Capítulo 2. Aproximações de Funções

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 2. Aproximações de Funções"

Transcrição

1 EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar ua fução dada de fora eplícta; ) ecotrar e ajustar a elhor fução a dados (ou potos) dscretos. O segudo problea será abordado o Capítulo 8, co a aplcação do étodo dos íos quadrados. Este úeras foras de aproar ua fução dada, f(), por fuções as sples ou co propredades as teressates (dferecação, tegração, etc.), tas coo: - aproação poloal: f ( ) p ( ) c - séres de potêcas: - frações cotuadas: f b ( ) f( ) f ( ) f ( ) f( ) f( )( ) ( ) ( )!! b a p( ) - fuções racoas: f( ) q( ) b j j j b a a a3 - séres de Fourer: f ( ) a a cos kb se k k k k b3( )

2 . APROXIMAÇÕES DE FUNÇÕES As aproações poloas serão tratadas e detalhes o próo capítulo. Portato, coeçareos pelas séres de potêcas.. Séres de potêcas Se f() é ua fução cotíua co dervadas cotíuas o tervalo [a, b], ou seja, f C [a, b] e f (+) () este e [a, b] e [a, b], etão f() = p () + R () ode p () é o polôo de Talor de grau : f( ) f ( ) f ( ) p ( ) f( ) f ( )( ) ( ) ( ) ( ) e ( ) ( k) k!! k k! ( ) f [ ( )] R ( ) ( ) ( )! é o erro de trucaeto (ou resto) da sére co [, ]. Quado = te-se o polôo de MacLaur e para p () é a sére de Talor (ou MacLaur, = ). Eeplo: f() = cos(), =, = f ( ) se( ), f ( ) cos( ), f() =, f (), f () f (3) ( ) se( ) p( ) R( ) se( ) 6 3,,8 cos(),6 p(),4,, , 3 4 -,4 -,6 -,8 -, -, Os polôos de Talor cocetra sua precsão próa ao poto. Poré, ua boa aproação deve ser relatvaete precsa ao logo de todo o tervalo [a, b].

3 . SÉRIES DE POTÊNCIAS 3 Eeplo: f() = e, = f (k) () = e k, f f f f ( ) () () () () 3 p( )! 3!! ( ) e e R ( ), que é ua boa aproação para <. ( )! Se pode-se aplcar ua oralzação do argueto (udaça de varável): [a, b] a, [, ]. b a Por eeplo, se [, ], 3 e p( )! 3!! f ( ) e f( ) e ( e ) Eercícos: ) Ipleetar o algorto abao para aproar f() = e e polôo de Talor co crtéro de covergêca para deterar o grau do polôo: e! T S Equato, faça Faça + / + T T S S + T equato T / S > Para j =,,...,, faça S S S No fal do algorto S coté o valor aproado de e e o úero de teros ecessáros (grau de p ()).

4 4. APROXIMAÇÕES DE FUNÇÕES Eeplo uérco do eercíco : = -,5 e = -4 Etapas do algorto passo-a-passo PASSO ,5 -,5 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -,65 -, T -,65,953 -,47,636 -,79,8 -, -, -, S,375,573,596,53598,5359,5357,5356,865,88 T/S,666667,3447,7683,86,48,5,,, O desepeho de u algorto para aproação de fuções por polôos de Talor depede da escolha aproprada do doío da varável depedete e do bo uso de propredades da fução f(). No eeplo a segur são apresetados dos algortos dferetes para aproar a fução f() = cos() e polôo de Talor, sedo o prero de elhor desepeho. a) Ipleetar o algorto abao para aproar f() = cos() e polôo de Talor co crtéro de covergêca para deterar o grau do polôo, sabedo-se que: () cos cos : é ua fução par; () cos k cos () cos cos se ; : perodcdade da fução cosseo; cos cos. (v) Prera Etapa: Redução do arco a u arco etre e Ass procede-se: k sedo k t Se etão faça Co esses procedetos, assegura-se que:.,5 Eeplo uérco:,5 ;,5,5; k t t ; 6,68,6637. Novo escalaeto de : para assegurar u arco postvo co valor eor do que o utáro, coscos dvde-se por 4, sto é: e o fal calcula-se:. 4 cos4cos j!! j j Côputo recursvo da sére: cos. Adotado a otação,! j j, ass: j T T e S T S

5 . SÉRIES DE POTÊNCIAS 5 T T e S S T para,, 3, co T S! Caracterzação da covergêca da sére: devdo à alterâca de sal dos teros da sére, assegura-se u erro de trucaeto (e ódulo) feror ao prero tero ão cosderado, sto é, o erro de trucaeto da sére até o tero de orde é: T. E cosequêca, desejado-se u erro de trucaeto (e ódulo) feror a põe-se que: T Eeplo uérco: calcular cos,5 co erro feror a,6637, valor de oralzado: =, T 4, S, , , , valor de etre e :, Ass, obteve-se covergêca co apeas quatro teros da sére e o valor, represeta o cosseo do arco dvddo por quatro, ass: coscos, , cos4cos, , Resuo do algorto: cte ctet cte Se > Etão cte 6 T S k Equato T >, faça + k k + T T k( k) S S + T S S S S S S cos( ) ( ) ( )!

6 6. APROXIMAÇÕES DE FUNÇÕES No fal do algorto S coté o valor aproado de cos() e o úero de teros ecessáros (grau de p ()). b) Ipleetar o algorto abao para aproar f() = cos() e polôo de Talor co crtéro de covergêca para deterar o grau do polôo, sabedo-se que: k k k cos cos cos cos e cos() =,, k =,,... sal() T S Equato, faça t( ) + ( / ) Faça + T T () S S + T equato T > Se > faça P S S old = S S S Para j =, 3,...,, faça S ew P S S old S old = S S = S ew cos( ) ( ) ( )! No fal do algorto S coté o valor aproado de cos() e o úero de teros ecessáros (grau de p ()). Nota: estes algortos pode ser utlzados para calcular se(), pos se( ) cos.

7 . FRAÇÕES CONTINUADAS 7 Eeplo uérco do eercíco : = -,5 e = -4 co estes valores te-se: - Etapas do algorto passo-a-passo PASSO ,5-6,68,78875,78875,78875,78875,78875,78875,78875,78875,78875,78875, T -,3944,59 -,7,,,,,,, S,6563,6355,6387,6388 -,4 -,886 -,968 -,685,5783,9978 j P,6388,6388,6388,6388,6388,6388 S old,6388 -,4 -,886 -,968 -,685,5783 S ew -,886 -,968 -,685,5783,9978. Frações cotuadas Coo alteratva à aproação por sére de Talor, podeos utlzar a epasão da fução f() e frações cotuadas (ou cotíuas). De ua fora geral esta fora de epasão pode ser suarzada pela epressão: f b b b a a a3 a4 3( ) b b e:, 785, 739,785 3,65 3, 739,65 ode as foras das fuções a () e b (), =,,,...,, pode ser ecotradas e Mauas de Mateátca para dferetes f(). A epasão e frações cotuadas aca pode ser represetada a fora recursva (as aproprada para pleetação coputacoal) segute: () b () Para =,,...,,,, faça a () b 4

8 8. APROXIMAÇÕES DE FUNÇÕES Eeplos: ) f() = e a) a = (-) + para =,, 3,..., ; b = ; b = para ípar e b = para par, ass: e Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5 4, , 4,4839 8,5 3, ,,9357 6,3773,3335 f() = 7,38958 b) a = ; a + = 44 para =,,..., e b = ; b = /; b = para =, 3,..., ass: e Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5,3 9,396 4,575 8,399 3,89 7,58, ,6957,3335 f() = 7,38956

9 . FRAÇÕES CONTINUADAS 9 ) f() = l() a) a = ; a = [t (/) ( )] para =, 3,..., e b = ; b = para =,,...,, ass: l Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5 6,7949 9,5 4 4, , , ,7374, ,3443,44695 f() =,69347 b) a = z; a = -( ) z para =, 3,..., e b = ; b = ( ) para =,,..., ode z, ass: z l z 4 z 3 9 z 5 6 z 7 5 z 9 36 z 49 z 3 64 z 5 7 Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 8, , , , , ,6638,9846 6,683,96797 f() =,69347

10 . APROXIMAÇÕES DE FUNÇÕES 3) f() = tg() a = ; a = - para =, 3,..., e b = ; b = ( ) para =,,...,, ass: tg para k 7 Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 8, , , , ,3883 7,793,8849 6, ,9535 f() = -,854 4) f() = arctg() a = ; a = ( ) para =, 3,..., e b = ; b = ( ) para =,,...,, ass: arctg Na Tabela abao ostra-se o procedeto recursvo resultate para = : 9, 5 4, ,563 4,3645 8, ,6833 7,7435 4, ,63465,86649 f() =,7

11 .3 RAZÃO DE POLINÔMIOS 5) f() = erf ( ) e dt t (fução erro) e a = ; a = ( )/ para =, 3,..., e b = ; b = para =,,...,, ass: e / erf / 3/ 5/ 3 7/ 4 Na Tabela abao ostra-se o procedeto recursvo resultate para = :, 5, ,5 4,77 8,9476 3, ,9, ,94439,986 f() =, Razão de polôos A desvatage de usar polôos para a aproação é sua tedêca à osclação. Este coportaeto pode ser reduzdo co o uso de fuções racoas, que são razões de polôos: Eeplo: 3 e! 3! p r ( ) q ( ) ( ) 3 /! 3 e e 3! para = : e / 3 e! 3 3! 84 6 para = : e, outra aproação (Padé): e j a b j j

12 . APROXIMAÇÕES DE FUNÇÕES Técca da aproação de Padé: Utlza a codção f (k) () = r (k) (), k =,,,..., N, ou seja, f() r() deve ter u zero de ultplcdade N + e =, ode N = +. Fazedo f ( ) c, teos: a c c c b b b a a a j q ( ) b j j (...) (...) (...) f( ) r( ) c e para teros u zero de ultplcdade N + e =, os coefcetes de k do uerador deve se aular: k c b a, para k =,,,..., N k k ode b + = b + =... = b N = e a + = a + =... = a N = e para oralzação: b =. Eeplos: ) f() = e, = = N = f( )! 3! 4! cb a a c c b c b a b a c b c b c b a b b a b 6 3 c b c b c b b b b cb c3bc4b 6 4 Resolvedo as duas últas equações: b e b, e co estes valores as preras equações te-se: a e a, ou seja: 6 f( ) 6

13 .3 RAZÃO DE POLINÔMIOS 3 A tabela abao ostra a aproação de f() = e para dferetes valores de =. 3 4 Fução Aproada Máo do ódulo do erro o tervalo +,8 4, -3,8-5, -7 ) f() = cos(), udaça de varável: u = ( é o grau dos polôos e fução de u) 3 4 Fução f() aproada 5 4,456349,7 4 4,4365 8, ,47596,7388, ,944,44 3, ,47786,384,587 3,4843,38,45, , Máo do ódulo do erro o tervalo +,84-3 3,6-7,3 -, -6 3) f() = l(), udaça de varável: u = ( é o grau dos polôos e fução de u) A aproação de Padé fo feta e l(u+)/u 3 4 Fução f() aproada Máo do ódulo do erro o tervalo + + 6,85-3,9-4 5,3-6,5-7

14 4. APROXIMAÇÕES DE FUNÇÕES.4 Séres de Fourer Ates de apresetar a epasão de ua fução e sére de Fourer é ecessáro cohecer o coceto de ortogoaldade de fuções. Ortogoaldade: fuções,,, 3,... defdas e u tervalo [a, b] são ortogoas e [a, b] co respeto a ua fução peso w() > se: b (, ) w ( ) ( ) ( d ) a b a (, ) w( ) ( ) d ode é a ora de (). Ua dada fução f(), defda e u tervalo [a, b], pode ser represetada e teros de u cojuto ortogoal por ua sére covergete: f ( ) a( ) chaada de sére geeralzada de Fourer, ode a são as costates de Fourer. Multplcado f() por w() () e tegrado e [a, b]: b b a a ( f, ) w( ) f( ) ( ) d a w( ) ( ) ( ) d e aplcado a codção de ortogoaldade: ( f, ) a a ( f, ), =,,,... O cojuto de fuções: {, se, cos, se, cos, se 3, cos 3,...} é ortogoal e [-, ] co respeto a fução peso w() =, ou seja: se( d ), se( ) cos(3 ) d,... d, se ( ) d e cos ( d ) E a sére: f ( ) a a cos( ) b se( ) a f( ) d, é chaada de sére de Fourer, ode a f( )cos( ) d e b f( )se( ) d, =,, 3,... A sére trucada e teros é chaada de polôo de trgooétrco, S (). Eeplos: ) f() =, - < <, = 3

15 .4 SÉRIES DE FOURIER 5 a d d d d cos( ) cos( ) [( ) ], =,, 3,... a d d b se( ) d (fução ípar), =,, 3, f ( ) cos( ) cos(3 ) s3( ) 9 4, 3,5 3, f() S() S() = S() S3(),5,,5,,5, a a f( ) d f( ): fução par Nota: ) f( ) d a f( ): fução ípar ) f() g() = fução par se f e g são do eso tpo f() g() = fução ípar se f e g são de tpos dferetes. ) se f( ) se f( ), = 5 a f( ) d d d, f() é fução ípar a f( )cos( ) d, =,, 3,...

16 6. APROXIMAÇÕES DE FUNÇÕES b f( )se( d ) se( d ) [ ( ) ], =,, 3,... 4 f ( ) se( ) se(3 ) se(5 ) s5 ( ) f() S() S3() S5() Lsta de eercícos. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, o logarto eperao de segudo a sére de potêcas: k 3 4 k l k k 3 4 Observações: ) para < < a sére é covergete; k k ) para > utlze o procedeto recursvo: z z para k =,,...,, co z e é escolhdo tal que z. Ecotrado o valor de utlzado as propredades: z ode e l l. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, o logarto eperao de segudo a sére de potêcas:

17 .4 SÉRIES DE FOURIER 7 k l k k Note que e vsta de para todo real e postvo, tal sére será sepre covergete ão sedo ecessáro re-escalar a varável. 3. Propoha u algorto coputacoal que copute autoatcaete, co ua precsão preestabelecda, a potêca q de ( úero real e postvo e q úero real qualquer) segudo a sére de potêcas: q qq qq q 3 qq q q3 4 q! 3! 4! esta sére é covergete para. Para re-escalar a varável sugere-se o segute procedeto: quado > utlze o q artfíco e adote q, faça etão a epasão de covergêca, verta esta ova sére. q e depos, após a 4. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução cos() de 4 a a a acordo co cos( ), sabedo que a epasão e sére de MacLaur 4 b b k ( ) de cos() é epressa por cos( ) k ( k)! erro absoluto desta aproação. k ; (b) Para [-, ], avale o áo 5. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução se() de 3 5 a a a acordo co se( ), sabedo que a epasão e sére de 4 b b MacLaur de se() é epressa por se( ) áo erro absoluto desta aproação. k k ( ) (k )! k. Para [-, ], avale o 6. Calcule os coefcetes a, a, a, b e b da aproação de Padé da fução l() de 3 a( ) a( ) a( ) acordo co l( ), sabedo que a epasão e b( ) b ( ) k k ( ) ( ) sére de Talor de l() é epressa por l( ) ( ). Para k kk ( ) [/, ], avale o áo erro absoluto desta aproação.

18 8. APROXIMAÇÕES DE FUNÇÕES 7. Calcule os coefcetes a, a, a, a 3, b, b e b 3 da aproação de Padé da fução e de acordo co b b b 3 a a a a e MacLaur de e é epressa por e erro absoluto desta aproação. k ( ) k! k, sabedo que a epasão e sére de k. Para [-, ], avale o áo

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Capítulo 3. Interpolação Polinomial

Capítulo 3. Interpolação Polinomial EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 3 Iterpolação Polomal Teorema de Weerstrass: se f( é uma fução cotíua em um tervalo fechado [a, b], etão para cada >,

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA

CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA Polômos de Jacob e CAPÍTULO III - POLINÔMIOS DE JACOBI E QUADRATURA NUMÉRICA III--)INTRODUÇÃO Para um melhor etedmeto do método da colocação ortogoal e sua relação com o método dos resíduos poderados (MRP),

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

NÚMEROS COMPLEXOS. z = a + bi,

NÚMEROS COMPLEXOS. z = a + bi, NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito.

( x) Método Implícito. No método implícito as diferenças são tomadas no tempo n+1 ao invés de tomá-las no tempo n, como no método explícito. PMR 40 Mecâca Computacoal Método Implícto No método mplícto as dfereças são tomadas o tempo ao vés de tomá-las o tempo, como o método explícto. O método mplícto ão apreseta restrção em relação ao valor

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente. HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO UVERDADE FEDERAL DO RO GRADE DO UL UO DE AEÁCA CADERO DE AEÁCA E EAÍCA ÉRE B: RABALHO DE APOO DDÁCO AORAGE Elsa Crsta de udstock ÉRE B, º 53 Porto Alegre, agosto de 006. Aostrage ÍDCE. AORAGE EÁCA... 4.

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Capitulo 7 Resolução de Exercícios

Capitulo 7 Resolução de Exercícios FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN 1 1 1 1 C p R Cp R R a, R C p, 1 1 1 a LN 1 Sp LN 1 1 1 S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1

Leia mais

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações

15/03/2012. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações. Capítulo 2 Cálculo Financeiro e Aplicações Itrodução.1 Juros Smples Juro: recompesa pelo sacrfíco de poupar o presete, postergado o cosumo para o futuro Maora das taxas de uros aplcadas o mercado facero são referecadas pelo crtéro smples Determa

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Medidas Numéricas Descritivas:

Medidas Numéricas Descritivas: Meddas Numércas Descrtvas: Meddas de dspersão Meddas de Varação Varação Ampltude Ampltude Iterquartl Varâca Desvo absoluto Coefcete de Varação Desvo Padrão Ampltude Medda de varação mas smples Dfereça

Leia mais

Adotando-se as seguintes variáveis e parâmetro adimensionais: i 1 i i i i i 1

Adotando-se as seguintes variáveis e parâmetro adimensionais: i 1 i i i i i 1 Lsta de eercícos (Capítulo 4) ) Em dos reatores taque de mstura perfeta é coduzda a reação em fase líquda: A+BC+D de forma sotérmca. Os balaços estacoáros de massa do reagete A este sstema são descrtos

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avalação de Empresas MODELO DE DIVIDENDOS Dvdedos em um estáo DDM Dscouted Dvded Model Muto utlzados a precfcação de uma ação em que o poto de vsta do vestdor é extero à empresa e eralmete esse vestdor

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos 5. étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos A heterogeedade dos recursos

Leia mais

Introdução à Decomposição de Dantzig Wolfe

Introdução à Decomposição de Dantzig Wolfe Itrodução à Deoposção de Datzg Wolfe PNV-5765 Probleas de Prograação Mateáta Aplados ao Plaeaeto de Ssteas de Trasportes Maríto Prof. Dr. Adré Bergste Medes Bblografa Utlzada WILLIAMS, H.P. The forulato

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita Decoposção Lagrageaa co Geração de Coluas para o Problea de Prograação Quadrátca Bára Irrestrta Geraldo Regs Maur,2, Luz Atoo Noguera Lorea 2 Cetro de Cêcas Agráras, Departaeto de Egehara Rural Uversdade

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência)

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência) 4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (fuções de trasferêa) 4. Trasforada de Laplae É u operador lear, que opera sobre fuções de varável otíua postva, defdo por: L f(t) = f(s) = f(t) e -st dt Nota:

Leia mais

Os Fundamentos da Física (8 a edição)

Os Fundamentos da Física (8 a edição) TEM ESPEI ENTRO DE MSS 1 Os Fudaetos da Físca (8 a edção) R MHO, N IOU E T OEDO Tea especal ENTRO DE MSS 1. etro de gradade e cetro de assa, 1. Propredade da cocetração de assas,. Propredade de setra,

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo.

(c) Para essa nova condição de operação, esboce o gráfico da variação da corrente no tempo. CONVERSÃO ELETROMECÂNICA DE ENERGIA Lsta de exercícos sobre crcutos magétcos Questão A fgura 1(a mostra um acoador projetado para produzr força magétca. O mesmo possu um úcleo em forma de um C e uma armadura

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros.

1) Escrever um programa que faça o calculo de transformação de horas em minuto onde às horas devem ser apenas número inteiros. Dscpla POO-I 2º Aos(If) - (Lsta de Eercícos I - Bmestre) 23/02/2015 1) Escrever um programa que faça o calculo de trasformação de horas em muto ode às horas devem ser apeas úmero teros. Deverá haver uma

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais