Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1."

Transcrição

1 Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr de uma amostragem ou epermeto. Através da terpolação pode-se costrur uma fução que apromadamete se "ajuste" estes dados potuas. Outra aplcação da terpolação é apromação de fuções compleas por fuções mas smples. Supoha que tehamos uma fução, mas que seja muto complcada para avalar de forma efcete. Podemos etão, escolher algus dados potuas da fução complcada e tetar terpolar estes dados para costrur uma fução mas smples. Obvamete, quado utlzamos a fução mas smples para calcular ovos dados, ormalmete ão se obtém o mesmo resultado da fução orgal, mas depededo do domío do problema e do método de terpolação utlzado, o gaho de smplcdade pode compesar o erro. A terpolação permte fazer a recosttução (apromada) de uma fução apeas cohecedo algumas das suas abscssas e respectvas ordeadas (mages). A fução resultate passa os potos forecdos e, em relação aos outros potos, pode ser um mero ajuste. Eemplo de Iterpolação Lear Eemplo de Iterpolação Polomal de grau superor a.

2 Tpos de terpolação Iterpolação lear Iterpolação polomal Iterpolação trgoométrca Iterpolação lear Em aálse umérca, a terpolação lear cosste em apromar uma fução um tervalo por uma fução lear, ou seja, por utlzado de polômos de prmero grau. O prcpal problema é que se os potos forem poucos ou muto afastados etre s, a represetação gráfca para uma determada fução ão sera muto bem represetada por tal método. Sedo ecessáro, talvez, a utlzação de polômos de graus mas elevados (usado-se polômo terpolador de Lagrage, por eemplo). Iterpolação polomal Dz-se terpolação polomal quado a fução terpoladora é um polômo. A fução terpoladora é a fução F(). Chama-se de terpolação ao processo de avalar f ( ), [ a, b] substtudo a fução f() por uma fução F(), tal que F( ) = f( ), = (). O f() é uma fução real defda em [ a, b] IR, da qual cohecem-se os valores os potos de abcssas,, [ a, ]. b Métodos de terpolação polomal Nos métodos de terpolação utlzam-se polômos como fuções terpoladores (terpolação polomal). Escolhem-se os polômos pela sua (relatva) smplcdade e porque permtem uma represetação satsfatóra da maora das fuções que surgem em aplcações prátcas. Os métodos de terpolação polomal dferem us dos outros a táctca escolhda para determar o polômo terpolador (os erros de arredodameto são dferetes, porque as operações artmétca são coduzdas de forma dstta em cada método). Polômos de Newto Polômos de Gragor-Newto Polômos de Lagrage Outros Polômos (Chebchev, Berste) Polômo de Lagrage Em aálse umérca, polômo de Lagrage (ome é devdo a Joseph-Lous de Lagrage) é o polômo de terpolação de um cojuto de potos a forma de Lagrage.

3 Dado um cojuto de + potos: ( ), (, ), (, ), com todos j dsttos, o polômo de terpolação de um cojuto de potos a forma de Lagrage é a combação lear dos polômos da base de Lagrage: L( ) = = L ( ) com polômos da base de Lagrage dados por: L ( ) = j ( ) ( = ( ) ( ) ( j=, j j ) ( ) ( + + ) ( ) ) ( ) Temos abao a compledade da terpolação de Lagrage para um um polômo de grau com relação ao úmero de operações: Operações Compledade Adções Multplcações Dvsões + Polômo de Newto O polômo de Newto (ome é devdo a Isaac Newto) é um polômo terpolador para um dado cojuto de potos. Os coefcetes do polômo são calculados através de dfereças dvddas. Dado um cojuto de + potos: ( ), (, ), (, ), com todos j dsttos, o polômo de terpolação de um cojuto de potos a forma de Newto é dado por: ou

4 Ode represeta a dfereça dvdda de -ésma ordem. Operador de dfereça dvdda Seja a fução = f() cujo gráfco passa pelos potos, ), =,,,...,. O operador de dfereça dvdda é defdo como sedo a) ordem : = = f ( ) = [ ] + + b) ordem : = = = [ ] + +, + ( + + c) ordem : = = = [, ] d) ordem : = = [,,, ], + + Temos abao a compledade da terpolação de Newto para um um polômo de grau com relação ao úmero de operações: Operações Adções Multplcações Dvsões Compledade Polômo de Gregor-Newto Quado os valores das abscssas forem gualmete espaçados, a formula de Newto pode ser smplfcada, resultado a formula de Gregor-Newto. Portato, o polômo de Gregor-Newto é um caso partcular do polômo de Newto para potos gualmete espaçados. Fórmula de Gregor-Newto Fazedo e usado a otação de dfereças fta ascedete com o operador, tem-se o polômo de Gregor-Newto de grau.,

5 ode utlza-se uma varável aular ou Operador de dfereça fta ascedete Seja a fução = f() que passa pelos potos =,,,...,, sedo. O operador de dfereça fta ascedete é defdo como sedo a) ordem : b) ordem : c) ordem : d) ordem : Temos abao a compledade da terpolação de Gregor-Newto para um polômo de grau com relação ao úmero de operações: Operações Adções Compledade Multplcações Dvsões + Estudo Comparatvo dos Polômos Como vmos acma cada um dos métodos umércos possu um úmero específco de operações artmétcas que podem ser resumdos a tabela abao: Método Número de Operações Artmétcas Numérco Adções Multplcações Dvsões Lagrage + Gregor- Newto Newto Aalsado a tabela acma ão podemos afrmar dretamete qual é o método que possu o meor custo de computação. Isto deve-se ao fato de que em geral, um adção gasta

6 meos cclos de máqua que uma multplcação que gasta meos cclos que uma dvsão. A depedêca dos tempos de cclos em relação a arqutetura de máqua utlzada é um fator mportate a ser cosderado a aálse de efcêca dos métodos apresetados acma. Foram mplemetados os 3 métodos utlzado o software MATLAB. Utlzado um cojuto de potos a serem terpolados foram fetas váras smulações cotablzado o tempo de CPU gasto a eecução de cada um dos métodos. As smulações foram fetas utlzado uma máqua PC 4Mhz. Os resultados podem ser stetzados a fgura abao. Fg. Tempo de processameto dos métodos seqüêcas de terpolação Na fgura podemos verfcar que o método Gregor-Newto é o mas efcete para a arqutetura PC. A desvatagem a utlzação deste método, é a egêca de que as abscssas dos potos a serem utlzados para o polômo terpolador de grau, devam ser ecessaramete eqüdstate.

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Capítulo 3. Interpolação Polinomial

Capítulo 3. Interpolação Polinomial EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 3 Iterpolação Polomal Teorema de Weerstrass: se f( é uma fução cotíua em um tervalo fechado [a, b], etão para cada >,

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev.

CAMPUS DE GUARATINGUETÁ Computação e Cálculo Numérico: Elementos de Cálculo Numérico Prof. G.J. de Sena - Depto. de Matemática Rev. uesp CAMUS DE GUARATINGUETÁ Computação e Cálculo Numérco: Elemetos de Cálculo Numérco ro. G.J. de Sea - Depto. de Matemátca Rev. 5 CAÍTUO 4 INTEROAÇÃO 4. INTRODUÇÃO Cosdere a segute tabela relacoado calor

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

INTERPOLAÇÃO DE EFEMÉRIDES GPS

INTERPOLAÇÃO DE EFEMÉRIDES GPS INTERPOLAÇÃO DE EFEMÉRIDES GPS GPS ephemerdes terpolato ANGELA CRISTINA CARARO LUIZ DANILO DAMASCENO FERREIRA 2 Potfíca Uversdade Católca do Paraá PUCPR Cetro de Cêcas Eatas e de Tecologa CCET Rua Imaculada

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA Polômos de Jacob e CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA III--)INTRODUÇÃO Para um melhor etedmeto do método da colocação ortogoal e sua relação com o método dos resíduos poderados (MRP),

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Ajuste de dados experimentais

Ajuste de dados experimentais Capítulo 8 8. Itrodução Uma forma de trabalhar com uma fução defda por uma tabela de valores é a terpolação polomal. Etretato esta ão é acoselhável quado:. é precso obter um valor aproxmado da fução em

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Sobre aproximações polinomiais de raízes reais de cúbicas

Sobre aproximações polinomiais de raízes reais de cúbicas Notas de Aula Sobre aproxmações polomas de raízes reas de cúbcas Edgar Rechtschaffe UNIFESO O problema de se obter as raízes de uma equação do tercero grau abrevadamete uma cúbca fo resolvdo o século XVI

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo da quadratura de Gauss.

Apresenta-se em primeiro lugar um resumo da simbologia adoptada no estudo da quadratura de Gauss. CAÍTULO QUADRATURA DE GAUSS Mutos dos tegras que é eessáro alular o âmbto da aplação do Método dos Elemetos Ftos (MEF) ão são trvas,.e., ou a prmtva da ução tegrada ão exste expltamete, ou é demasado omplada

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Determinação de correspondência com precisão sub-pixel por interpolação polinomial 1

Determinação de correspondência com precisão sub-pixel por interpolação polinomial 1 Determação de correspodêca com precsão sub-pel por terpolação polomal BAZAN, W S; TOMMASELLI, A M G; GALO, M Determação de correspodêca com precsão subpel por terpolação polomal I: COBRAC 4 - Cogresso

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Obra publicada pela Universidade Federal de Pelotas

Obra publicada pela Universidade Federal de Pelotas Obra publcada pela Uversdade Federal de Pelotas Retor: Prof. Dr. Atoo Cesar Goçalves Bores Vce-Retor: Prof. Dr. Maoel Luz Breer de Moraes Pró-Retor de Etesão e Cultura: Prof. Dr. Luz Era Goçalves Ávla

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO

Leia mais

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações

Algoritmos de Interseções de Curvas de Bézier com Uma Aplicação à Localização de Raízes de Equações Algortmos de Iterseções de Curvas de Bézer com Uma Aplcação à Localzação de Raízes de Equações Rodrgo L.R. Madurera Programa de Pós-Graduação em Iformátca, PPGI, UFRJ 21941-59, Cdade Uverstára, Ilha do

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

Variável discreta: X = número de divórcios por indivíduo

Variável discreta: X = número de divórcios por indivíduo 5. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

Noções Básicas de Medidas e Algarismos Significativos

Noções Básicas de Medidas e Algarismos Significativos Noções Báscas de Meddas e Algarsmos Sgfcatvos Prof. Theo Z. Pava Departameto de Físca - Faculdade de Flosofa, Cêcas e Letras de Rberão Preto-USP Físca Acústca Motvações Quas são os padrões de meddas? Podemos

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

3 Fundamentação Teórica

3 Fundamentação Teórica 3 Fudametação Teórca A segur são apresetados os fudametos teórcos os quas é embasado o desevolvmeto do trabalho. 3.. Espectros de Resposta De acordo com Sampao [3], é descrta a resposta máxma de um osclador

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Almeida, C. (1987) Novo método para resolução da equação dos rebaixamentos em ensaios a caudal variável

Almeida, C. (1987) Novo método para resolução da equação dos rebaixamentos em ensaios a caudal variável Almeda, C. (1987) Novo método para resolução da equação dos rebaxametos em esaos a caudal varável Geols, revsta da Secção de Geologa Ec. e Aplcada, vol. I, p. 100-10. GEOLIS - Vol. I(1987) 100-10 100 NOVO

Leia mais

Física Básica. Experimental. André Luis Lapolli João Batista Garcia Canelle José Roberto Marinho

Física Básica. Experimental. André Luis Lapolli João Batista Garcia Canelle José Roberto Marinho Físca Básca Epermetal Adré Lus Lapoll João Batsta Garca Caelle José Roberto arho Físca Básca Epermetal Adré Lus Lapoll João Batsta Garca Caelle José Roberto arho APRESENTAÇÃO SUÁRIO Lsta de Fguras... Lsta

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

CAPITULO 1 CONCEITOS BÁSICOS

CAPITULO 1 CONCEITOS BÁSICOS DISCIPLIA: ESTATÍSTICA PROFESSOR: JOSELIAS SATOS DA SILVA - joselas@uol.com.br ÍDICE CAPITULO 1 COCEITOS BÁSICOS... 3 1.1 ESTATÍSTICA... 3 1. ESTATÍSTICA DESCRITIVA... 3 1.3 ESTATÍSTICA IFERECIAL... 3

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES Cemátca da Posção de Robôs Mapuladores Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES A cemátca de um robô mapulador é o estudo da posção e da velocdade do seu efetuador e dos seus lgametos. Quado

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais