUSS... Sistem lier com... Eemplo:...

Leia mais

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr.

Eletrotécnica. Módulo III Parte I Motores CC. Prof. Sidelmo M. Silva, Dr. Sidelmo M. Silva, Dr. 1 Eletrotécnic Módulo III Prte I Motores CC Prof. 2 3 Máquin CC Crcterístics Básics Muito versáteis (bos crcterístics conjugdo X velocidde) Elevdos conjugdos de prtid Aplicções em sistems de lto desempenho

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

EXERCÍCIOS DE CÁLCULO

EXERCÍCIOS DE CÁLCULO Trcisio Prcio Pereir PhD i Mthemtics Exercícios de Cálculo. EXERCÍCIOS DE CÁLCULO Trcisio Prcio-Pereir Dep. de Mtemátic - Uiv. Estdul Vle do Acrú versão 2 Edição eletrôic Copyleft Trcisio Prcio Pereir

Leia mais

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE

CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE 1. Itrodução CAPÍTULO VI FUNÇÕES REAIS DE VARIÁVEL REAL. LIMITES E CONTINUIDADE Ddo um qulquer cojuto A R, se por um certo processo se fz correspoder cd A um e um só y = f() R, diz-se que se defiiu um

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC

ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC l o i c r e t I o t s e f i M M U R P O Ã Ç L C U B O ED L G I N D CID CIDC Este Mifesto foi relizdo com o poio ficeiro d Uião Europei, ms o coteúdo é pes d resposbilidde dos utores, e ão pode ser tomdo

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química

Capítulo VIII. Equilíbrio de Distribuição. Analytical Chemistry - Robert V. Dilts. D. Van Nostrand, ISBN Departamento de Química Cpítulo VIII Equilíbrio de istribuição Alyticl Chemistry - Robert V. ilts. V Nostrd, ISBN 0-44-158-4 eprtmeto de Químic 1 As váris técics de extrção e cromtogrfi de prtição, evolvem prtição dos solutos

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra dos Trapézio TP6-Métodos Numéricos pr Egehri de Produção Itegrção Numéric Regr dos Trpézio Prof. Volmir Wilhelm Curiti, 5 Itegrção Defiid Itegrção Numéric Prof. Volmir - UFPR - TP6 Itegrção Numéric Itegrção Defiid

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA)

ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA) ATERRAMENTO ELÉTRICO DE SISTEMAS (PROGRAMA). INTRODUÇÃO AO SISTEMA DE ATERRAMENTO. MEDIÇÃO DA RESISTIVIDADE DO SOLO 3. ESTRATIFICAÇÃO DO SOLO 4. SISTEMAS DE ATERRAMENTO 5. TRATAMENTO QUÍMICO DO SOLO 6.

Leia mais

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7

Progressões 16 2, 32 2 e por aí vai. outubro. julho a10. janeiro a7 Progressões Itrodução Ao lçrmos um moed, teremos dois resultdos possíveis: cr ou coro. e lçrmos dus moeds diferetes, pssmos ter qutro resultdos diferetes: (cr, cr), (cr, coro), (coro, cr) e (coro, coro).

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni

SÉRIES DE FOURIER Prof. Me. Ayrton Barboni SUMÁRIO SÉRIES DE FOURIER Prof. Me. Arto Brboi. INTRODUÇÃO.... SÉRIES DE FOURIER..... Fuções Periódics..... Fuções secciolmete difereciáveis..... Fuções de rcos múltiplos..... Coeficietes de Fourier...

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

ARMAZENAMENTO E PROCESSAMENTO DE PRODUTOS AGRÍCOLAS

ARMAZENAMENTO E PROCESSAMENTO DE PRODUTOS AGRÍCOLAS 343 Revist rsileir de Egehri grícol e mbietl, v.3,.3, p.343-348, 1999 mpi Grde, P, DEg/FP RMZENMENTO E PROESSMENTO DE PRODTOS GRÍOLS SEGEM NTRL DE GERGELIM E DETERMINÇÃO D MIDDE DE EQILÍRIO 1 Frcisco de

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS

INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO DEEC / Secção de Eergi Eergis Reováveis e Produção Descetrlizd INTRODUÇÃO À AVALIAÇÃO ECONÓMICA DE INVESTIMENTOS Rui M.G. Cstro (Com bse um texto

Leia mais

UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES

UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES Adilso Gustvo do Espírito Sto - dilsogustvo@hotmil.com Cetro Uiversitário de Volt Redod, Sistems de Iformção Av. Pulo Erlei

Leia mais

SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO

SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO LAVRAS MG 203 SIDNEY DIAS COUTO LOGARITMOS CONCEITOS E APLICAÇÃO Trblho de Coclusão de Curso presetdo à Uiversidde Federl de Lvrs, como prte ds eigêcis

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais