Estatística Básica - Continuação

Tamanho: px
Começar a partir da página:

Download "Estatística Básica - Continuação"

Transcrição

1 Professora Adraa Borsso COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas aterormete, são útes por detfcarem um valor típco em um cojuto de dados. Por outro lado, as meddas de varabldade dzem respeto à descrção de um cojuto de dados em termos da varabldade estete etre os tes cluídos detro do cojuto. Assm, estas formações servrão para dcar o quato os dados se apresetam dspersos em toro da regão cetral. Caracterzam, portato, o grau de varação estete o cojuto de valores. A méda - ada que cosderada como um úmero que tem a faculdade de represetar uma sére de valores - ão pode, por s mesma, destacar o grau de homogeedade ou heterogeedade que este etre os valores que compõem o cojuto. Cosderemos os segutes cojutos de valores das varáves X, Y e Z: X = {70, 70, 70, 70, 70} X = 350 / 5 = 70 Y = {68, 69, 70,7,7} Y = 350 / 5 = 70 Z = {5, 5, 50, 0, 60} Z = 350 / 5 = 70 Itutvamete, é fácl otar que o cojuto X é mas homogêeo que os cojutos Y e Z, mesmo que os valores das médas sejam guas. O cojuto Y, por sua vez, é mas homogêeo que o cojuto Z, pos há meor varabldade etre cada um de seus valores e a méda represetatva. Cocluí-se etão que o cojuto X apreseta dspersão ula e que o cojuto Y apreseta uma dspersão meor que o cojuto Z. As meddas de dspersão ou de varabldade mas utlzados são: ampltude total, varâca, desvo padrão e coefcete de varação. Ampltude total (AT) A ampltude total é a dfereça etre o maor e o meor valor observado: AT = X mámo X mímo. Para as varáves X, Y e Z acma temos: AT X = = 0 (dspersão ula) AT Y = 7-68 = 4 AT Z = 60-5 = 55 A Ampltude total (AT) tem o coveete de só levar em cota os dos valores etremos do cojuto, sem levar em cota os valores termedáros. Por esse motvo, esta medda ão é muto utlzada.

2 Faz-se uso da AT em stuações ode deseja-se determar, por eemplo, a varação da temperatura em um da, ou quado ecesstamos de uma medda de cálculo rápdo sem muta eatdão para represetar a varabldade dos dados. Varâca populacoal (σ ), varâca amostral (S ) e desvo padrão (σ ou S) a) Dados ão-agrupados A varâca e o desvo padrão são dcadores de varabldade bastate estáves. Para uma população de dados ão-agrupados, a varâca populacoal (σ ) e o desvo padrão populacoal (σ) baseam-se os quadrados dos desvos em toro da méda artmétca. Assm: Varâca: = = σ ( ) ou. = σ = = O desvo padrão é defdo como a raz quadrada da varâca, ou seja: Desvo Padrão: ( ) σ = ou σ = = = OBS: O desvo padrão trabalha com a mesma udade da varável, sedo de maor teresse que a varâca em aplcações prátcas. É mportate ressaltar que estas fórmulas deverão ser aplcadas quado estvermos trabalhado com dados obtdos de uma população. Eemplo: Calcular a varâca e o desvo padrão populacoal dos segutes dados:, 6, 5, 4, 8,. Podemos fazer este cálculo de duas formas: ª) = = σ σ = ( ) ( (6)) + ( 6 (6)) + ( 5 (6)) + ( 4 (6)) + ( 8 (6)) + ( (6)) σ = = σ = 8,

3 3 ª) σ = = = Usado uma tabela aular: ( )=4 6 (6 )=36 5 (5 )=5 4 (4 )=6 8 (8 )=64 ( )= Σ = 36 Σ = 66 = ( 36) σ = = 66 = { 50} = 8,33 = Desta forma, ecotramos a varâca dos dados. Para determarmos o desvo padrão, basta trarmos a raz quadrada deste valor, ou seja, σ = 8,33 σ = 8,33 σ =,89 No caso de trabalharmos com dados que represetam uma amostra da população, as epressões acma, devemos substtur por -, e a varâca amostral (S ) é dada por: Varâca: S ( ) = ou ( ). S = - Desvo Padrão: S = ( ) ou ( ). S = b) Dados agrupados Neste caso, a varâca e o desvo padrão serão dados pelas segutes epressões: Varâca: ( f). σ = f Desvo Padrão: σ = f ( f )

4 4 OBS: No caso de trabalharmos com dados que represetam uma amostra da população, as epressões acma, devemos substtur por -. Eemplo: Ecotre a méda e o desvo padrão para os dados amostras da varável reda famlar (em saláros mímos) abao e terprete os resultados. Reda famlar Nº de famílas f * f * (f ) Total Calculado a méda: f 68 = = = 6,7 saláros mímos 40 S Calculado a varâca para os dados amostras: ( f) = f ( ) 68 S = 99 = [ 96,4] = 5, Etão, o desvo padrão é dado por: S = S =, 4 Iterpretação: Podemos afrmar que a reda méda famlar é de 6,7 saláros mímos, com uma varação de ±, 4 saláros mímos, meddas pelo desvo padrão. Coefcete de varação CV O fato do desvo padrão ser epresso a mesma udade dos dados lmta seu emprego quado desejamos comparar duas ou mas séres de valores referetes à varabldade. Para cotorar essa lmtação, utlza-se o coefcete de varação - CV, que é defdo como o quocete etre o desvo padrão e a méda artmétca. Esta medda eprme a varabldade relatva à méda e, usualmete, é epresso em porcetagem. σ Dados populacoas: CV =.00; S Dados amostras: CV =.00. O coefcete de varação dca o grau de dspersão, ou seja, a homogeedade ou heterogeedade dos dados de uma varável.

5 5 Para efetos prátcos, costuma-se cosderar (Gomes, 000): CV < 0%: baa dspersão, ou dados homogêeos; 0% < CV < 0%: méda dspersão, ou méda homogeedade; 0% < CV < 30%: alta dspersão, ou pouca homogeedade; CV > 30%: dspersão muto alta, ou dados heterogêeos. Eemplo: Para os dados amostras das varáves X, Y e Z, calcule o coefcete de varação e comete a respeto da dspersão dos dados. X = {70, 70, 70, 70, 70} Y = {68, 69, 70,7,7} Z = {5, 5, 50, 0, 60} X = 350 / 5 = 70 ( ) ( 70 70) + ( 70 70) + ( 70 70) + ( 70 70) + ( 70 70) 0 SX = = = = S S X = X = 0 = 0 SX CVX =.00 = 0% X Y = 350 / 5 = 70 Y Y SY = = ( ) ( ) ( ) ( ) ( ) S Y = = =, S Y = S Y =,5 =,58 SY CVY =.00 =, 6% Y ( ) ( ) ( ) ( ) ( ) ( ) * Z = 350 / 5 = 70 ( Z Z) ( ) + ( ) + ( ) + ( ) + ( ) SZ = = - 5 ( ) ( ) ( ) ( ) ( ) S Z = = = 456, S S Z = Z = 456,50 = 67,55 SZ CVZ =.00 = 96,5% Z Iterpretação: Apesar da méda ser gual para as varáves X, Y e Z, o coefcete de varação dca que a varável X ão apreseta dspersão (CV = 0%); a varável Y tem CV =,6%, dcado baa dspersão dos dados, ou homogeedade; já a varável Z possu dados com dspersão muto alta (CV = 96,50%), ou seja, seus dados são heterogêeos.

6 6 Correlação e Regressão Dzemos que duas varáves, X e Y, são postvamete correlacoadas quado elas comham um mesmo setdo, ou seja, elemetos com valores pequeos de X tedem a ter valores pequeos de Y. Estão egatvamete correlacoadas quado elas camham em setdos opostos, ou seja, elemetos com valores pequeos de X temdem a ter valores grades de Y e elemetos com valores grades de X tedem a ter valores pequeos de Y. Gráfco de dspersão: deve ser feto ates da aálse umérca dos dados. É costruído com cojutos de potos formados por pares de valores (,y). Pode dcar correlação lear postva, egatva ou estêca de correlação. Também é útl para detfcar estêca de valores aberrates. a) correlação postva b) correlação egatva c) correlação estete Coefcete de correlação de Pearso (r) mede a correlação lear (grau de assocação) dos dados de duas varáves aleatóras X e Y. O coefcete de correlação de Pearso pode assumr valores o tervalo real de [,] e calcula-se segudo a segute fórmula: r = = ( )( y y) ( ). ( y y) = = ode,,..., e y, y,..., y são os valores meddos de ambas as varáves. Essa epressão é ( y) ( ) ( y) = = = equvalete a r = ( ). y ( y ) = = = = O valor de r será tão mas prómo de (ou -) quato mas forte for a correlação dos dados observados. Teremos r =se os potos estverem eatamete sobre uma reta ascedete (correlação postva perfeta). Por outro lado, teremos r = se os potos estverem eatamete sobre uma reta descedete (correlação egatva perfeta). Quado ão houver correlação os dados, r acusará um valor prómo de 0 (zero).

7 7 Gráfcos de dspersão para dferetes valores do coefcete de correlação ρ (rho). Eercíco: Sejam X a ota a prova do vestbular de matemátca e Y a ota fal a dscpla de cálculo. Estas varáves foram observadas em 0 aluos, ao fal do prmero período letvo de um curso de tecologa. Os dados são represetados a segur: X Y a) calcule a correlação etre a ota o vestbular de matemátca e a ota a dscpla de cálculo. Iterprete o resultado. b) Costrua um dagrama de dspersão e verfque se algum aluo foge ao comportameto geral dos demas (poto dscrepate). Regressão Lear Aálse de regressão é uma metodologa estatístca que utlza a relação etre duas ou mas varáves quattatvas (ou qualtatvas) de tal forma que uma varável pode ser predta a partr da outra ou outras. Eemplos: * Temperatura usada um processo de desodorzação de um produto e cor do produto fal. * A porcetagem de acerto ou, etão, bytes trasferdos, podem estar relacoados com o tamaho da cache (bytes), para um determado tpo de pré-carregameto.

8 8 Estamos teressados a relação etre duas varáves, as quas chamaremos de X e Y. Observamos pares de valores X e Y em cada amostra ou udade epermetal, e vamos usá-los para dzer alguma cosa sobre a relação. Uma varável X pode ser medda acuradamete e seu valor escolhdo pelo epermetador. Esta varável e chamada de varável depedete. A outra varável Y, chamada varável depedete ou resposta, está sujeta a erro epermetal, e seu valor depede do valor escolhdo para a varável depedete. Assm, a resposta Y é uma varável depedete da varável depedete X. As duas varáves estão sujetas a erros epermetas, sto é, erros de atureza aleatóra, eretes ao epermeto. Este tpo de assocação etre duas varáves costtu o caso da correlação. O termo regressão é usado para desgar a epressão de uma varável depedete (Y) em fução de outra (X), cosderada depedete. Dz-se regressão de Y sobre X. Se a relação fucoal etre elas é epressa por uma equação de º grau, cuja a represetação geométrca é uma lha reta, a regressão é dta lear. Postulada a estêca de uma relação lear etre duas varáves, pode-se represetar aquele cojuto de potos pela equação da reta: Y = β + αx, que epressa o valor de Y em fução de X. * Y é a varável depedete ou regredda, ou resposta * X é a varável depedete, ou regressora ou eplaatóra * α e β são costates, β é o tercepto e epressa o valor de y quado é zero e α é o coefcete de regressão, coefcete agular ou clação da reta. Eercíco : Cosdere um epermeto em que se aalsa a octaagem da gasola Y em fução da adção de um ovo adtvo X. Para sso, foram realzados esaos com os percetuas de,, 3, 4, 5 e 6% de adtvo. Os resultados são mostrados a segur: X Y 80,5 8,6 3 8, 4 83,7 5 83,9 85,5 84,5 83,5 8,5 8,5 80,5 6 85,0 80 Ídce de Octaagem Quatdade de Adtvo (%) Fgura : Dados epermetas do efeto de um adtvo X a octaagem da gasola Y. Observe que é razoável supor uma relação apromadamete lear etre X e Y para os íves de adtvo esaados. Porém, os potos ão estão eatamete sobre uma reta, provavelmete por causa da estêca de fatores ão cotroláves o processo. Vamos supor, etão, que o valor esperado de Y vare com X, de acordo com uma equação de prmero grau, ou seja: Y = α X + β, ode α e β são parâmetros do modelo.

9 9 Há város métodos para estmar os parâmetros α e β do modelo. O mas usual é o Método dos Mímos Quadrados, que cosste em fazer com que a soma dos erros quadrátcos seja a meor possível. Por esse método obtém-se: ( y ) y α = = = = = = = = e β = y α Neste eemplo, obtemos α = 0,886 e β = 79,7, assm, Y = 0,886X + 79,7 X Y Y Erro (%) 85,5 Ídce de Octaagem 85 84, ,5 83 8,5 8 8,5 8 80,5 Y = 0,8857X + 79,7 80,5 80,586-0, 8,6 8,47 0,6 3 8, 8,358-0,3 4 83,7 83,44 0, ,9 84,30-0, ,06-0, Quatdade de Adtvo (%) Fgura : Dagrama de dspersão dos dados e a reta de regressãoajustada a esses dados e tabela comparatva etre dados reas e dados estmados. A partr deste modelo é possível estmar o ídce de octaagem da gasola a partr de uma quatdade do ovo adtvo (o tervalo esaado, de a 6%, pos ão há formações sobre a relação etre X e Y fora deste tervalo). Por eemplo, se for adcoado X = 5% de adtvo, esperamos um ídce de octaagem de Y = 84,573. A tabela acma mostra que os valores predtos pelo modelo estão bastate prómos dos valores observados o epermeto. O coefcete α forece uma estmatva da varação esperada de Y, a partr da varação de uma udade em X. O sal deste coefcete dca o setdo da varação. O coefcete de determação é uma medda descrtva da proporção da varação de Y que pode ser eplcada por varações em X, e é dado pelo modelo: em que 0 R. No eemplo, R = 0,975 R = = ( Y Y) = = ( Y Y) varação eplcada varação total

10 0 Eercíco 3: A tabela a segur relacoa os pesos (em ceteas de kg) e as taas de cosumo de combustível em rodova (km/l), uma amostra de 0 carros de passeo ovos. Peso Cosumo a) Calcule o coefcete de correlação de Pearso b) Cosderado o resultado do tem a), como você avala o relacoameto etre peso e cosumo, a amostra observada? c) Para estabelecer uma equação de regressão, qual deve ser a varável depedete e qual deve ser a varável depedete? Justfque a sua resposta. d) Estabeleça a equação de regressão, cosderado a resposta do tem c). e) Apresete o dagrama de dspersão e a reta de regressão obtda em d). f) Você cosdera adequado o ajuste do modelo de regressão do tem d)? Dê uma medda dessa adequação, terpretado-a. g) Qual é o cosumo esperado para um carro de 000kg? Justfque sua resposta.

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

Análise da Informação Económica e Empresarial

Análise da Informação Económica e Empresarial Aálse da Iformação Ecoómca e Empresaral Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração Aálse da Iformação Ecoómca e Empresaral Guão Aula 8: Redução de Dados: Meddas de Dspersão e Cocetração

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Estatístca: uma defção Coleção de úmeros estatístcas O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%.

Leia mais

Estatística: uma definição

Estatística: uma definição Coleção de úmeros estatístcas Estatístca: uma defção O úmero de carros veddos o país aumetou em 30%. A taa de desemprego atge, este mês, 7,5%. As ações da Telebrás subram R$,5, hoje. Resultados do Caraval

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO

MEDIDAS DE DISPERSÃO 9. MEDIDAS DE DISPERSÃO Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, Medca Veterára, Muscoterapa, Odotologa, Pscologa MEDIDAS DE DISPERSÃO 9 9. MEDIDAS DE DISPERSÃO

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR116 Boestatístca Proessor: Celso Luz Borges de Olvera Assuto: Estatístca Descrtva Tema: Meddas de Posção e Meddas de

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

Escola Secundária de Jácome Ratton

Escola Secundária de Jácome Ratton Ecola Secudára de Jácome Ratto Ao Lectvo / Matemátca Aplcada à Cêca Soca Na Ecola Secudára do Suceo aualmete é premado o aluo que tver melhor méda a ua clafcaçõe a dferete dcpla. No ao lectvo 9/, o do

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção

Grande Conjuntos de Dados. Organização; Resumo; Apresentação. Amostra ou População. Defeitos em uma linha de produção Prof. Lorí Val, Dr. val@pucr.br http://www.pucr.br/~val/ Grade Cojuto de Dado Orgazação; Reumo; Apreetação. Amotra ou População Defeto em uma lha de produção Lacado Deeho Torto Deeho Torto Lacado Torto

Leia mais

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário

Estatística Área 4 BACEN Aula 01 Estatística Descritiva Prof. Alexandre Lima. Aula 01. Sumário Estatístca Área 4 BACEN Aula 0 Estatístca Descrtva Prof. Aleadre Lma Aula 0 Sumáro Itrodução à Estatístca... 3 Tpos de Varáves... 4 3 Rol... 5 4 Séres Estatístcas... 6 5 Téccas de Descrção Gráfca... 8

Leia mais

EAD Métodos Estatísticos de Projeção

EAD Métodos Estatísticos de Projeção EAD 655 - Método Etatítco de Projeção Prof. Cear Aleadre de Souza 2º. Semetre - 207 Modelagem Quattatva em Admtração Na admtração, a matemátca e a etatítca cotrbuem para a cração de modelo para auílo a

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Ivan G. Peyré Tartaruga. 1 Metodologia espacial

Ivan G. Peyré Tartaruga. 1 Metodologia espacial RELATÓRIO DE PESQUISA 5 Procedmetos o software ArcGIS 9. para elaborar os mapas da Regão Metropoltaa de Porto Alegre RMPA com as elpses de dstrbução drecoal etre 99 e 000 Iva G. Peré Tartaruga Metodologa

Leia mais

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade

Do que trata a Estatística. Estatística Básica (Anova, TH, Regressão) Séries Temporais Data Mining Six Sigma Redes Neurais Controle de Qualidade Do que trata a Estatístca A essêca da cêca é a observação. Estatístca: A cêca que se preocupa com a orgazação, descrção, aálse e terpretação dos dados epermetas. Ramo da Matemátca Aplcada. A palavra estatístca

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos.

Nas próximas secções iremos abordar a análise estatística de uma amostra em que os dados numéricos estão agrupados em classes, ou seja, em intervalos. Estatístca Descrtva ESTATÍSTICA DESCRITIVA Amostras com dados agrupados em classes as prómas secções remos abordar a aálse estatístca de uma amostra em que os dados umércos estão agrupados em classes,

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2 Etatítca II Atoo Roque Aula 4 O Coefcete de Correlação de Pearo O coefcete de correlação de Pearo é baeado a déa de varâca, dada o curo de Etatítca I Como vto aquele curo, quado temo uma amotra compota

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

Análise de Regressão

Análise de Regressão Análse de Regressão método estatístco que utlza relação entre duas ou mas varáves de modo que uma varável pode ser estmada (ou predta) a partr da outra ou das outras Neter, J. et al. Appled Lnear Statstcal

Leia mais

Apêndice 1-Tratamento de dados

Apêndice 1-Tratamento de dados Apêdce 1-Tratameto de dados A faldade deste apêdce é formar algus procedmetos que serão adotados ao logo do curso o que dz respeto ao tratameto de dados epermetas. erão abordados suctamete a propagação

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento

ESTATÍSTICA BÁSICA - Profº Marcos Nascimento ESTATÍSTICA BÁSICA - Proº Marcos Nascmeto CÁPITULO I- Itrodução Atualmete a utlzação da Estatístca é cada vez maor em qualquer atvdade prossoal. Nos mas dverscados ramos, as pessoas estão requetemete epostas

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

CAPITULO 1 CONCEITOS BÁSICOS

CAPITULO 1 CONCEITOS BÁSICOS DISCIPLIA: ESTATÍSTICA PROFESSOR: JOSELIAS SATOS DA SILVA - joselas@uol.com.br ÍDICE CAPITULO 1 COCEITOS BÁSICOS... 3 1.1 ESTATÍSTICA... 3 1. ESTATÍSTICA DESCRITIVA... 3 1.3 ESTATÍSTICA IFERECIAL... 3

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE

ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIDADE DO ALGARVE SCOLA SUPIO D CNOLOGIA UNIVSIDAD DO ALGAV CUSO BIÁPICO M NGNHAIA CIVIL º cclo egme Duro/Nocturo Dscpla de COMPLMNOS D MAMÁICA Ao lectvo de 7/8 - º Semestre Ídce. egressão lear múltpla.... Itrodução....

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Pedro Paulo Balestrass www.pedro.ufe.edu.br ppbalestrass@gmal.com 35-3691161 / 88776958 (cel) Estatístca Descrtva Pedro Paulo Balestrass www.pedro.ufe.edu.br 1 População e amostra:

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Caracterização de Partículas. Prof. Gerônimo

Caracterização de Partículas. Prof. Gerônimo Caracterzação de Partículas Prof. Gerômo Aálse Graulométrca de partículas Tabela: Sére Padrão Tyler Mesh Abertura Lvre (cm) âmetro do fo () 2 ½ 0,7925 0,088 0,6680 0,070 ½ 0,56 0,065 4 0,4699 0,065

Leia mais

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I

Revisão/Resumo de Análise Estatística I e Introdução à Tecnologia da Amostragem I Dscpla: Tecologa da Amostragem I Professor: Marcelo Rubes Revsão/Resumo de Aálse Estatístca I e Itrodução à Tecologa da Amostragem I 1 - Modelos Estatístcos/Probablístcos São modelos que se aplcam quado

Leia mais