Estatística - exestatmeddisper.doc 25/02/09

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Estatística - exestatmeddisper.doc 25/02/09"

Transcrição

1 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade da méda. dspersão x x ejam as séres : a) 0, 0, 0 b) 5, 0, 0, 5, 30 Nos dos casos acma temos as segutes médas: 0 0 xa xb Observe que, apesar das séres terem médas guas, a sére a ão apreseta dspersão em toro da méda gual a 0, equato os valores da sére b apresetam dspersão em toro da mesma méda. Ampltude total É uma medda de dspersão dada pela dfereça etre o maor e o meor valor da sére. R x máx x mí Exemplo : Calcule a ampltude total da sére: 0,, 0,, 5, 33, 38. olução: R E Nemer / 0

2 Estatístca - exestatmeddsper.doc 5/0/09 A utlzação da ampltude total como medda de dspersão é lmtada, pos, sedo uma medda que depede apeas dos valores exteros, ão capta possíves varações etre esses lmtes. Varâca amostral Como se deseja medr a dspersão dos dados em relação à méda, é teressate aalsar os desvos de cada valor (x ) em relação à méda, sto é: d x x e os d forem baxos, teremos pouca dspersão, ao cotráro, se os desvos forem altos, teremos elevada dspersão. Pode-se verfcar que a soma dos desvos em toro da méda é zero, ou seja: d 0 Logo, o cálculo da varâca cosderam-se os quadrados dos desvos: d. A varâca,, de uma amostra de meddas é gual à soma dos quadrados dos desvos: d, dvdda por (-), assm: d ( x x) Para dados agrupados, tem-se que: d ( x x) Desevolvedo-se o quadrado das dfereças: ( x x) E somado-se os termos comus, ecotram-se as segutes fórmulas prátcas para o cálculo da varâca amostral: E Nemer / 0

3 Estatístca - exestatmeddsper.doc 5/0/09 x ( x ) ou x ( x ) Quato maor o valor de, maor a dspersão dos dados amostras. Exemplo : Calcular a varâca para as meddas amostras: 3, 7,,, 8. olução: Vamos determar pela fórmula básca. Para tato, é teressate a costrução da segute tabela: x d (x x) d (x x) 3 (3 4,)-,,44 7,8 7,84 -, 4,84-3, 0,4 8 3,8 4,44 Σ 0 38,80 A méda amostral será: Observe que a soma dos desvos em toro da méda é zero. x x 5 4, Logo, a varâca amostral será: x ( x ) ( ) ,7 Desvo padrão amostral Como vsto aterormete, o cálculo da varâca é obtdo pela soma dos quadrados dos desvos em relação à méda. Assm é que, se a varável sob aálse for medda em metros, a varâca deverá ser expressa em m (metros ao quadrado). Ou seja, a varâca é expressa pelo quadrado da E Nemer 3 / 0

4 Estatístca - exestatmeddsper.doc 5/0/09 udade de medda da varável que está sedo estudada. Para melhor terpretar a dspersão de uma varável, calcula-se a raz quadrada da varâca, obtedo-se o desvo padrão que será expresso a udade da medda orgal. Assm: O desvo padrão das cco meddas do Exemplo é dado por: 9,7 3, Iterpretação do desvo padrão amostral Vamos estudar aqu duas regras para terpretação do desvo padrão:. Regra empírca Para qualquer dstrbução amostral com méda e desvo padrão, tem-se que:. Itervalo: x ± O tervalo acma deve coter etre 60% e 80% de todas as observações amostras para uma dstrbução smétrca. Caso a dstrbução seja aproxmadamete smétrca, esta porcetagem aproxma-se de 70%. Caso a dstrbução seja fortemete assmétrca, essa porcetagem aproxma-se de 00%... Itervalo: x ± O tervalo acma deve coter aproxmadamete 95% das observações amostras para dstrbuções smétrcas e aproxmadamete 00% para dstrbuções com assmetra elevada. Itervalo: x ± 3 O tervalo acma cotém aproxmadamete 00% das observações amostras. E Nemer 4 / 0

5 Estatístca - exestatmeddsper.doc 5/0/09. Teorema de Tchebycheff Para qualquer dstrbução amostral com méda e desvo padrão, tem-se que:. Itervalo: x ± O tervalo acma cotém, o mímo, 75% de todas as observações amostras.. Itervalo: x ± 3 O tervalo acma cotém, o mímo, 89% de todas as observações amostras. Exemplo 3: Calcular a varâca e o desvo padrão da segute dstrbução amostral: x olução: Vamos costrur a tabela abaxo para facltar o osso trabalho. x x x Σ x ( x ) ( 9) ,86 Logo, a varâca amostral é,86. E o desvo padrão amostral é dado por:,86,69 E Nemer 5 / 0

6 Estatístca - exestatmeddsper.doc 5/0/09 Exemplo 4: Com os dados do osso exemplo com dades de 50 fucoáros, vamos determar a varâca, o desvo padrão e terpretar o desvo padrão obtdo, de acordo com as regras vstas olução: Com base os dados, obtvemos a segute tabela de dstrbução de freqüêcas: Classes Itervalos das classes X X X , , ,5 85 8, ,5 46, , , , , , ,5 9,50 596, , ,50 omas ,50 A méda amostral será gual a: x x 9 50 A varâca amostral será: 38,44 x ( x ) ( 9) 80456, ,8 E o desvo padrão será: 34,8, 58 aos Para verfcarmos as regras para terpretação do desvo padrão, precsamos executar os segutes cálculos: x ± 38,44 ±,58 E Nemer 6 / 0 (6,86 ; 50,0)

7 Estatístca - exestatmeddsper.doc 5/0/09 Com auxílo da tabela de dades, cocluímos que etre 7 e 50 aos temos 33 elemetos, logo: (33/50) 00 66% das observações. Isto é: o tervalo compreeddo etre a méda meos um desvo padrão e a méda mas um desvo padrão cotém, esse exemplo, 66% das 50 dades. A regra empírca dca que o referdo tervalo deverá coter de 60% a 80% das observações. x ± 38,44 ± (,58) (5,8 ; 6,60) Com auxílo da tabela de dades, cocluímos que etre 6 e 6 aos temos 49 elemetos, logo: (49/50) 00 98% das observações. Isto é: o tervalo compreeddo etre a méda meos duas vezes o desvo padrão e a méda mas duas vezes o desvo padrão cotém, esse exemplo, 98% das 50 dades. A regra empírca dca que o referdo tervalo deverá coter aproxmadamete 00% das observações para dstrbuções com assmetra elevada. Portato, a dstrbução com que estamos trabalhado é acetuadamete assmétrca. Observe que o resultado de 98% também cofrma o crtéro de Tchebycheff que defe o mímo 75% de observações para o tervalo de x ±. Coefcete de varação de Pearso Trata-se de uma medda relatva de dspersão. Equato a ampltude total (R), varâca ( ) e o desvo padrão () são meddas absolutas de dspersão, o coefcete de varação (C.V.) mede a dspersão relatva. Assm: C. V. 00 x Ode: desvo padrão amostral x méda amostral E Nemer 7 / 0

8 Estatístca - exestatmeddsper.doc 5/0/09 Abaxo, temos algumas regras empírcas para terpretações do coefcete de varação: e: C.V. < 5% e: 5% < C.V. < 30% e: C.V. < 5% tem-se baxa dspersão tem-se méda dspersão tem-se elevada dspersão Exemplo 5: Em uma empresa, o saláro médo dos homes é de $ 4.000, com desvo padrão de $.500, e o saláro médo das mulheres é de $ 3.000, com desvo padrão de $.00. A dspersão relatva dos saláros é maor para os homes? olução: Dos dados dos problemas, temos: Homes: xh H.500 Mulheres: xm M.00 Para os homes: Para as mulheres: C. V. 00 x ,5% 00 C. V % x 3000 Portato, os saláros das mulheres têm dspersão relatva maor do que os saláros dos homes. As duas dstrbuções apresetam elevada dspersão (C.V. 30%). Escore padrozado Outra medda relatva de dspersão é o escore padrozado para uma medda x. É dado por: Z x x Ode: desvo padrão amostral x méda amostral E Nemer 8 / 0

9 Estatístca - exestatmeddsper.doc 5/0/09 Um escore Z egatvo dca que a observação x está a esquerda da méda, equato um escore postvo dca que a observação está a dreta da méda. Exemplo 6: ão dadas as médas e os desvos padrões das avalações de duas dscplas: Português: 6,5 P, xp Matemátca: xm 5,0 M 0,9 Relatvamete às dscplas Português e Matemátca, em qual delas obteve melhor performace um aluo com 7,5 em Português e 6,0 em Matemátca? olução: Vamos determar os escores padrozados para as otas obtdas: Nota de Português: Z P 7,5 6,5 0,83, Nota de Matemátca: Z M 6,0 5,0, 0,9 Portato, o melhor desempeho relatvo deu-se a dscpla Matemátca, pos Z m > Z p. Observe que, em termos absolutos, o aluo coseguu melhor ota em Português. E Nemer 9 / 0

10 Estatístca - exestatmeddsper.doc 5/0/09 Detectado outlers Nos trabalhos de coleta de dados, podem ocorrer observações que fogem das dmesões esperadas os outlers. Para detectá-los, pode-se calcular o escore padrozado (Z ) e cosderar outlers as observações cujos escores, em valor absoluto (em módulo), sejam maores do que 3. Exemplo 7: Os dados de uma pesqusa revelam méda 0,43 e desvo padrão 0,05 para determada varável. Verfcar se os dados 0,380 e 0,450 podem ser cosderados observações da referda varável. olução: Tem-se que: x 0,43 P 0,05 Para x 0,380: Z 0,380 0,43,63 0,05 Para x 0,455: Z 0,455 0,43 4,08 0,05 Portato, o dado 0,380 pode ser cosderado ormal, por outro lado, 0,455 pode ser um outlers, portato descartável. E Nemer 0 / 0

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos.

Medidas de Dispersão e Assimetria Desvio Médio Variância Desvio Padrão Medidas de Assimetria Coeficiente de Assimetria Exemplos. Meddas de Dspersão e Assmetra Desvo Médo Varânca Desvo Padrão Meddas de Assmetra Coefcente de Assmetra Exemplos lde 1 de 16 Meddas de Dspersão - Méda ervem para verfcação e representatvdade das meddas

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Estatística Básica - Continuação

Estatística Básica - Continuação Professora Adraa Borsso http://www.cp.utfpr.edu.br/borsso adraaborsso@utfpr.edu.br COEME - Grupo de Matemátca Meddas de Varabldade ou Dspersão Estatístca Básca - Cotuação As meddas de tedêca cetral, descrtas

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Capítulo "O estatístco, está casado em méda com 1,75 esposas, que procuram fazê-lo sar de casa,5 otes com 0,5 de sucesso apeas. Possu frote com 0,0 de clação (deotado poder metal),

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

Qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Qwertyuopasdghjklzcvbmqwerty uopasdghjklzcvbmqwertyuopasd ghjklzcvbmqwertyuopasdghjklz cvbmqwertyuopasdghjklzcvbmq wertyuopasdghjklzcv bmqwertyuopasdghjklzcvbmqw ertyuopasdghjklzcvbmqwertyuo pasdghjklzcvbmqwertyuopasdgh

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

É o quociente da divisão da soma dos valores das variáveis pelos números deles:

É o quociente da divisão da soma dos valores das variáveis pelos números deles: Meddas de Posção. Itrodução Proª Ms. Mara Cytha O estudo das dstrbuções de requêcas, os permte localzar a maor cocetração de valores de uma dstrbução. Porém, para ressaltar as tedêcas característcas de

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

Medidas de Localização

Medidas de Localização 07/08/013 Udade : Estatístca Descrtva Meddas de Localzação João Garbald Almeda Vaa Cojuto de dados utlzação de alguma medda de represetação resumo dos dados. E: Um cojuto com 400 observações como aalsar

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM -

CURSO SOBRE MEDIDAS DESCRITIVA Adriano Mendonça Souza Departamento de Estatística - UFSM - CURSO SOBRE MEDIDAS DESCRITIVA Adrao Medoça Souza Departameto de Estatístca - UFSM - O telecto faz pouco a estrada que leva à descoberta. Acotece um salto a coscêca, chame-o você de tução ou do que quser;

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Regressão Linear - Introdução

Regressão Linear - Introdução Regressão Lear - Itrodução Na aálse de regressão lear pretede-se estudar e modelar a relação (lear) etre duas ou mas varáves. Na regressão lear smples relacoam-se duas varáves, x e Y, através do modelo

Leia mais

Pós-Graduação latu sensu em Engenharia de Produção

Pós-Graduação latu sensu em Engenharia de Produção CENTRO UNIVERSITÁRIO UNA PRÓ-REITORIA DE PÓS-GRADUAÇÃO Pós-Graduação latu sesu em Egehara de Produção ESTATÍSTICA APLICADA (0 hs) Belo Horzote - 011 Dscpla: Estatístca Aplcada Prof.: Kerley Alberto Perera

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos Poulação ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade

1. Conceitos básicos de estatística descritiva 1.3. Noção de extracção aleatória e de probabilidade Sumáro (3ª aula). Cocetos báscos de estatístca descrtva.3. Noção de etracção aleatóra e de probabldade.4 Meddas de tedêca cetral.4. Méda artmétca smples.4. Méda artmétca poderada.4.3 Méda artmétca calculada

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional.

O delineamento amostral determina os processos de seleção e de inferência do valor da amostra para o valor populacional. Curso Aperfeçoameto em Avalação de Programas Socas ª Turma Dscpla: Téccas quattatvas de levatameto de dados: prcpas téccas de amostragem Docete: Claudete Ruas Brasíla, ovembro/005 Pesqusa por amostragem

Leia mais

Matemática Ficha de Trabalho

Matemática Ficha de Trabalho Matemátca Fcha de Trabalho Meddas de tedêca cetral - 0º ao MEDIDAS DE LOCALIZAÇÃO Num estudo estatístco, depos de recolhdos e orgazados os dados, há a ase de trar coclusões através de meddas que possam,

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS

ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS ESTATÍSTICA DESCRITIVA NOCÕES FUNDAMENTAIS Coceto Básco: Def. Város autores têm procurado defr a Estatístca. Através de mutos lvros escrtos sobre Estatístca, todos cotedo defções, desde as mas smples até

Leia mais

TEORIA DE ERROS MEDIDAS E GRÁFICOS

TEORIA DE ERROS MEDIDAS E GRÁFICOS Uversdade Federal de Juz de Fora Isttuto de Cêcas Eatas Departameto de Físca TEORIA DE ERROS MEDIDAS E GRÁFICOS Prof. Carlos R. A. Lma Edção Março de 010 ÌNDICE CAPÍTULO 1 - PRINCÍPIOS BÁSICOS DA ESTATÍSTICA

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas

Universidade Federal de Alfenas - Unifal-MG Departamento de Ciências Exatas Uversdade Federal de Alfeas - Ufal-MG Departameto de Cêcas Exatas Apostla Laboratóro de Físca I Prof. Dr. Célo Wsewsk Alfeas 05. oções geras sobre meddas de gradezas e avalação de certezas.. Medção (measuremet).....

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE

MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE MEDIDAS DESCRITIVAS DE POSIÇÃO, TENDÊNCIA CENTRAL E VARIABILIDADE 1 Estatística descritiva (Eploratória) PRIMEIRO PASSO: Tabelas (distribuição de frequêcia) e Gráficos. SEGUNDO PASSO: Cálculo de medidas

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

Professor Mauricio Lutz ESTATÍSTICA BÁSICA

Professor Mauricio Lutz ESTATÍSTICA BÁSICA Proessor Maurco Lutz ESTATÍSTICA BÁSICA. Coceto Exstem mutas deções propostas por autores, objetvado estabelecer com clareza o que é estatístca, como por exemplo: Þ A Estatístca é um cojuto de métodos

Leia mais

A Medição e o Erro de Medição

A Medição e o Erro de Medição A Medção e o Erro de Medção Sumáro 1.1 Itrodução 1.2 Defções 1.3 Caracterzação da qualdade de medção 1.4 O erro da medção 1.4.1 Os erros aleatóros 1.4.2 Os erros sstemátcos 1.5 O verdadero valor, o erro

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias.

Lista de Exercícios. 2 Considere o número de aparelhos com defeito na empresa Garra durante 50 dias. Classque as varáves: Faculdade Ptágoras / Dvnópols-MG Curso: Pscologa Dscplna: Estatístca Aplcada à Pscologa Lsta de Eercícos a) número de peças produzdas por hora; b) dâmetro eterno da peça; c) número

Leia mais

Notas de aula da disciplina Probabilidade e Estatística

Notas de aula da disciplina Probabilidade e Estatística otas de aula da dscpla Probabldade e Estatístca Proessor M Sc Adré Luz DAMAT - UTFPR Esta apostla apreseta os tópcos prcpas abordados em sala de aula, cotedo deções, teoremas, eemplos Sua letura ão é obrgatóra,

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Binômio de Newton e o Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Trâgulo de Pascal Bômo de Newto e o Trâgulo de Pascal Exercícos Itrodutóros Exercíco Para

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b)

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b) Matemática 5 aula 11 REVISÃO 1. Seja L a capacidade, em litros, do taque. Por regra de três simples, temos: I. Toreira 1: II. Toreira : 1 L 18 L x 1 x + xl ( x+ ) 1 = = L 1 18 xl ( x+ ) Sabedo que R 1

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000

UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 1991-2000 Aas III Smpóso Regoal de Geoprocessameto e Sesorameto Remoto Aracaju/SE, 25 a 27 de outubro de 2006 UMA ANÁLISE ESPACIAL DA INSUFICIÊNCIA E DA DESIGUALDADE DE RENDA NOS MUNICÍPIOS SERGIPANOS, 99-2000 OLIVEIRA,

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

AULA EXTRA Análise de Regressão Logística

AULA EXTRA Análise de Regressão Logística 1 AULA EXTRA Análse de Regressão Logístca Ernesto F. L. Amaral 13 de dezembro de 2012 Metodologa de Pesqusa (DCP 854B) VARIÁVEL DEPENDENTE BINÁRIA 2 O modelo de regressão logístco é utlzado quando a varável

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais