1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

Tamanho: px
Começar a partir da página:

Download "1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1"

Transcrição

1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética e álgebra é essecial. Soma de fração, poteciação e até mesmo produtos otáveis podem passar despercebidos pelos aluos que estudaram o esio fudametal há algum tempo e ão lembram. Este capítulo aborda tais assutos de forma sitética e com exemplos detalhados para melhor etedimeto do leitor. Ao fim do capítulo o leitor será capaz de realizar as operações aritméticas e algébricas, tais como poteciação e radiciação, resolver problemas de logaritmo utilizado suas propriedades, aalisar problemas com módulo e recohecer poliômios... Ordem e Precedêcia dos Cálculos Sempre que você se deparar com uma expressão umérica para resolver, é ecessário respeitar a seguite ordem de prioridade: a) Agrupametos prévios pelo uso de traço de frações, radical, parêteses, chaves e colchetes. No caso de agrupametos com múltiplos por parêteses resolver do itero ao extero; b) Poteciação e radiciação; c) Multiplicação e divisão; d) Adição e subtração. )

2 Note que este exemplo ão existem parêteses, chaves ou colchetes, portato a ordem de resolução deve ser primeiramete multiplicação e/ou divisão e depois as somas e subtrações. Nos exemplos 2 e, com a preseça de parêteses, as operações detro dos parêteses têm prioridade. De forma semelhate, o exemplo, com a preseça do radical, este deve ser resolvido primeiro. 2) ( 2 + ) (5 + ) ) (( 2 + ). 2 6 ). (5 + ) 2 ( ). 8 ( 6 ) ) Operações com Números Fracioários.2. Soma e Subtração Para a soma ou a subtração de duas frações deve-se observar se os deomiadores são iguais ou diferetes. Os procedimetos de cálculo variam de acordo com os deomiadores apresetados Deomiadores iguais

3 Neste caso, os umeradores devem ser somados ou subtraídos, de acordo com os siais operatórios, e o valor do deomiador matido. ) ) ) ) Deomiadores diferetes Neste caso, deve-se determiar com atecedêcia o míimo múltiplo comum (m.m.c.) etre todos os deomiadores das frações evolvidas, de modo a igualar os deomiadores e aplicar a regra acima. Exemplo: ) 2 + 9? Solução: O MMC é obtido a partir da fatoração simultâea dos deomiadores, como segue abaixo:, 2 2, 2,,

4 O MMC etão é igual a 2. Prossegue-se adotado o MMC como deomiador comum para as duas frações. Novos umeradores são obtidos para ambas as frações dividido-se o MMC pelo atigo deomiador e multiplicado este resultado pelo atigo umerador, como exemplificado a seguir: 2 9 (2 ) 2 (2 ) ) ? Solução: 5,9,2 2 5,9,6 2 5,9, 5,, 5,, 5,, (80 5) 2 (80 9) 8 (80 2) (80 9) 8 (80 2) OBS: Para efetuar a soma de frações com deomiadores diferetes podemos utilizar qualquer múltiplo comum. A forma mais simples de ecotrar um múltiplo comum é multiplicar todos os deomiadores. ) (9. 2). 2 + (5. 2). 8 (5. 9)

5 Multiplicação de Frações O produto de duas ou mais frações é o produto dos seus umeradores dividido pelo produto dos seus deomiadores. Observe que, os exemplos abaixo, ós simplesmete multiplicamos umerador por umerador e deomiador por deomiador. Em certos casos, é possível simplificar. ) ) ) (5. ) (. ). 2 (. 5 ) ) 0. ( ) (5 ) ( )

6 .2.. Divisão de Frações No caso de divisão etre frações procede-se multiplicado a primeira fração pelo iverso da seguda: a b c a b c d a b d a d c b c d ) ) ) ) Nos casos acima a primeira fração deve ser matida e é multiplicada pela iversa da seguda fração... Expressões Algébricas Recebe o ome de expressão algébrica a expressão matemática a qual se faz uso de letras, úmeros e operações aritméticas. As letras costituem a parte variável da expressão, pois elas podem assumir qualquer valor umérico. Cotiuam válidas todas as regras da aritmética. ) 2 x 7 x x. (2 x). 7. x 2 x2 2 x

7 2) 2 x + y x x y y. (2 x + y) x. ( x) 2 x y + y2 x 2 x. y x y Observe os exemplos que os deomiadores são diferetes, portato fazemos o MMC etre eles, como estamos em um caso algébrico o MMC é, simplesmete, a multiplicação etre eles. É comum ecessitar simplificar as expressões algébricas para a resolução de problemas. Técicas como agrupameto, evidêcia do fator comum, etc., são ormalmete adotadas para a simplificação e/ou fatoração das expressões. Utilize as técicas de agrupameto e evidêcia dos fatores comus para simplificar as expressões algébricas abaixo: ) x + 2 y x + y (x. x) + (2. y + y) x( ) + y (2 + ) 2 x + y Nesse exemplo foram agrupados todos os termos com x em um parêteses e todos os termos com y em outro. Quado as operações são algébricas podemos somar ou subtrair termos semelhates, esse caso x e x são semelhates, logo podemos subtraí-los. 2) x + 2 y (x + y) x + 2y + ( ). (x + y) x + 2 y + ( x y) (x x) + (2 y y) x( ) + y(2 ) 2 x y ) x (2 y x + y ) x (2 y + y x) x ( y x) x + x y x y

8 ) x + 2 (y ( x + y)) x + 2 ( y + ( ) (x + y)) x + 2 ( y + ( x y)) x + 2 ( y y x) x + 2( x) x 6x 5x A fatoração cosiste em represetar um úmero ou uma expressão algébrica como produto, respetivamete, de outros úmeros ou de outras expressões algébricas. ) 6 a b 2 b 6 b (a 2) 2) 9 x x y x ( y) ) a x + b x + a y + b y x(a + b) + y (a + b) (a + b) (x + y).. Simplificação de Frações Algébricas Para simplificar frações algébricas devemos seguir a seguite regra: fatorar o umerador e o deomiador e assim, dividir o umerador e deomiador em seus fatores comus. Fique ateto: Só podemos simplificar os fatores (termos) que estejam multiplicado tato o umerador quato o deomiador. 2x y 2 (x 2y) ) 2 2x 2 x 2 x 2y x 2y x x a x + b x x (a + b) 2) a + b a + b x 2y x a + b x x x a + b

9 .. Poteciação A poteciação equivale a uma multiplicação de fatores iguais. Podemos dizer também que é a quatidade de vezes que o úmero será multiplicado por ele mesmo. De um modo geral, sedo a um úmero real e um úmero atural 2 defiimos: a a a a p ( vezes o fator a) a p Ode: a base; expoete; p potêcia ) ) ( 2) 2 ( 2) ( 2) ) 27 ) ( ) ( ) ( ) ( ) 27 Um erro muito comum ocorre quado o aluo cofude e ao ivés de multiplicar o um úmero vezes por ele mesmo acaba multiplicado a base pelo expoete. Não esqueça também de fazer o jogo de siais.... Propriedades Cosidere a e b úmeros reais ão ulos, e m iteiros: ) Potêcia de expoete ulo e igual a : 2) Potêcia de base igual a : a 0 e a a ) Potecia de expoete egativo: a a ) Multiplicação de potêcias de mesma base: a. a m a +m 5) Divisão de potêcias de mesma base:

10 a a m am 6) Multiplicação de potêcias de expoetes iguais: a. b (a. b) 7) Divisão de potêcias de expoetes iguais: a b (a b ) 8) Potêcia de uma potêcia: (a ) m (a).m Nos exemplos a seguir, observe o uso das propriedades da potêcia as expressões. ) 2) ( ) 2 + ( 2 ) ( ) ( ) 2 ( 7 ) ( ) 2 ( 7 ) ( ) 2 ( 7 ) ( ) 2 7 ( ) 9 ( 27 ) 6 27

11 ) x y ( x y) 2 x y (x y) 2 x y x 2 y 2 x 2 y 2 x y x y ) (x + x2 x ). x x. x + x2. x x x + x 2 ( ) x 0 + x 2 x 2 + 5) 2 x x. 6x ( 2. 6) x ( 2 ) x x (2 2 ) x 2 2x 7) ( a2 b ). a + b a.2. a + b b. a 6. a b 9 + b a 5 + b b 9 b 9 a 5 + b b9 + a 5. b a 5 6) 2 x 2x 2 x. 2x 2 x. ( 2 ) x 2 x. 9 x (2. 9) x 8 x 8) a 2. ( a b ). a b 2 a 2. a b. a b 2 a 2. a. a b. b 2 a2 + b +2 a 0 b b b b

12 Nos exemplos abaixo, determie o valor de x: 9) x 9 x 2 x 2 0) ) 2 x + 2 x+ 2 2 x + 2 x x ( + 2 ) 2 2 x 2 2 x 2 2x 8 2 x 2 x 6 x x 6 x 5 6 x x 6 6x 5 6 x x x x ( + 0 6) x ( 5) x 6 6 x 6 2 x 2.5. Radiciação A radiciação é uma operação matemática iversa da poteciação, ou seja, se a b etão b a Ode o símbolo é o radical; 0; a radicado; braiz; ídice. ) 2) 6 b b 6 b (2) b 2 Logo 6 2

13 27 b b 27 b ( ) b logo 27 ) 6 b b 2 6 Como ão existe um úmero que elevado a um expoete par seja um úmero egativo etão 6 ão existe o cojuto dos úmeros reias Obs: Não existe raiz de um radicado egativo se o ídice for par..5.. Propriedades Sejam 0 e m 0 ) Raiz de radicado ulo: 0 0 2) Raiz de ídice uitário ulo: a a ) Produto de radicais de mesmo ídice: a. b. c a. b. c ) Divisão de radicais com mesmo ídice: 5) Potêcia de uma raiz: a b a b ( a) m a m 6) Raiz elevada a expoete igual ao seu ídice: ( a) a

14 7) Raiz de uma raiz: m a.m a 8) Multiplicação de raiz por uma costate a b a b A raiz é apeas uma forma de represetar a poteciação com expoete fracioário. Assim, toda raiz pode ser escrita em forma de potêcia como: a m a m ) Utilizado as regras da poteciação, demostre as seguites regras da radiciação: a) b) a a a a a a c) a d). b. c a. b. c a. b. c (a. b. c) a. b. c ( a) m a m ( a) m (a ) m a.m a m a m e) m a.m a

15 a.m m a.m a m a (a m ) a. m Nos exemplos abaixo calcule as raízes idicadas: 2) ( ) ( ) ) 6 5 ( ) Simplifique as expressões abaixo, cosiderado a > 0 ) a. a a 2. a 2 a a a 5) a. a a. a a + a 2 a 2 6) a. a 2 a. a 2 a +2 a a 7) ( a ) (a 2) a. 2 a 9 2 a 9 a 8. a a a.6.racioalização de deomiadores Racioalização de deomiadores é o processo para a obteção de uma fração com deomiador racioal equivalete a

16 uma aterior que possuía um ou mais radicais o deomiador. Ou seja, é elimiação do radical do deomiador. A técica cosiste em multiplicar os termos desta fração por uma expressão com radical, deomiada fator racioalizate. Caso: O deomiador é um radical de icide 2 (raiz quadrada) Neste caso o deomiador tem a forma a. O fator racioalizate de a é a pois: a a a 2 a 2 a a a ) ) ) a a a a a a a a 2 a 2 a 2 a5 6 6 a a5 a 2 Caso: Quado o deomiador há um úmero somado ou dimiuído à uma raiz quadrada

17 Neste caso o deomiador tem as formas: a + b ou a b O fator itegrate de (a + b) é (a b) e o fator itegrate de (a b) é (a + b) pois: (a + b) (a b) a a a b + a b b b a 2 b ) 2) ) ( 5) 5 2 ( 5 5) (2 + ) a b a + b a b a + b ( a b) ( a b) ( a + b) ( a b) a b a b a a b a b a + b2 a 2 b a + b2 ( a) 2 b 2 a b 2 Caso: O deomiador é um radical de ídice geérico

18 Neste caso o deomiador tem a forma a. O fator racioalizate de a é a a pois: a a a a a ( + ) a + a a a ) ) ) ( ) (2 + 2) (+ ) + 5 Caso: O deomiador é um radical de icide geérico e radicado elevado a uma potêcia geérica m Neste caso o deomiador tem a forma a m com m < O fator racioalizate de a m é a m a m pois:

19 a m a m ) ) 7 a m a m a (m + m ) a m+ m a a ( ) ( +2 ) Logaritmo O logaritmo de um úmero positivo a a base b, positiva e diferete de, é o expoete c que se deve elevar b para obter a. ode a > 0, b > 0 e b. se log b a c etão c logaritmo; b base; a logaritmado. b c a A otação do logaritmo decimal, de base igual a 0, é: log a log 0 a A otação do logaritmo atural, de base igual ao úmero de Euler e , é: l a log e a

20 Nota: Não devemos cofudir logaritmo atural e logaritmo eperiao. Algumas vezes ambos são tratados como siôimos, mas a verdade o logaritmo eperiao refere-se a um logaritmo a base e. ) log 00 x 0 x 00 0 x 0 2 x 2 2) log 0, x 0 x 0, 0 x 0 x ) log 2 x 2 x 2 x 2 2 x 2 ) log 2 ( 2 ) c 2c 2 2c 2 5 2c 2 5 c 5 5) log x x x 0 c 0 6) log (2 2) x ( ) x 2 2 ( 2 2) x (2 2 ) x 2 (+ 2 ) 2 2x 2 2 2x 2 x 2 7) l e c ec e ec e c 8) l e c e c e e c e c 9) Calcule o valor de log, usado a defiição de logaritmo e as aproximações: 2 0 0,0 e 7 0 0,85. Solução:

21 log, x 0 x, 0 x 0 0 x x x 0 0,0 0 0, x 0 0,0+0,85 0 x 0 0,6 x 0,6 log, 0,6.7.. Propriedades ) Logaritmo de em qualquer base b é 0. 2) Logaritmo da base é. ) Logaritmo de um produto ) Logaritmo de um quociete 5) Logaritmo de uma potêcia log b log b b 0 0 log b b log b b log b (a. c) log b a + log b c log b ( a c ) log b a log b c log b a log b a 6) Mudaça da base b para a base c log b a log c a log c b 7) Igualdade de logaritmos de mesma base se log b x log b y etão x y 8) Relações etre potêcias e logaritmos de mesma base. log b b a a e b log b a a

22 ) log(0, 0) log 0, + log 0 log0 + log ) log 2 ( 6 ) log 2 log 2 6 log log ) 2 log 2 ) log 2 (2 2 ) log log 2 2 log log ) e l x e l x x 6) l(a) + l(b) l (e) l ( a b e ) Resolva as equações abaixo: 7) log 2 x Solução: ( 2) x x ( 2) x 2 x 2 2 x ) l x 2 Solução: x 2 l x 2 e2 x x e 2 9) 2 log 2 x log 2 Solução: log 2 x 2 log x 2 x 2 ou x 2, pois ( 2) 2 (2) 2

23 Como o logaritmado x ão pode ser egativo, só x 2 é solução da equação. 0) e x+8 Solução: e x+8 Para isolar a variável x a equação é ecessário aplicar o logaritmo l os dois lados da equação, etão: l(e x+8 ) l ( ) x + 8 l l x l x 8 l 8 l x x 2 l.7.2. Equação Logarítmica A equação do tipo log a f(x) α é uma igualdade etre um logaritmo e um úmero real. E para resolvê-la, basta aplicar a defiição do logaritmo. Exemplo: Se 0 < a e α R, etão log a f(x) α f(x) a α ) Resolver a equação log 2 (x + ) Solução: log 2 (x + ) x + 2 x 6 x 5 x 5 5, S {5}

24 .8. Módulo A todo úmero real x associa-se um valor absoluto, também chamado de módulo, represetado por x defiido por: x, se x 0 x { x, se x < 0 O módulo de um úmero positivo ou ulo é o próprio úmero ; 0 0 O módulo de um úmero egativo é o oposto dele mesmo ( ) ; 5 ( 5 ) 5 De acordo com a defiição acima, para todo x R tem-se x 0, ou seja, o módulo de um úmero real é sempre positivo ou ulo. Geometricamete, o módulo um úmero real é, a reta umérica, a distâcia etre este úmero e a origem O úmero -2 está a 2 uidades de medida à esquerda da origem. Assim, sua distâcia à origem é 2. Dizemos, etão, que o módulo ou valor absoluto de -2 é 2, idicado por 2 2. O úmero está a uidades de medida à direita da origem. Assim, sua distâcia à origem é. Dizemos, etão, que o módulo ou valor absoluto de é, idicado por. R

25 Se cosiderarmos dois úmeros reais x e y associados aos potos X e Y a reta real, etão x y correspode a distâcia etre os dois potos..8.. Propriedades ) x 0 2) x x ) x. y x. y ) x/y x / y com y 0 5) x y se e somete se x ± y 6) x { x se for par x se for impar ; x R Observação: x ± y x ± y ) De acordo com a defiição e as propriedades do módulo, calcule: a) b) ( ) 2 c) ( )

26 d) 2 x + quado x x 2 ( ) Lista de Exercícios Aqui estão questões relacioadas ao capítulo estudado. É importate o esforço para resolver todas as questões. Em caso de dúvidas, os moitores do programa estarão protos para lhe ajudar. Bos estudos! ) Determie 2 + ( 5 ) ( )

27 2) Qual valor da expressão E(x) +, para x +? + 2 +x ) Ecotre o valor de A x y ) Se A A. xy, + + A x e y, etão determie o valor de 5 2 5) Determie o valor umérico da expressão para a 5 e x 5. ax x a x a 6) Qual o valor de m ( )( )? 7) Aplicado as propriedades das potêcias, simplifique as expressões: 2 a) b) c) d) ) Calcule o valor das expressões: a) 8 6 ( 2) 27 b) c). (0,5) 0,25 8 9) Simplifique os radicais 2

28 a) 6 b) 576 c) 2 d) 2 7 e) 2 0) Simplifique as expressões: a) b) c) a ab + b a b + a b ab ab ) Efetue as operações: a). 2 b) 2. c) 2 2 d) 2 e) ( ). f) ( + 2). (5 2) g) (5 2 ) 2 h) i) ) Qual o valor que se obtém ao subtrair 5 de 2? ) Calcule o valor da expressão:

29 2(x 2 y). (x 2 y ) x²y² ) Simplifique, sedo a. b 0 (a..b 2 )³ a) (a.b 2 )² b) (a.. b ). (a 2. b)² 5) Calcule o valor das expressões: a) 2 ( 2) 2 +( 2) b) c) ( 2 )2.( 2 ) [( 2 )2 ] 6) Cosiderado de x e y são respectivamete: a) 2 7 e /9 b) 2/5 e /25 c) 2/5 e 8/ d) 5/8 e /6 e) 8/5 e 6/ 6 x e 9. 6 y , os valores 7) Seja a) 2/5 b) /5 c) 5/9 m 2 5..O valor de m é igual a

30 d) 0/9 8) Racioalize o deomiador de cada expressão abaixo: a) b) 2 c) 2 xy d) 5 x 2 y e) f) g) 2 2 h) 2 i) j) ) As idicações R e R2, a escala Richter, de dois terremotos estão relacioadas pela fórmula R R2 log 0 M M2 Em que M e M2 medem a eergia liberada pelos terremotos sob a forma de odas que se propagam pela crosta terrestre. Houve dois terremotos: um correspodete a R8 e outro correspodete a R26. Calcule a razão M M2

31 20) Calcule o valor de S: S log (log 9) + log 2 ( log 8 ) + log 0,8 ( log 6 2) 2) Determie o valor de x a equação y 2 log (x+) para que y seja igual a 8. 22) Calcule o valor de a) log 2 b) +log c) 9 2 log 2 2) Desevolva aplicado as propriedades dos logaritmos (a, b e c são reais positivos) a) log 2 2ab c b) log a³b² c 2) Se log2 a e log b, coloque em fução de a e b os seguites logaritmos decimais: a) log 6 b) log c) log 0,5 d) log 5 e) 25) Calcule o log 2 6 em fução de x e y, sabedo que o log 27 6 x que o log 27 y.

32 26) Resolva as equações: a) log (x + 2) log (2x + 5) b) log 5 (x ) 27) Sejam a 0, b 2 e c 5, calcule as expressões: a) a 2. b b) a c 2 c) c 2 d) c

33 ) 2) ) GABARITO ) 2 9 5) 5 6) 8 7) a) 2, b) 287, c) 625, d) 8) a) 5, b) 2 6 9) a), b) 2, c) 2, d) 8 2, e) 8 0) a) 7 2, b) 9, c) 0 ) a) 6, b) 2 9, c) 22, 5 d), e), f) 9 2, g) 7 0, h) 7, i) 2) ) 6x 2 y 2 ) a) a 0 b 2, b) a 6 b 5) a) 6 0, b) 7 6) a) 7) 5 9 8) a) 2 6, b), c), d) 5 9 x y 2, e) + 2, f) , g), 2 7 h) 2, i) 2 2, j) M 9) 00 M 2 20) 5 2 2) X 5 22) a) 2, b) 2, c) 8 2

34 2) a) + log 2 a + log 2 b log 2 c, b) log a + 2 log b log c 2) a) a + b, b) 2a, c) a, d) -a 25) log 2 6 y 26) b) x b) x2 27) a) 200, b) 2, c) 5, d) 5

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS

E-books PCNA. Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS E-books PCNA Vol. 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 ARITMÉTICA E EXPRESSÕES ALGÉBRICAS 1 MATEMÁTICA ELEMENTAR CAPÍTULO 1 SUMÁRIO Apresetação ------------------------------------------------- Capítulo 1

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20

CONJUNTOS NUMÉRICOS , 2 OPERAÇÕES BÁSICAS APROVA CONCURSOS MINISTÉRIO DA FAZENDA. Prof. Daniel Almeida AULA 01/20 CONJUNTOS NUMÉRICOS - Números Naturais (IN ) Foram os primeiros úmeros a surgir devido à ecessidade dos homes em cotar objetos. IN = { 0,,,,,, 6,... } - Números Iteiros ( Z ) Se jutarmos os úmeros aturais

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Trilha da Radiciação

Trilha da Radiciação Trilha da Radiciação Material para costrução: E.V.A Tesoura Régua Cola Caetihas Papel Cartaz Folhas impressas Descrição: O jogo cosiste em um tabuleiro com 0 casas, cotedo as cores bracas, vermelhas, verdes

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC

Cálculo Diferencial e Integral I Resolução do 2 ō Teste - LEIC Cálculo Diferecial e Itegral I Resolução do ō Teste - LEIC Departameto de Matemática Secção de Àlgebra e Aálise I.. Determie o valor dos seguites itegrais (i) e x se x dx x + (ii) x (x + ) dx (i) Visto

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

Matemática A Extensivo V. 6

Matemática A Extensivo V. 6 Matemática A Etesivo V. 6 Eercícios 0) B Reescrevedo a equação: 88 00 8 0 8 8 0 6 0 0 A raiz do umerador é e do deomiador é zero. Fazedo um quadro de siais: + + + Q + + O que os dá como solução R 0

Leia mais

MATEMÁTICA TEORIA. Edição 2017

MATEMÁTICA TEORIA. Edição 2017 MATEMÁTICA TEORIA 6 EXERCÍCIOS POR ASSUNTOS RESOLVIDOS QUESTÕES DE PROVAS DE CONCURSOS POR ASSUNTOS Edição 0 TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer

Leia mais

Provas de Matemática Elementar - EAD. Período

Provas de Matemática Elementar - EAD. Período Provas de Matemática Elemetar - EAD Período 01. Sérgio de Albuquerque Souza 4 de setembro de 014 UNIVERSIDADE FEDERAL DA PARAÍBA CCEN - Departameto de Matemática http://www.mat.ufpb.br/sergio 1 a Prova

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição NOV 2013 ANDRÉ REIS MATEMÁTICA TEORIA QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS 6 EXERCÍCIOS RESOLVIDOS POR TÓPICOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição

Leia mais

MATEMÁTICA TEORIA 41 EXERCÍCIOS POR ASSUNTOS RESOLVIDOS E 22 QUESTÕES DE PROVAS DA FAPEC-MS

MATEMÁTICA TEORIA 41 EXERCÍCIOS POR ASSUNTOS RESOLVIDOS E 22 QUESTÕES DE PROVAS DA FAPEC-MS TEORIA EXERCÍCIOS POR ASSUNTOS RESOLVIDOS E QUESTÕES DE PROVAS DA FAPEC-MS TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material, por qualquer meio ou processo. A violação

Leia mais

VALDIR FILHO MATEMÁTICA. 1ª Edição ABR 2016

VALDIR FILHO MATEMÁTICA. 1ª Edição ABR 2016 VALDIR FILHO MATEMÁTICA TEORIA 179 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Valdir Filho Coordeação e Orgaização: Mariae dos Reis 1ª Edição

Leia mais

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto] [Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares

Exponenciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares Expoeciais e Logaritmos (MAT 163) - Notas de Aulas 2 Prof Carlos Alberto S Soares 1 Prelimiares Lembremos que, dados cojutos A, B R ão vazios, uma fução de domíio A e cotradomíio B, aotada por, f : A B,

Leia mais

8 : 27. a) A = 1 b) A = -1 c) A = 0 d) A = -1/27. Gab.: D. 02) O valor de [ ] 2 : (4 5 ) 7 é: 08) Simplifique as expressões N=

8 : 27. a) A = 1 b) A = -1 c) A = 0 d) A = -1/27. Gab.: D. 02) O valor de [ ] 2 : (4 5 ) 7 é: 08) Simplifique as expressões N= MATEMÁTICA BÁSICA PROF. Luiz Herique POTENCIAÇÃO E RADICIAÇÃO 0) Calculado o valor de A, aaio,teremos: 0) Calcule: ( ) 0 f ) g) 8 Ga.: d ) f ) g) 0) O valor de [. 0.] : ( ) é: 8 Ga.: D 0) Simplifique as

Leia mais

( 7) ( 3) Potenciação

( 7) ( 3) Potenciação Poteciação Defiição: Calcular a potêcia de um úmero real a equivale a multiplicar a, por ele mesmo, vezes. A otação da operação de poteciação é equivalete a: Eemplos: 6; 7 9 a a. a. a... a vezes Propriedades:

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática

Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Uiversidade Federal do Rio de Jaeiro Istituto de Matemática Departameto de Matemática Disciplia: Cálculo Diferecial e Itegral IV Uidades: Escola Politécica e Escola de Quimica Código: MAC 248 Turmas: Egeharias

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

RESUMO DE CONTEÚDO DE CÁLCULO DIFERENCIAL E INTEGRAL Prof. Rodrigo Neves

RESUMO DE CONTEÚDO DE CÁLCULO DIFERENCIAL E INTEGRAL Prof. Rodrigo Neves RESUMO DE CONTEÚDO DE CÁLCULO DIFERENCIAL E INTEGRAL Prof. Rodrigo Neves Coceitos Prelimiares: Subcojutos Reais Os subcojutos mais comus da reta real são os itervalos. Por exemplo, o itervalo aberto (a,

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r.

Sucessões. , ou, apenas, u n. ,u n n. Casos Particulares: 1. Progressão aritmética de razão r e primeiro termo a: o seu termo geral é u n a n1r. Sucessões Defiição: Uma sucessão de úmeros reais é uma aplicação u do cojuto dos úmeros iteiros positivos,, o cojuto dos úmeros reais,. A expressão u que associa a cada a sua imagem desiga-se por termo

Leia mais

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES

A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES A IMPORTÂNCIA DAS ATIVIDADES PRÁTICAS COMO COMPONENTE CURRICULAR DISCUTIDA A PARTIR DE MÉTODOS PARA OBTENÇÃO DE FRAÇÕES GERATRIZES Guilherme de Martii Uiversidade Tecológica Federal do Paraá - Câmpus Toledo

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br O PROBLEMA DA ÁREA O PROBLEMA DA ÁREA Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Cálculo Numérico Lista 02

Cálculo Numérico Lista 02 Cálculo Numérico Lista 02 Professor: Daiel Herique Silva Essa lista abrage iterpolação poliomial e método dos míimos quadrados, e cobre a matéria da seguda prova. Istruções gerais para etrega Nem todos

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando RADICIAÇÃO CONTEÚDOS Radiciação Propriedades dos radicais Extração de fatores do radicado AMPLIANDO SEUS CONHECIMENTOS Radiciação A radiciação é defiida como a operação em que dado um úmero a e um úmero,

Leia mais

MATEMÁTICA TEORIA. Edição abril 2018

MATEMÁTICA TEORIA. Edição abril 2018 TEORIA 8 EXERCÍCIOS POR ASSUNTOS RESOLVIDOS QUESTÕES DE PROVAS DA FAPEMS, FAPEC-MS E VUNESP POR ASSUNTOS Edição abril 08 TODOS OS DIREITOS RESERVADOS. É vedada a reprodução total ou parcial deste material,

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

ANDRÉ REIS RACIOCÍNIO LÓGICO / MATEMÁTICA. 1ª Edição AGO 2013

ANDRÉ REIS RACIOCÍNIO LÓGICO / MATEMÁTICA. 1ª Edição AGO 2013 ANDRÉ REIS RACIOCÍNIO LÓGICO / MATEMÁTICA TEORIA QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para um resultado, ão

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição

BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS. 1 a Edição BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL SEQUÊNCIAS NUMÉRICAS 1 a Edição Rio Grade 2017 Uiversidade Federal do Rio Grade - FURG NOTAS DE AULA DE CÁLCULO

Leia mais

Radiciação. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves

Radiciação. Roberto Geraldo Tavares Arnaut. Kathleen S. Gonçalves Radiciação 1 Roberto Geraldo Tavares Araut Kathlee S. Goçalves e-tec Brasil Estatística Aplicada META Apresetar o coceito de radiciação e suas propriedades. OBJETIVO PRÉ-REQUISITOS Após o estudo desta

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números

S E Q U Ê N C I A S E L I M I T E S. Prof. Benito Frazão Pires. Uma sequência é uma lista ordenada de números S E Q U Ê N C I A S E L I M I T E S Prof. Beito Frazão Pires Uma sequêcia é uma lista ordeada de úmeros a, a 2,..., a,... ) deomiados termos da sequêcia: a é o primeiro termo, a 2 é o segudo termo e assim

Leia mais

Virgílio Mendonça da Costa e Silva

Virgílio Mendonça da Costa e Silva UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA VIBRAÇÕES DOS SISTEMAS MECÂNICOS VIBRAÇÕES LIVRES COM AMORTECIMENTO DE SISTEMAS DE GL NOTAS DE AULAS Virgílio Medoça

Leia mais

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio

Material Teórico - Módulo de ESTATÍSTICA. As Diferentes Médias. Primeiro Ano do Ensino Médio Material Teórico - Módulo de ESTATÍSTICA As Diferetes Médias Primeiro Ao do Esio Médio Autor: Prof Atoio Camiha Muiz Neto Revisor: Prof Fracisco Bruo Holada Nesta aula, pausamos a discussão de Estatística

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Esperaça de uma Variável Aleatória 1 1.1 Variáveis aleatórias idepedetes........................... 1 1.2 Esperaça matemática................................. 1 1.3 Esperaça de uma Fução de

Leia mais

Definição 1: Sequência é uma lista infinita de números reais ordenados.

Definição 1: Sequência é uma lista infinita de números reais ordenados. Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar

Leia mais

ANDRÉ REIS MATEMÁTICA. 1ª Edição SET 2013

ANDRÉ REIS MATEMÁTICA. 1ª Edição SET 2013 ANDRÉ REIS MATEMÁTICA TEORIA QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS 6 EXERCÍCIOS RESOLVIDOS Teoria e Seleção das Questões: Prof. Adré Reis Orgaização e Diagramação: Mariae dos Reis ª Edição SET 0

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

Método dos Mínimos Quadrados. Julia Sawaki Tanaka

Método dos Mínimos Quadrados. Julia Sawaki Tanaka Método dos Míimos Quadrados Julia Sawaki Taaka Diagrama de Dispersão iterpolação ajuste ou aproximação O Método dos Míimos Quadrados é um método de aproximação de fuções. É utilizado quado: Cohecemos potos

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio

META Suprir algumas deficiências sobre álgebra ensinada em matemática no nível médio ÁLGEBRA BÁSICA Aula 5 META Suprir algumas deficiêcias sobre álgebra esiada em matemática o ível médio OBJETIVOS Ao fi al desta aula, o aluo deverá: defi ir coceitos matemáticos de álgebra básica; iterpretar

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

EES-49/2012 Resolução da Prova 1

EES-49/2012 Resolução da Prova 1 EES-49/ Resolução da Prova Obs: esta resolução tem explicações e passos itermediários para facilitar o etedimeto. Parte dessas explicações e os passos itermediários ão são cobrados a correção da prova.

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS

CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 2009/10 7 a FICHA DE EXERCÍCIOS Istituto Superior Técico Departameto de Matemática Secção de Álgebra e Aálise CÁLCULO DIFERENCIAL E INTEGRAL I MEC & LEGM 1 o SEM. 009/10 7 a FICHA DE EXERCÍCIOS I. Poliómio e Teorema de Taylor. 1) Determie

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Representação de Números em Ponto Flutuante

Representação de Números em Ponto Flutuante Represetação de Números em Poto Flutuate OBS: Esta aula é uma reprodução, sob a forma de slides, da aula em vídeo dispoibilizada pelo prof. Rex Medeiros, da UFRN/ECT, em https://youtu.be/ovuymcpkoc Notação

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2/4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ao Versão /4 Nome: Nº Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias Quado, para

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial.

... Newton e Leibniz criaram, cada qual em seu país e quase ao mesmo tempo, as bases do cálculo diferencial. DERIVADAS INTRODUÇÃO O Cálculo Diferecial e Itegral, criado por Leibiz e Newto o século XVII, torou-se logo de iício um istrumeto precioso e imprescidível para a solução de vários problemas relativos à

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 0: Medidas de Dispersão (webercampos@gmail.com) MÓDULO 0 - MEDIDAS DE DISPERSÃO 1. Coceito: Dispersão é a maior ou meor diversificação dos valores de uma variável, em toro

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amada Liz Pacífico Mafrim Perticarrari amada@fcav.uesp.br Ecotre a área da região que está sob a curva y = f x de a até b. S = x, y a x b, 0 y f x Isso sigifica que S, ilustrada

Leia mais

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO FUNDAMENTOS DE MATEMÁTICA Nome: DATA: 0//06 ) Se x+ y e x y, etão x + y é a) 66. b) 67. c) 68. d) 69. e) 70. ) Cosiderado-se que x 97, y 907 e z xy, o valor

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo

Leia mais

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo. Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()

Leia mais

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos

Unidade I MATEMÁTICA. Prof. Celso Ribeiro Campos Unidade I MATEMÁTICA Prof. Celso Ribeiro Campos Números reais Três noções básicas são consideradas primitivas, isto é, são aceitas sem a necessidade de definição. São elas: a) Conjunto. b) Elemento. c)

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais