Operadores Lineares e Matrizes

Tamanho: px
Começar a partir da página:

Download "Operadores Lineares e Matrizes"

Transcrição

1 Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva

2 Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais) coplexos O caso dos espaços lieares reais pode ser cosiderado coo u caso particular de u espaço liear defiido sobre o corpo Defiição U operador liear (ou ua trasforação liear) de u espaço liear (ou vectorial) V para u espaço liear W, defiidos sobre o corpo é ua aplicação f :V W tal que u v u v, u, v V,, f f f O operador liear é u edoorfiso quado W V (dos úeros coplexos), Exeplos Seja f : : x x f x y x y x x y y, Coo f x x e f y y, é f x y f x f y u operador liear Seja g : : x a x b Não se trata, portato, de Logo g x y a x y b a x a y b, e g x a x b a x b é liear quado g y a y b a y b O operador só b b b b Poré, coo e são úeros reais quaisquer, ifere-se que tal só será possível para b 0 Quado b 0 o operador ão é liear Façaos t : : t t, x x x x x x T, T Etão, T x x, x x x, Este é, assi, u operador liear x, T e x x x x T T T

3 Carlos R Paiva 4 Cosidereos o operador : : x, y x cos y si, x si y cos R Ua fora de represetar este operador é através de ua atriz de rotação o plao, ie, R x cos si x Te-se sucessivaete y si cos y x x cos si x x R y y si cos y y cos si x cos si x si cos y si cos y x x R R y y pelo que se trata, tabé aqui, de u operador liear Do poto de vista geoétrico podeos escrever R v u, e que u xeye e v xe ye, tedo-se cosiderado ua base,, ie, ode e e ortoorada e, ej e k jk 0, j k j k jk é o delta de Kroecker A figura aexa represeta esta operação de rotação x, y x, y u v e que x x cos y si y y e Y e v x e y x si y cos x u X Pode-se iferir o setido da rotação co base o produto extero eteda que u xy,,0 e x, y,0 v : u v desde que se e e e u v x y 0 x y yx e x y si e u si e x y 0 Te-se, aida, u v x x y y x y cos u cos Note-se que o coprieto de cada vector ão se altera: x y x y, ie, u v No caso particular e que 0 obté-se uv 0; quado obté-se uv 0 e uv u e

4 Operadores Lieares e Matrizes Notação Usa-se, e geral, letras de fotes ão-serifadas («arial») para desigar os operadores lieares As úicas excepções correspode aos casos ais siples e que: (i) f : V, co V ; (ii) f : V, co V Usa-se letras iúsculas a egrito («bold») para represetar vectores (eg, uv, V represetar escalares (eg,, ou, represetar atrizes ou tesores: eg,, Mat, ) Usa-se letras gregas iúsculas para ) Usa-se letras aiúsculas a egrito para AB, ode («euclid ath two») é ua letra geérica que desiga u corpo (e iglês u corpo desiga-se por «field») Geralete, Desiga-se por Mat,, ou quadradas defiidas sobre o corpo escreve f : A B : x y, o espaço liear das atrizes Note-se por fi que, ao defiir ua aplicação, se sigificado, co isso, que f A B e aida que y f x Coloca-se, agora, a seguite questão: qual é a relação existete etre u dado operador liear e a sua represetação atricial? A resposta é siples: sedo A a atriz que correspode ao operador liear f : V W, o respectivo eleeto atricial jk pode obterse ua vez fixadas as bases de cada espaço Aditido que o espaço liear V te ua base V di j j a e o espaço liear V e di W b W te ua base W kk, etão as coluas da atriz A são dadas por f a b, j,,, j k j k k, tedo-se portato Nota Apeas quado a base W kk b é ortoorada, co b, i j i b j i j 0, i j, é que, desta equação, se tira (fazedo o produto itero de a abos os ebros por b f a b b j k j k k j k j k k f jk b j a k b )

5 4 Carlos R Paiva Obté-se, deste odo, a atriz : A Existe, deste odo, u isoorfiso etre o espaço liear V, W de V e W e o espaço liear Mat, L dos operadores lieares das atrizes defiidas sobre o corpo Exeplo Deterieos a represetação atricial do operador liear f : ) tal que as cosiderado a seguite base para x x y z f y x z z y z :,, a a a co 0 a, a 0, a 0 f L (ie, ode Note-se que se trata de ua base que ão é ortogoal (e, uito eos, ortoorada) Mas é, coo ão podia deixar de ser (por defiição de base), u cojuto de três vectores liearete idepedetes: 0 a a a 0 e e 0 0 Existe u erro correte que cosiste e dizer que a atriz Α associada deverá ser M 0 0 Poré, isso é coo se irá ostrar este exeplo falso Para obter a prieira colua da atriz Α, façaos

6 Operadores Lieares e Matrizes f a f Para obter a seguda colua, ve 0 f a f Fialete, para obter a terceira colua, f a f 0 0 A atriz pretedida será etão Note-se, poré, que 5 A 5 0 x x y z x x y z f y x z A y x z z y z z y z o que ostra que é ecessário ter cuidado Co efeito, te-se x 0 0 y xe y e z e x 0 y z 0 z 0 0 (ie, a base caóica de ) as, a base cosiderada, é x 0 y x, y, za x, y, za x, y, za 0 z 0

7 6 Carlos R Paiva x y z x y z x y z De fora aáloga, ve sucessivaete x y x x y z 0 f y x z a a a 0 x y z z y z 0 x y z Agora, co efeito, obté-se (coo se pode facilete verificar) x y z x y A A x y z x y z x y z x y z x y z x y 5 x y z x y z 5 0 x y z x y z Problea O operador liear f : é dado por x x y z f y x y z z Mostre que a correspodete atriz, para as bases caóicas de A e, é

8 Operadores Lieares e Matrizes 7 Problea Cosidere o operador liear g : tal que x x x x g x x x x x x Mostre que, a base caóica de equato que, a base, a correspodete atriz é A 0 0 a correspodete atriz é 0 a, a 0, a, B Problea Deostre as fórulas otado que a rotação de u âgulo R R R R e que cos cos cos si si si si cos cos si o plao, cos si R si cos x y é o produto de duas rotações Vejaos, agora, o que acotece ua udaça de base, ie, quado se passa de ua a base a i i para ua ova base i i a a a i i j j i j Dado u vector a, te-se

9 8 Carlos R Paiva Poré, existe ua relação liear etre as duas bases: a a i ji i j Assi, depois de substituir esta relação a aterior, ve a a a i ji j j j i j j, j,,, j ji i i E teros atriciais podeos aida escrever esta últia equação a fora a R a Quado se uda de base, a atriz A da base i i a correspodete à ova base i i Te-se, etão, a dará lugar a ua ova atriz A dode b = Aa b Rb b = Aa a Ra Rb A Ra b R A R a As atrizes A e A R A R A R AR A dize-se seelhates e a relação etre elas ua trasforação de seelhaça Note-se que, apesar de se tratar de duas atrizes diferetes, elas deve represetar o eso operador liear Exeplo Cosidereos a udaça de base do Problea Nesse problea coeçou-se por cosiderar a base caóica de, tal que,, A outra base cosiderada foi,, e e e, ode se te 0 0 e 0, e, e a a a e que

10 Operadores Lieares e Matrizes 9 Logo 0 a, a 0, a 0 0 e 0 a a a e a a a e 0 a a a 0 0 de fora que a atriz de udaça de base é etão 0 0 R R 0 Nestas codições, a relação etre a atriz B e a atriz A do eso Problea deverá ser Efectivaete, te-se B R AR Problea 4 Seja a atriz A de u edoorfiso e, e, e tal que 0 A 0 0 T : e relação à base caóica

11 0 Carlos R Paiva a a a tal Mostre que a represetação atricial do operador liear T a ova base,, que correspode à atriz 0 a, a, a B R A R 0 0 0, R, R Cofire o seu resultado otado que, de acordo co a base caóica, o operador liear e causa é tal que x y z T y x z z x y Recordeos, agora, coo deteriar a iversa de ua atriz A ão sigular Tese, coo é sabido, adj A A det A Exeplo Deterie a iversa da atriz A 0 Coeceos por calcular o respectivo deteriate Ve já que se te A det 7 4

12 Operadores Lieares e Matrizes Por outro lado a atriz adjuta é dada por Logo 7 adj A 7 T T A adj A Facilete se verifica que, co efeito, é A A A A I 0 0 Problea 5 Mostre que a atriz iversa da atriz é a atriz A A

13 Carlos R Paiva Existe ua fora diferete de calcular o deteriate Seja f : V V u edoorfiso de i i V, co div, tal que a a é ua base do espaço liear V, etão a a a det a a a f f f b e que, portato, ab, V Se Exeplo Volteos a cosiderar a atriz A 0 Na base caóica de, e que se te 0 0 e 0, e, e 0, 0 0 esta atriz correspode ao operador liear E particular, virá x x y z f y x z z x y z 0 0 f e f 0 f, f e f 0 f, f e f 0 f 0 0 Logo, co efeito, te-se e e e e e e det e e e f f f f f f f f det f e f f f 0 e det f 0 4 Note-se o sigificado geoétrico: f f f det f correspode ao volue orietado do trivector

14 Operadores Lieares e Matrizes Exeplo Calculeos, agora, o deteriate do operador liear cosiderado o Problea Cosidereos a base Nesta base, te-se 0 a, a 0, a 0 0 ga g g, ga g 0 g, ga g g 0 4 pelo que g g g g g g g g e det g a a a e Coo a a a a a a g g g det a a a 0 g g g e e, a a a 0 e e 4 0 ifere-se que det g Note-se que, aida o âbito do Problea, se te 4 5 det A 0 det B 6 4 det g Ou seja: o deteriate é u ivariate próprio de u operador liear e, cosequeteete, é sepre o eso para todas as atrizes relacioadas etre si por ua trasforação de seelhaça Portato, para calcular o deteriate de u operador liear, é geralete ais fácil fazê-lo através da base caóica

15 4 Carlos R Paiva Alé do deteriate, existe u outro ivariate iportate relacioado co atrizes seelhates o traço Defie-se o traço de ua atriz coo sedo a soa dos seus eleetos diagoais Seja A e Etão, ve sucessivaete A duas atrizes seelhates, ie, co A R AR R A det R det det det A det R A R det R det A det R det A Para o traço, ve tabé tr A tr R AR tr R AR tr AR R tr A R R tr AI tr A Assi, eg, o Problea, te-se 4 5 tr A tr 0 tr B tr 6 4 tr g Apreseta-se, de seguida, duas relações iportates que relacioa o deteriate co o traço Para edoorfisos de diesão, te-se det f tr tr f f Para edoorfisos de diesão, te-se det f tr tr tr tr 6 f f f f Calculeos, agora, a expoecial de ua atriz Por defiição, escreve-se Estaos a aditir que Mat, exp A A! 0 A co,

16 Operadores Lieares e Matrizes 5 Exeplo Calculeos exp A para (co abc,, ) 0 a b A 0 0 c Coeceos por otar que esta atriz é ilpotete já que se te A 0: Logo, ve 0 0 ac A 0 0 0, A a b ac a b 0 0 ac A expa I A c c Ifere-se, deste odo, que a 0 a b b ac exp 0 0 c c Exeplo Seja X R DR Vaos ostrar que, este caso, se te exp exp exp X R DR R D R Coeceos por otar que R DR R DR R DR R D R R DR R DI DR R D R Aalogaete, te-se Logo, ifere-se que R DR R D R R DR R D R D exp R DR R R R exp D R 0! 0! 0!

17 6 Carlos R Paiva Exeplo Vaos, agora, calcular Y exp X para 0 X 0 Noteos que esta atriz é seelhate à atriz i 0 D 0 i já que se te e que X R DR Co efeito, Mas etão, ve i i i i R, R R DR i i 0 i 0 i 0 i i 0 X i ie 0 i exp X exp R DR R exp DR i i 0 e i cos si Y exp X si cos que correspode, coo se viu ateriorete, à atriz de rotação do plao Problea 6 Mostre que, para qualquer atriz X do tipo co traço ulo, ie, co se te a b X, c a X det X I Mostre, e seguida, que se te si det X expx cos det X I X det X

18 Operadores Lieares e Matrizes 7 Note que, coo cos e si são fuções pares de, esta expressão ão depede do sial escolhido o cálculo de det X Alé disso, quado X det 0, esta expressão deve ser iterpretada coo dado exp X I X Use este resultado para provar que 0 cos si exp 0 si cos

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos.

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Matrizes e Polinômios

Matrizes e Polinômios Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) =

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log 0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

TÓPICOS. Transformação linear.

TÓPICOS. Transformação linear. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira Chama-se a ateção para a importâcia do trabalho pessoal a realizar pelo aluo resolvedo

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

Problemas fundamentais da teoria da aproximação funcional

Problemas fundamentais da teoria da aproximação funcional . 24 GAZETA DE MATEM ATIÇA Cosequêcias : ) Caso b>a. a É claro que o acotecieto A 2 Ai é -0 a certeza, isto é, j?(.í4) =. Coo para é AiAj = 0, podeos escrever: * a F- p(a) ^ ou ou aida &

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS 2017-2018, NÚMERO 1 VOLUME 5 ISSN 2319-023X A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS Roald Siões de Mattos Pito Colégio Pedro II Liliaa Mauela G. C. da Costa Colégio

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

Sumário. 2 Índice Remissivo 21

Sumário. 2 Índice Remissivo 21 i Suário 1 Pricipais Distribuições Discretas 1 1.1 A Distribuição Beroulli................................ 1 1.2 A Distribuição Bioial................................ 2 1.3 A Distribuição Geoétrica...............................

Leia mais

1 o SIMULADO NACIONAL AFA - SISTEMA SEI

1 o SIMULADO NACIONAL AFA - SISTEMA SEI Istruções 1. Para a realização das provas do Siulado Nacioal AFA Sistea SEI, o usuário deverá estar cadastrado, e o seu cadastro, ativado.. E cojuto co esse arquivo de questões, está sedo dispoibilizado

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Problema de transporte

Problema de transporte Departaeto de Egeharia de Produção UFPR 38 Problea de trasporte Visa iiizar o custo total do trasporte ecessário para abastecer cetros cosuidores (destios) a partir de cetros forecedores (origes) a1, a2,...,

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

2. Revisões e definições de matrizes

2. Revisões e definições de matrizes Apotametos de Processameto Adaptativo de Siais 2. Revisões e defiições de matrizes Breve revisão de propriedades de matrizes 1. Valores próprios e vectores próprios A cada matriz quadrada A, de dimesões

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

n n ...

n n ... 6. Álgebra Matricial Defiição : Um couto de ( m, ) úmeros (reais ou complexos) arraados em uma forma retagular de m lihas e coluas: a a a. a a a a. a..... a a a. a 2 3 2 22 23 2 m m2 m3 m é chamada de

Leia mais

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A oção de fução hoogéea surge logo o prieiro ao dos cursos de liceciatura ode ua disciplia de Aálise Mateática esteja presete. Tal coo é apresetada, trata-se

Leia mais

GRÁFICOS DE CONTROLE PARA X e S

GRÁFICOS DE CONTROLE PARA X e S Setor de Tecologia Departaeto de Egeharia de Produção Prof. Dr. Marcos Augusto Medes Marques GRÁFICOS DE CONTROLE PARA X e S E duas situações os gráficos de cotrole X e S são preferíveis e relação aos

Leia mais

Análise de Sistemas no Domínio do Tempo

Análise de Sistemas no Domínio do Tempo CAPÍTULO 4 Aálise de Sisteas o Doíio do Tepo 4. Itrodução A resposta o tepo de u sistea de cotrolo é iportate dado que é este doíio que os sisteas opera. O étodo clássico da aálise da resposta o tepo ivestiga

Leia mais

META: Apresentar o conceito de módulo de números racionais e sua representação

META: Apresentar o conceito de módulo de números racionais e sua representação Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar

Leia mais

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o

Leia mais

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS

GABARITO COMENTÁRIO. Prova de Matemática (SIMULADO ITA/2007) QUESTÕES OBJETIVAS C/007/MATEMATICA/ITAIME/MAT599ita(res)/ Cleo 5607 o Esio Médio Prova de Mateática (SIMULADO ITA/007) GABARITO COMENTÁRIO QUESTÕES OBJETIVAS QUESTÃO 0 LETRA D Coo e y são iteiros, só podeos ter ( ) é u

Leia mais

constante de atenuação transversal (i.e., segundo x) no meio , apenas os modos TE ímpares com ( Ez

constante de atenuação transversal (i.e., segundo x) no meio , apenas os modos TE ímpares com ( Ez Aula de Programas 4 Programa 7 No programa MATLAB, ititulado PA_7, represete graficamete o diagrama de dispersão dos primeiros modos TE e TM de uma placa dieléctrica aberta assete sobre um PEC (perfect

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Equações Recorrentes

Equações Recorrentes Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,

Leia mais

1. Definição e conceitos básicos de equações diferenciais

1. Definição e conceitos básicos de equações diferenciais Capítulo 7: Soluções Numéricas de Equações Difereciais Ordiárias. Itrodução Muitos feómeos as áreas das ciêcias, egearias, ecoomia, etc., são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil

Ciência e Natura ISSN: Universidade Federal de Santa Maria Brasil Ciêcia e Natura ISSN: 000-807 cieciaeaturarevista@gailco Uiversidade Federal de Sata Maria Brasil Dattori da Silva, Paulo Leadro; Gálio Spolaor, Silvaa de Lourdes U irracioal: oúero de Euler Ciêcia e Natura,

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos eercícios da aula prática 6 MATRIZES DETERMINANTES a) Epadido ao logo da primeira

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte Escola Secudária com º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º 0 (etregar o dia 6 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal.

binomial seria quase simétrica. Nestas condições será também melhor a aproximação pela distribuição normal. biomial seria quase simétrica. Nestas codições será também melhor a aproximação pela distribuição ormal. Na prática, quado e p > 7, a distribuição ormal com parâmetros: µ p 99 σ p ( p) costitui uma boa

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice 4 4 Defiição e exemplos 4 Subespaços4 4 Cojutos

Leia mais

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos.

Representação em espaço de estado de sistemas de enésima ordem. Função de perturbação não envolve termos derivativos. VARIÁVEIS DE ESTADO Defiições MODELAGEM E DINÂMICA DE PROCESSOS Profa. Ofélia de Queiroz Ferades Araújo Estado: O estado de um sistema diâmico é o cojuto míimo de variáveis (chamadas variáveis de estado)

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Placas. Placas e Cascas (10377/10397) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais

Placas. Placas e Cascas (10377/10397) 2018 Pedro V. Gamboa. Departamento de Ciências Aeroespaciais Placas Placas e Cascas (0377/0397) 08 . Teoria de fleão de placas Ua placa é u corpo tridiesioal co: ua das suas diesões uito eor do que as outras duas a curvatura da sua superfície édia a cofiguração

Leia mais

Condução Bidimensional em Regime Estacionário

Condução Bidimensional em Regime Estacionário Codução Bidiesioal e Regie Estacioário Euações de Difereças Fiitas E certos casos os étodos aalíticos pode ser usados a obteção de soluções ateáticas eatas para probleas de codução bidiesioal e regie estacioário.

Leia mais

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3. BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier

- Processamento digital de sinais Capítulo 4 Transformada discreta de Fourier - Processaeto digital de siais Capítulo Trasforada discreta de Fourier O que vereos 1 Itrodução Etededo a equação da DFT 3 Sietria da DFT Liearidade e agitude da DFT 5 Eio da frequêcia 6 Iversa da DFT

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo

Capítulo 3 SLITs Sistemas Lineares e Invariantes no Tempo Capíulo 3 SLITs Siseas Lieares e Ivariaes o Tepo 3. Irodução 3.2 Repreação e odelo de esado 3.3 Siseas SISO 3.4 Siseas MIMO uli-diesioais 3.5 Modelo de espaço de esados coíuos 3.6 Resposa ipulsiva e covolução

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita?

Cálculo 2, A função implícita Abril O que é uma função na forma implícita, em geral designada por função implícita? Cálculo A fução iplícita Abril 9 O que é ua fução a fora iplícita e geral desigada por fução iplícita? Cálculo A fução iplícita Abril 9 Coeceos ao cotrário. Ua fução real de variável real coo 4se está

Leia mais

REGULAMENTO. Selecção de fornecedores qualificados para apresentação de propostas em concursos limitados de empreitadas de construção de linhas da RNT

REGULAMENTO. Selecção de fornecedores qualificados para apresentação de propostas em concursos limitados de empreitadas de construção de linhas da RNT REGULAMENTO Selecção de forecedores qualificados para apresetação de propostas e cocursos liitados de epreitadas de costrução de lihas da RNT Agosto 2010 Ídice 1. ÂMBITO E DISPOSIÇÕES INTRODUTÓRIAS...

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar.

Resolva os grupos do exame em folhas separadas. O uso de máquinas de calcular e telemóveis não é permitido. Não se esqueça que tudo é para justificar. Eame em 6 de Jaeiro de 007 Cálculo ATENÇÃO: FOLHAS DE EXAME NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eame fial 06 Jaeiro de 007 Resolva os grupos do eame em folhas separadas O uso de máquias de calcular

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Tópicos: Análise e Processamento de BioSinais. Mestrado Integrado em Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Cap. 5-Trasformada de Z Uiversidade de Coimbra Aálise e Processameto de BioSiais Mestrado Itegrado em Egeharia Biomédica Faculdade de Ciêcias e Tecologia Uiversidade de Coimbra Slide Aálise e Processameto

Leia mais

REVISÃO: ANÁLISE DE TENSÕES

REVISÃO: ANÁLISE DE TENSÕES REVISÃO: ANÁLISE DE ENSÕES Fadiga dos Materiais Metáicos Prof. Caros Batista ESADO DE ENSÃO EM UM PONO O estado gera de tesão e u oto de u coro e equiíbrio ode ser reresetado or 6 cooetes: O eso estado

Leia mais