Capítulo 2. Aproximações de Funções

Tamanho: px
Começar a partir da página:

Download "Capítulo 2. Aproximações de Funções"

Transcrição

1 EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar ua fução dada de fora eplícta; ) ecotrar e ajustar a elhor fução a dados (ou potos) dscretos. O segudo problea será abordado o Capítulo 8, co a aplcação do étodo dos íos quadrados. Este úeras foras de aproar ua fução dada, f(), por fuções as sples ou co propredades as teressates (dferecação, tegração, etc.), tas coo: - aproação poloal: f ( ) p ( ) c - séres de potêcas: - frações cotuadas: f b ( ) f( ) f ( ) f ( ) f( ) f( )( ) ( ) ( )!! b a p( ) - fuções racoas: f( ) q( ) b j j j b a a a3 - séres de Fourer: f ( ) a a cos kb se k k k k b3( )

2 . APROXIMAÇÕES DE FUNÇÕES As aproações poloas serão tratadas e detalhes o próo capítulo. Portato, coeçareos pelas séres de potêcas.. Séres de potêcas Se f() é ua fução cotíua co dervadas cotíuas o tervalo [a, b], ou seja, f C [a, b] e f (+) () este e [a, b] e [a, b], etão f() = p () + R () ode p () é o polôo de Talor de grau : f( ) f ( ) f ( ) p ( ) f( ) f ( )( ) ( ) ( ) ( ) e ( ) ( k) k!! k k! ( ) f [ ( )] R ( ) ( ) ( )! é o erro de trucaeto (ou resto) da sére co [, ]. Quado = te-se o polôo de MacLaur e para p () é a sére de Talor (ou MacLaur, = ). Eeplo: f() = cos(), =, = f ( ) se( ), f ( ) cos( ), f() =, f (), f () f (3) ( ) se( ) p( ) R( ) se( ) 6 3,,8 cos(),6 p(),4,, , 3 4 -,4 -,6 -,8 -, -, Os polôos de Talor cocetra sua precsão próa ao poto. Poré, ua boa aproação deve ser relatvaete precsa ao logo de todo o tervalo [a, b].

3 . SÉRIES DE POTÊNCIAS 3 Eeplo: f() = e, = f (k) () = e k, f f f f ( ) () () () () 3 p( )! 3!! ( ) e e R ( ), que é ua boa aproação para <. ( )! Se pode-se aplcar ua oralzação do argueto (udaça de varável): [a, b] a, [, ]. b a Por eeplo, se [, ], 3 e p( )! 3!! f ( ) e f( ) e ( e ) Eercícos: ) Ipleetar o algorto abao para aproar f() = e e polôo de Talor co crtéro de covergêca para deterar o grau do polôo: e! T S Equato, faça Faça + / + T T S S + T equato T / S > Para j =,,...,, faça S S S No fal do algorto S coté o valor aproado de e e o úero de teros ecessáros (grau de p ()).

4 4. APROXIMAÇÕES DE FUNÇÕES Eeplo uérco do eercíco : = -,5 e = -4 Etapas do algorto passo-a-passo PASSO ,5 -,5 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -, T -,65,953 -,47,636 -,79,8 -, -, -, S,375,573,596,53598,5359,5357,5356,865,88 T/S,666667,3447,7683,86,48,5,,, O desepeho de u algorto para aproação de fuções por polôos de Talor depede da escolha aproprada do doío da varável depedete e do bo uso de propredades da fução f(). No eeplo a segur são apresetados dos algortos dferetes para aproar a fução f() = cos() e polôo de Talor, sedo o prero de elhor desepeho. a) Ipleetar o algorto abao para aproar f() = cos() e polôo de Talor co crtéro de covergêca para deterar o grau do polôo, sabedo-se que: () cos cos : é ua fução par; () cos k cos () cos cos se ; : perodcdade da fução cosseo; cos cos. (v) Prera Etapa: Redução do arco a u arco etre e Ass procede-se: k sedo k t Se etão faça Co esses procedetos, assegura-se que:.,5 Eeplo uérco:,5 ;,5,5; k t t ; 6,68,6637. Novo escalaeto de : para assegurar u arco postvo co valor eor do que o utáro, coscos dvde-se por 4, sto é: e o fal calcula-se:. 4 cos4cos j!! j j Côputo recursvo da sére: cos. Adotado a otação,! j j, ass: j T T e S T S

5 . SÉRIES DE POTÊNCIAS 5 T T e S S T para,, 3, co T S! Caracterzação da covergêca da sére: devdo à alterâca de sal dos teros da sére, assegura-se u erro de trucaeto (e ódulo) feror ao prero tero ão cosderado, sto é, o erro de trucaeto da sére até o tero de orde é: T. E cosequêca, desejado-se u erro de trucaeto (e ódulo) feror a põe-se que: T Eeplo uérco: calcular cos,5 co erro feror a,6637, valor de oralzado: =, T 4, S, , , , valor de etre e :, Ass, obteve-se covergêca co apeas quatro teros da sére e o valor, represeta o cosseo do arco dvddo por quatro, ass: coscos, , cos4cos, , Resuo do algorto: cte ctet cte Se > Etão cte 6 T S k Equato T >, faça + k k + T T k( k) S S + T S S S S S S cos( ) ( ) ( )!

6 6. APROXIMAÇÕES DE FUNÇÕES No fal do algorto S coté o valor aproado de cos() e o úero de teros ecessáros (grau de p ()). b) Ipleetar o algorto abao para aproar f() = cos() e polôo de Talor co crtéro de covergêca para deterar o grau do polôo, sabedo-se que: k k k cos cos cos cos e cos() =,, k =,,... sal() T S Equato, faça t( ) + ( / ) Faça + T T () S S + T equato T > Se > faça P S S old = S S S Para j =, 3,...,, faça S ew P S S old S old = S S = S ew cos( ) ( ) ( )! No fal do algorto S coté o valor aproado de cos() e o úero de teros ecessáros (grau de p ()). Nota: estes algortos pode ser utlzados para calcular se(), pos se( ) cos.

7 . FRAÇÕES CONTINUADAS 7 Eeplo uérco do eercíco : = -,5 e = -4 co estes valores te-se: - Etapas do algorto passo-a-passo PASSO ,5-6,68,78875,78875,78875,78875,78875,78875,78875,78875,78875,78875, T -,3944,59 -,7,,,,,,, S,6563,6355,6387,6388 -,4 -,886 -,968 -,685,5783,9978 j P,6388,6388,6388,6388,6388,6388 S old,6388 -,4 -,886 -,968 -,685,5783 S ew -,886 -,968 -,685,5783,9978. Frações cotuadas Coo alteratva à aproação por sére de Talor, podeos utlzar a epasão da fução f() e frações cotuadas (ou cotíuas). De ua fora geral esta fora de epasão pode ser suarzada pela epressão: f b b b a a a3 a4 3( ) b b e:, 785, 739,785 3,65 3, 739,65 ode as foras das fuções a () e b (), =,,,...,, pode ser ecotradas e Mauas de Mateátca para dferetes f(). A epasão e frações cotuadas aca pode ser represetada a fora recursva (as aproprada para pleetação coputacoal) segute: () b () Para =,,...,,,, faça a () b 4

8 8. APROXIMAÇÕES DE FUNÇÕES Eeplos: ) f() = e a) a = (-) + para =,, 3,..., ; b = ; b = para ípar e b = para par, ass: e Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5 4, , 4,4839 8,5 3, ,,9357 6,3773,3335 f() = 7,38958 b) a = ; a + = 44 para =,,..., e b = ; b = /; b = para =, 3,..., ass: e Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5,3 9,396 4,575 8,399 3,89 7,58, ,6957,3335 f() = 7,38956

9 . FRAÇÕES CONTINUADAS 9 ) f() = l() a) a = ; a = [t (/) ( )] para =, 3,..., e b = ; b = para =,,...,, ass: l Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5 6,7949 9,5 4 4, , , ,7374, ,3443,44695 f() =,69347 b) a = z; a = -( ) z para =, 3,..., e b = ; b = ( ) para =,,..., ode z, ass: z l z 4 z 3 9 z 5 6 z 7 5 z 9 36 z 49 z 3 64 z 5 7 Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 8, , , , , ,6638,9846 6,683,96797 f() =,69347

10 . APROXIMAÇÕES DE FUNÇÕES 3) f() = tg() a = ; a = - para =, 3,..., e b = ; b = ( ) para =,,...,, ass: tg para k 7 Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 8, , , , ,3883 7,793,8849 6, ,9535 f() = -,854 4) f() = arctg() a = ; a = ( ) para =, 3,..., e b = ; b = ( ) para =,,...,, ass: arctg Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 4, ,563 4,3645 8, ,6833 7,7435 4, ,63465,86649 f() =,7

11 .3 RAZÃO DE POLINÔMIOS 5) f() = erf ( ) e dt t (fução erro) e a = ; a = ( )/ para =, 3,..., e b = ; b = para =,,...,, ass: e / erf / 3/ 5/ 3 7/ 4 Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5, ,5 4,77 8,9476 3, ,9, ,94439,986 f() =, Razão de polôos A desvatage de usar polôos para a aproação é sua tedêca à osclação. Este coportaeto pode ser reduzdo co o uso de fuções racoas, que são razões de polôos: Eeplo: 3 e! 3! p r ( ) q ( ) ( ) 3 /! 3 e e 3! para = : e / 3 e! 3 3! 84 6 para = : e, outra aproação (Padé): e j a b j j

12 . APROXIMAÇÕES DE FUNÇÕES Técca da aproação de Padé: Utlza a codção f (k) () = r (k) (), k =,,,..., N, ou seja, f() r() deve ter u zero de ultplcdade N + e =, ode N = +. Fazedo f ( ) c, teos: a c c c b b b a a a j q ( ) b j j (...) (...) (...) f( ) r( ) c e para teros u zero de ultplcdade N + e =, os coefcetes de k do uerador deve se aular: k c b a, para k =,,,..., N k k ode b + = b + =... = b N = e a + = a + =... = a N = e para oralzação: b =. Eeplos: ) f() = e, = = N = f( )! 3! 4! cb a a c c b c b a b a c b c b c b a b b a b 6 3 c b c b c b b b b cb c3bc4b 6 4 Resolvedo as duas últas equações: b e b, e co estes valores as preras equações te-se: a e a, ou seja: 6 f( ) 6

13 .3 RAZÃO DE POLINÔMIOS 3 A tabela abao ostra a aproação de f() = e para dferetes valores de =. 3 4 Fução Aproada Máo do ódulo do erro o tervalo +,8 4, -3,8-5, -7 ) f() = cos(), udaça de varável: u = ( é o grau dos polôos e fução de u) 3 4 Fução f() aproada 5 4,456349,7 4 4,4365 8, ,47596,7388, ,944,44 3, ,47786,384,587 3,4843,38,45, , Máo do ódulo do erro o tervalo +,84-3 3,6-7,3 -, -6 3) f() = l(), udaça de varável: u = ( é o grau dos polôos e fução de u) A aproação de Padé fo feta e l(u+)/u 3 4 Fução f() aproada Máo do ódulo do erro o tervalo + + 6,85-3,9-4 5,3-6,5-7

14 4. APROXIMAÇÕES DE FUNÇÕES.4 Séres de Fourer Ates de apresetar a epasão de ua fução e sére de Fourer é ecessáro cohecer o coceto de ortogoaldade de fuções. Ortogoaldade: fuções,,, 3,... defdas e u tervalo [a, b] são ortogoas e [a, b] co respeto a ua fução peso w() > se: b (, ) w ( ) ( ) ( d ) a b a (, ) w( ) ( ) d ode é a ora de (). Ua dada fução f(), defda e u tervalo [a, b], pode ser represetada e teros de u cojuto ortogoal por ua sére covergete: f ( ) a( ) chaada de sére geeralzada de Fourer, ode a são as costates de Fourer. Multplcado f() por w() () e tegrado e [a, b]: b b a a ( f, ) w( ) f( ) ( ) d a w( ) ( ) ( ) d e aplcado a codção de ortogoaldade: ( f, ) a a ( f, ), =,,,... O cojuto de fuções: {, se, cos, se, cos, se 3, cos 3,...} é ortogoal e [-, ] co respeto a fução peso w() =, ou seja: se( d ), se( ) cos(3 ) d,... d, se ( ) d e cos ( d ) E a sére: f ( ) a a cos( ) b se( ) a f( ) d, é chaada de sére de Fourer, ode a f( )cos( ) d e b f( )se( ) d, =,, 3,... A sére trucada e teros é chaada de polôo de trgooétrco, S (). Eeplos: ) f() =, - < <, = 3

15 .4 SÉRIES DE FOURIER 5 a d d d d cos( ) cos( ) [( ) ], =,, 3,... a d d b se( ) d (fução ípar), =,, 3, f ( ) cos( ) cos(3 ) s3( ) 9 4, 3,5 3, f() S() S() = S() S3(),5,,5,,5, a a f( ) d f( ): fução par Nota: ) f( ) d a f( ): fução ípar ) f() g() = fução par se f e g são do eso tpo f() g() = fução ípar se f e g são de tpos dferetes. ) se f( ) se f( ), = 5 a f( ) d d d, f() é fução ípar a f( )cos( ) d, =,, 3,...

16 6. APROXIMAÇÕES DE FUNÇÕES b f( )se( d ) se( d ) [ ( ) ], =,, 3,... 4 f ( ) se( ) se(3 ) se(5 ) s5 ( ) f() S() S3() S5() Lsta de eercícos. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, o logarto eperao de segudo a sére de potêcas: k 3 4 k l k k 3 4 Observações: ) para < < a sére é covergete; k k ) para > utlze o procedeto recursvo: z z para k =,,...,, co z e é escolhdo tal que z. Ecotrado o valor de utlzado as propredades: z ode e l l. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, o logarto eperao de segudo a sére de potêcas:

17 .4 SÉRIES DE FOURIER 7 k l k k Note que e vsta de para todo real e postvo, tal sére será sepre covergete ão sedo ecessáro re-escalar a varável. 3. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, a potêca q de ( úero real e postvo e q úero real qualquer) segudo a sére de potêcas: q qq qq q 3 qq q q3 4 q! 3! 4! esta sére é covergete para. Para re-escalar a varável sugere-se o segute procedeto: quado > utlze o q artfíco e adote q, faça etão a epasão de covergêca, verta esta ova sére. q e depos, após a 4. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução cos() de 4 a a a acordo co cos( ), sabedo que a epasão e sére de MacLaur 4 b b k ( ) de cos() é epressa por cos( ) k ( k)! erro absoluto desta aproação. k ; (b) Para [-, ], avale o áo 5. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução se() de 3 5 a a a acordo co se( ), sabedo que a epasão e sére de 4 b b MacLaur de se() é epressa por se( ) áo erro absoluto desta aproação. k k ( ) (k )! k. Para [-, ], avale o 6. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução l() de 3 a( ) a( ) a( ) acordo co l( ), sabedo que a epasão e b( ) b ( ) k k ( ) ( ) sére de Talor de l() é epressa por l( ) ( ). Para k kk ( ) [/, ], avale o áo erro absoluto desta aproação.

18 8. APROXIMAÇÕES DE FUNÇÕES 7. Calcule os coefcetes a, a, a, a 3, b, b e b 3 da aproação de Padé da fução e de acordo co b b b 3 a a a a e MacLaur de e é epressa por e erro absoluto desta aproação. k ( ) k! k, sabedo que a epasão e sére de k. Para [-, ], avale o áo

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINIAS-JM Balthazar- Mao 3 Resolvedo u Problea de Codução de Calor Para troduzr o étodo das dfereças ftas de ua fora prátca vaos cosderar u problea de codução

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II)

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II) Cálulo Nuéro Iterpolação Poloal Ajuste de Curvas (Parte II) Pro Jore Cavalat joreavalat@uvasedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdsuedubr/~u/ Ajuste de Curvas

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0 EXEMPLO MOTIVADO II EXEMPLO MOTIVADO II Método da Apromação Polomal Aplcado a Problemas Udrecoas sem Smetra. Equações Dferecas Ordáras Problemas de Valores o otoro Estrutura Geral do Problema: dy() d y()

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Capítulo 3. Interpolação Polinomial

Capítulo 3. Interpolação Polinomial EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 3 Iterpolação Polomal Teorema de Weerstrass: se f( é uma fução cotíua em um tervalo fechado [a, b], etão para cada >,

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Cálculo Numérico. Ajuste de Curvas Método dos Mínimos Quadrados. Profa. Vanessa Rolnik 1º semestre 2015

Cálculo Numérico. Ajuste de Curvas Método dos Mínimos Quadrados. Profa. Vanessa Rolnik 1º semestre 2015 Cálculo Numérco Ajuste de Curvas Método dos Mímos Quadrados Profa. Vaessa Rolk º semestre 05 Ajuste de curvas Para apromar uma fução f por um outra fução de uma famíla prevamete escolhda (caso cotíuo)

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA Polômos de Jacob e CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA III--)INTRODUÇÃO Para um melhor etedmeto do método da colocação ortogoal e sua relação com o método dos resíduos poderados (MRP),

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

Relatório 2ª Atividade Formativa UC ECS

Relatório 2ª Atividade Formativa UC ECS Relatóro 2ª Atvdade Formatva Eercíco I. Quado a dstrbução de dados é smétrca ou apromadamete smétrca, as meddas de localzação méda e medaa, cocdem ou são muto semelhates. O mesmo ão acotece quado a dstrbução

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hpóteses Neste capítulo será estudado o segudo problema da ferêca estatístca: o teste de hpóteses. Um teste de hpóteses cosste em verfcar, a partr das observações de uma amostra, se uma

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

2. NOÇÕES MATEMÁTICAS

2. NOÇÕES MATEMÁTICAS . NOÇÕES MATEMÁTICAS Este capítulo retoma algumas oções matemátcas ecessáras para uma boa compreesão de algus aspectos que serão mecoados e detalhados o presete trabalho. Algus destes aspectos podem abstrar

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais

Verificação e Validação

Verificação e Validação Verificação e Validação Verificação correto do poto de vista de ateático Verificação do código: verificar se o código respode corretaete a orde de precisão dos odelos ipleetados Verificação dos cálculos:

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS ANÁLISE DE ERROS A oservação de um feómeo físco ão é completa se ão pudermos quatfcá-lo. Para é sso é ecessáro medr uma propredade físca. O processo de medda cosste em atrur um úmero a uma propredade físca;

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Professor Uversdade de Brasíla Departameto de Egehara Mecâca Programa de Pós graduação em Itegrdade Estrutural Algortmo para a Estmatva do Idce de Cofabldade de Hasofer-Ld Cofabldade Estrutural Jorge Luz

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier - Processaeto digital de siais Capítulo Trasforada discreta de Fourier O que vereos 1 Itrodução Etededo a equação da DFT 3 Sietria da DFT Liearidade e agitude da DFT 5 Eio da frequêcia 6 Iversa da DFT

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

DISTRIBUIÇÃO HIPERGEOMÉTRICA

DISTRIBUIÇÃO HIPERGEOMÉTRICA 7 DISTRIBUIÇÃO HIPERGEOMÉTRICA Cosdere-se uma população fta costtuída por N elemetos dstrbuídos por duas categoras eclusvas e eaustvas de dmesões M e N M, respectvamete. Os elemetos da prmera categora

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES . Populações depedetes co dstrbução oral População População,, Y,,Y ~ N, Y ~ N, Y ~ N, Obs. Se a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete.

Leia mais

RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS

RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS Cogreso de Métodos Nércos e Igeería 005 Graada, 4 a 7 de Jlo, 005 SEMNI, España 005 RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS Mara do Caro Cobra 1 *, Carlos Sereo e Alíro E.

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS - RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS Seja R( F( E( a repota de u tea lear, cocetrado e varate. Se F ( e E () ão fuçõe rea racoa, etão R ( é real racoal e pode er exprea coo: N() R( a / b

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR Boestatístca Professor: Celso Luz Borges de Olvera Assuto: Estatístca TEMA: Somatóro RESUMO E NOTAS DA AULA Nº 0 Seja

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. val@mat.ufrgs.r http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente. HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Estimação Pontual

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Estimação Pontual Estatístca: Aplcação ao Sesorameto Remoto SER 04 - ANO 08 Estmação Potual Camlo Daleles Reó camlo@dp.pe.br http://www.dp.pe.br/~camlo/estatstca/ Iferêca Estatístca Cosdere o expermeto: retram-se 3 bolas

Leia mais

8. INFERÊNCIA PARA DUAS POPULAÇÕES

8. INFERÊNCIA PARA DUAS POPULAÇÕES 8 INFERÊNCIA PARA UA POPULAÇÕE 8 Populações depedetes co dstrbução oral População População, L, Y, L,Y ~ N, σ Y ~ N, σ σ σ Y ~ N, Obs e a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

Problema geral de interpolação

Problema geral de interpolação Problema geral de terpolação Ecotrar p() que verfque as codções: f j ( ) y,,,,,, j,,, m ( j) ( ) dervada de ordem j ós valores odas Eemplo: ecotrar p() que verfque:, f () 4 3, f( 3) 3, f'(3) 4 3 p() 3

Leia mais

ESTATÍSTICA APLICADA À ZOOTECNIA

ESTATÍSTICA APLICADA À ZOOTECNIA ESTATÍSTICA APLICADA À ZOOTECNIA Eucldes Braga MALHEIROS *. INTRODUÇÃO.a) Somatóras e Produtóros Sejam,, 3,...,, valores umércos. A soma desses valores (somatóra) pode ser represetada por: = = = =. e o

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Capítulo 8. Método de Rayleigh-Ritz

Capítulo 8. Método de Rayleigh-Ritz Grupo : Gustavo de Souza Routma; Luís Ferado Hachch de Souza; Ale Pascoal Palombo Capítulo 8. Método de Raylegh-Rtz 8.. Itrodução Nos problemas de apromação por dfereças ftas, para apromar a solução para

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercíco Cosdere a dstrbução expoecal com fução de desdade de probabldade dada por f (y; λ) = λe λy, em que y, λ > 0 e E(Y) = /λ Supor que o parâmetro λ pode ser expresso proporcoalmete aos valores de

Leia mais

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

Atividades relacionadas à ManjarBrancoG

Atividades relacionadas à ManjarBrancoG Atdades relacoadas à MajarBracoG Neste cojto de atdades está oblzado o estdo da ção ajar braco, sto é, a ção qe o doío é o teralo echado [0,] e asse alores o cojto dos úeros reas. Essa ção é deda coo o

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

II. Propriedades Termodinâmicas de Soluções

II. Propriedades Termodinâmicas de Soluções II. Propredades Termodâmcas de Soluções 1 I. Propredades Termodâmcas de Fludos OBJETIVOS Eteder a dfereça etre propredade molar parcal e propredade de uma espéce pura Saber utlzar a equação de Gbbs-Duhem

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

6 Formulação probabilística para problemas de acoplamento fluido mecânico

6 Formulação probabilística para problemas de acoplamento fluido mecânico 6 Forulação probablístca para probleas de acoplaeto ludo ecâco 6.. Itrodução Nesse capítulo do trabalho apreseta-se a orulação probablístca para probleas de acoplaeto ludo ecâco. Nu prero oeto são descrtos

Leia mais

5 Critérios para Análise dos Resultados

5 Critérios para Análise dos Resultados 5 Crtéros para Aálse dos Resultados Este capítulo tem por objetvos forecer os crtéros utlzados para aálse dos dados ecotrados a pesqusa, bem como uma vsão geral dos custos ecotrados e a forma de sua evolução

Leia mais

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca de 0 Ω. a) Calcular o valor da desdade de urezas,

Leia mais

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos DISPOSITIVOS ELECTRÓNICOS Probleas Resolvdos CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca

Leia mais

MÉTODO DOS MÍNIMOS QUADRADOS

MÉTODO DOS MÍNIMOS QUADRADOS MÉTODO DOS MÍNIMOS QUADRADOS I - INTRODUÇÃO O processo de medda costtu uma parte essecal a metodologa cetífca e também é fudametal para o desevolvmeto e aplcação da própra cêca. No decorrer do seu curso

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO UVERDADE FEDERAL DO RO GRADE DO UL UO DE AEÁCA CADERO DE AEÁCA E EAÍCA ÉRE B: RABALHO DE APOO DDÁCO AORAGE Elsa Crsta de udstock ÉRE B, º 53 Porto Alegre, agosto de 006. Aostrage ÍDCE. AORAGE EÁCA... 4.

Leia mais

5 Cálculo Diferencial em IR n

5 Cálculo Diferencial em IR n 5 Cálculo Derecal e IR Irodução Cosdereos a órula que os dá a área de u raulo: b h A b h Coo podeos vercar a área de u râulo depede de duas varáves: base b e alura h. Podeos caracerar esa ução coo sedo

Leia mais

Organização; Resumo; Apresentação.

Organização; Resumo; Apresentação. Prof. Lorí Val, Dr. val@ufrgs.br http://www.ufrgs.br/~val/ Grade Cojutos de Dados Orgazação; Resumo; Apresetação. Amostra ou População Defetos em uma lha de produção Lascado Deseho Torto Deseho Torto Lascado

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais