Matrizes e Polinômios

Tamanho: px
Começar a partir da página:

Download "Matrizes e Polinômios"

Transcrição

1 Matrizes e oliôios Duas atrizes A, B Mat R) são seelhates quado existe ua atriz ivertível Mat R) tal que B = A Matrizes seelhates possue o eso poliôio característico, já que: det A λ ) = det A λ ) ) = det A 7 Exeplo: As atrizes e são seelhates, pois: 4 7 = 4 Alé disso, = = λ 5λ A B λ ) = det B λ ) Ua atriz A pode ser diagoalizada quado existir ua atriz ivertível Mat R) tal que A atriz A seja ua atriz diagoal Esta atriz é ua atriz de autovetores do operador relativo à =, os autoespaços V = { x), x R} e V = {,, y R}, e ua base de autovetores {,),,) } Assi, =, = e [ ] = = Exeplo: Cosidere [ ] Cosiderado B = A, teos que B = A) = 4A 4 K 4 4 A = A, co Z + Se a fatores atriz A é diagoalizável etão Exeplo: D = A A = D = = ) 5949 = Cosidere p x) = a x + + a x + a R[ ] u poliôio e ua atriz quadrada A Mat R) x Etão p A) é a atriz quadrada a A + + a A + a Diz-se que o poliôio p x) aula a atriz A quado p A) = Exeplo: Seja p x) = x 9, q x) = x + e a atriz A =

2 p A) = 9 = 8 q A) = + = 4 5 Assi, o poliôio p x) aula a atriz A, as q x) ão Diz-se que u poliôio p x) R[ x] aula o operador liear quado p[ ] ) =, para toda base de V Seja V u R-espaço vetorial diesioal, : V V u operador liear e p x) = a x + + a x + a R[ ] u poliôio Defie-se o operador liear p ) : V V tal que X p ) v) = a + + a + a V ) v) Se λ é u autovalor do operador etão p λ ) é u autovalor do operador liear p ) Exeplo: Seja : R R tal que = 8x, cujos autovalores são e Cosidere o poliôio p x) = x 4x x + e o operador p ) : R R tal que p ) = 4 + ) Assi, p ) = ) 4 ) + ) = ) 4 ) + ) = 7x,56x 496x + 8x + = 547x,x 664x + 4 8x + = 84x Etão, os autovalores de p ) são 8 e eorea de Cayley-Hailto CH) Seja V u R-espaço vetorial -diesioal e : V V u operador liear Etão [ ] ) = para toda base de V de: Seja λ ) = λ + a λ + + aλ + a Deotareos por A a atriz adjuta clássica da atriz [ λ ] Os eleetos de A são os cofatores desta atri sedo etão poliôios e λ de grau eor ou igual a A λ ) = A λ + + A λ + A sedo A,, A Mat R) ela propriedade fudaetal da adjuta clássica: [ λ ] A = det[ λ] [ λ] A = [ λ ] A λ + + Aλ + A ) = λ + a λ + + aλ + a ) A λ + [ ] A A ) λ + + [ ] A A ) λ + [ ] A = λ + a λ + + aλ + a ) ) A =

3 -) -) [ ] A A = a [ ] A A = a ) [ ] A A = a ) [ ] A = a Multiplicado-se a equação ) por [ ],-) por [ ], e ) por [ ], te-se: Soado-se as equações atriciais, oliôio Miial ) [ ] A = [ ] - [ ] A [ ] A = a [ ] ) - [ ] A [ ] A = a [ ] ) ) [ ] A [ ] A = a[ ] ) [ ] A = a = [ + = [ ] ) ] + a [ ] + + a[ ] a Seja V u R-espaço vetorial -diesioal e : V V u operador liear Defie-se o poliôio iial ou íio do operador liear, R[ λ], coo sedo o poliôio ôico de eor grau possível tal que [ ] ) = Exeplos: ) : R R tal que = x + y 5x + 7y 5 x + y 4 = λ ) λ ) = λ ) λ ) ) ) : R R tal que 4 y = λ + ) λ ) = λ + ) λ ) = 4 4 tal que t) x 4y + 5 t) : R R = λ ) λ ) = λ ) λ ) = CorolárioCH: O poliôio iial de divide o poliôio característico de, isto é, eo87 λ ) ) eo88 Os poliôios característico e iial possue os esos fatores irredutíveis e as esas raízes eo89 Seja λ, λ,, λr autovalores distitos de Etão é diagoalizável se e soete se = λ λ ) λ λ ) λ λ ) r

4 Exercícios ) Verificar, utilizado a defiição, se os vetores dados são autovetores: a),) para [ ] = b),,) para [ ] = ) Os vetores,) e, ) são autovetores de u operador liear autovalores λ = 5 e λ =, respectivaete Deteriar 4,) : R R associados aos ) Deteriar o operador liear : R R cujos autovalores são λ = e λ = associados aos autoespaços V = {, y } e V = {,, y } R R 4) Deteriar os autovalores e os autovetores dos seguites operadores lieares o R a) = x + x + 4 b) = x) 5) Dado o operador liear o R tal que = x 5, ecotrar ua base de autovetores 6) Verificar se existe ua base de autovetores para: a) : R R tal que = x + y + y + y + b) c) : R R tal que = x x + y + : R R tal que = x + y 4y + 7) Seja : R R tal que = 4x + 5x + Ecotrar ua base que diagoalize o operador 8) O operador liear é diagoalizável? : R 4 4 R tal que t) = x + y + z + t, x + y + y + z + t, x + 9) Deterie o poliôio iial do operador ) Dada a atriz, verifique se é diagoalizável 4

5 a b c ) Seja a atriz triagular superior d e, co todos os seus eleetos acia da diagoal f distitos e ão ulos dique os autovalores e os autoespaços ) ara que valores de a e b as atrizes a e b são diagoalizáveis? ) Se ua atriz A quadrada é diagoalizável etão o deteriate de A é o produto de seus autovalores? 4) Utilize a fora diagoal para ecotrar A os seguites casos atural): 7 6 a) b) 4 5) Diz-se que u operador : V V é idepotete se = a) Seja idepotete Ache seus autovalores b) Dê exeplo de u operador ão ulo : R R idepotete c) Mostre que todo operador liear idepotete é diagoalizável 6) Seja V u espaço -diesioal Qual é o poliôio iial do operador idetidade? Qual é o poliôio iial do operador ulo? 7) Verifique se a atriz é diagoalizável 8) Deteriar ua atriz de orde cujo poliôio iial seja λ 9) dique o poliôio iial dos operadores cosiderado a, b, c, d e e costates ão ulas 5 5 a) : R R tal que t, w) = ax + b ay + b az + bt, at + bw, aw) 5 5 b) : R R tal que t, w) = aw, x bw, y cw, z dw, t ew) 5

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS

A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS A SOLUÇÃO PARTICULAR DE EQUAÇÕES DIFERENCIAIS HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos.

Leia mais

O MÉTODO DE VARIAÇÃO DAS CONSTANTES

O MÉTODO DE VARIAÇÃO DAS CONSTANTES O MÉTODO DE VARIAÇÃO DAS CONSTANTES HÉLIO BERNARDO LOPES O tea das equações difereciais está resete a esagadora aioria dos laos de estudos dos cursos de liceciatura ode se estuda teas ateáticos. E o eso

Leia mais

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para

ESTIMAÇÃO INTERVALAR. O intervalo aleatório [T 1,T 2 ] é chamado um intervalo de 100(1 α)% de confiança para SUMÁRIO Estiação Itervalar. Quatidade ivotal................................... Método da Quatidade ivotal....................... 3.. Itervalos para opulações Norais - ua aostra............ 4..3 Itervalos

Leia mais

1 o SIMULADO NACIONAL AFA - SISTEMA SEI

1 o SIMULADO NACIONAL AFA - SISTEMA SEI Istruções 1. Para a realização das provas do Siulado Nacioal AFA Sistea SEI, o usuário deverá estar cadastrado, e o seu cadastro, ativado.. E cojuto co esse arquivo de questões, está sedo dispoibilizado

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte II). Atividades V Profa. Dra. Letícia Maria Bolzai Poehls 8// Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação em

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc

Dinâmica Estocástica. Setembro de Aula 11. Tânia - Din Estoc Diâica Estocástica Aula 11 Setebro de 2015 âia - Di Estoc - 2015 1 1 rocesso arkoviao e atriz estocástica 2 âia - Di Estoc - 2015 2 rocesso Markoviao 1 1 obtida a últia aula 1 robabilidade do estado o

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações.

Combinações simples e com repetição - Teoria. a combinação de m elementos tomados p a p. = (*) (a divisão por p! desconta todas as variações. obiações siles - Defiição obiações siles e co reetição - Teoria osidereos u cojuto X co eleetos distitos. No artigo Pricíios Multilicativos e Arrajos - Teoria, aredeos a calcular o úero de arrajos de eleetos

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Autovetor e Autovalor de um Operador Linear

Autovetor e Autovalor de um Operador Linear Autovetor e Autovalor de um Operador Linear Definição Seja T : V V um operador linear. Um vetor v V, v 0, é dito um autovetor de T se existe um número real λ tal que T (v) = λv. O número real λ acima é

Leia mais

Equações Recorrentes

Equações Recorrentes Filipe Rodrigues de S oreira Graduado e Egeharia ecâica Istituto Tecológico de Aeroáutica (ITA) Julho 6 Equações Recorretes Itrodução Dada ua seqüêcia uérica, uitas vezes quereos deteriar ua lei ateática,

Leia mais

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) A ) C ) B ) A ) E ) C ) E ) D ) E ) D ) A ) E ) B ) D ) B ) A ) E ) E ) B ) Aulada ) A 0) D ) A 0) B )

Leia mais

Métodos iterativos. Métodos Iterativos para Sistemas Lineares

Métodos iterativos. Métodos Iterativos para Sistemas Lineares Métodos iterativos Métodos Iterativos para Sistemas Lieares Muitos sistemas lieares Ax = b são demasiado grades para serem resolvidos por métodos directos (por exemplo, se A é da ordem de 10000) á que

Leia mais

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T.

Capítulo 4 CONDUÇÃO BI-DIMENSIONAL, REGIME PERMANENTE. ρc p. Equação de calor (k cte e sem geração, coordenadas cartesianas): $ # % y k T. Capítulo 4 CONDUÇÃO BI-DIMENSIONAL REGIME PERMANENE ρc p t =! # x k " x $ &! # % y k " y $ &! % z k $ # &!q " z % < q Equação de calor (k cte e se geração coordeadas cartesiaas): x y = 4.- Método de separação

Leia mais

Sumário. 1 Introdução 2. 2 Tópicos em Álgebra Linear Matrizes Produto de Matrizes Matrizes Transpostas 5. 2.

Sumário. 1 Introdução 2. 2 Tópicos em Álgebra Linear Matrizes Produto de Matrizes Matrizes Transpostas 5. 2. Suário Itrodução Tópicos e Álgebra Liear 4. Matrizes 4. Produto de Matrizes. Matrizes Traspostas.4 Fução Traço 6. Escaloaeto de Matrizes e Posto de ua Matriz 6.6 Matrizes Ivertíveis 7.7 Deteriates 8.8

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas Resolução das Questões Objetivas Questão : Seja f : R R dada por f ( x) = µ x + 0x + 5, ode µ 0 Teos que f ( x ) > 0 para todo x R, se e soete se, i) µ > 0 ; ii) A equação µ x + 0x + 5 = 0 ão possui solução

Leia mais

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia

Elaboração: Prof. Octamar Marques Resolução: Profa. Maria Antônia Gouveia SALVADOR-BA Forado pessoas para trasforar o udo. Tarefa: RESOLUÇÃO DA ª AVALIAÇÃO DE MATEMÁTICA ALUNOA: ª série do esio édio Elaboração: Prof. Octaar Marques Resolução: Profa. Maria Atôia Gouveia Tura:

Leia mais

Problema de transporte

Problema de transporte Departaeto de Egeharia de Produção UFPR 38 Problea de trasporte Visa iiizar o custo total do trasporte ecessário para abastecer cetros cosuidores (destios) a partir de cetros forecedores (origes) a1, a2,...,

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes.

Diagonalização de Operadores. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V são linearmente independentes. Teorema Autovetores associados a autovalores distintos de um operador linear T : V V

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo:

FORMAS QUADRÁTICAS. Esta forma quadrada pode ser reescrita em forma matricial, segundo: PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ COQ 897- OIIZAÇÃO DE PROCESSOS- II/ FORAS QUADRÁICAS Em a epressão geral das formas quadráticas é: a a f (, ) cbb a, cujas derivadas parciais são: f(, ) b a a f(,

Leia mais

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas

INTRODUÇÃO AOS MÉTODOS NUMÉRICOS. Ajuste de Curvas INTRODUÇÃO AOS MÉTODOS NUMÉRICOS Ajuste de Curvas Itrodução No capítulo aterior vios ua fora de trabalhar co ua fução defiida por ua tabela de valores, a iterpolação polioial. Cotudo, e sepre a iterpolação

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Lista 4 - MAT 137 -Introdução à Álgebra Linear 2017/II 1. Entre as funções dadas abaixo, verifique quais

Leia mais

n n ...

n n ... 6. Álgebra Matricial Defiição : Um couto de ( m, ) úmeros (reais ou complexos) arraados em uma forma retagular de m lihas e coluas: a a a. a a a a. a..... a a a. a 2 3 2 22 23 2 m m2 m3 m é chamada de

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos eercícios da aula prática 6 MATRIZES DETERMINANTES a) Epadido ao logo da primeira

Leia mais

12/09/2017. SOMA DE n TERMOS TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TERMO GERAL

12/09/2017. SOMA DE n TERMOS TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TOP DINÂMICO + ENEM TERMO GERAL /9/7 PROGRESSÃO ARIMÉICA QUANDO SOMA-SE UM MESMO VALOR A CADA ERMO A RAZÃO É A DIFERENÇA ENRE UM ERMO E O SEU ANECESSOR ERMO CENRAL A MÉDIA ARIMÉICA DOS EXREMOS RAZÃO POSIIVA, P.A. CRESCENE, RAZÃO NEGAIVA,

Leia mais

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log

Questão 01. 4, com a e b números reais positivos. Determine o valor de m, número real, para que a. Considere log 0 IME "A ateática é o alfabeto co que Deus escreveu o udo" Galileu Galilei Questão 0 Cosidere log b a 4, co a e b úeros reais positivos. Deterie o valor de, úero real, para que a equação x 8 x log b ab

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

REVISÃO: ANÁLISE DE TENSÕES

REVISÃO: ANÁLISE DE TENSÕES REVISÃO: ANÁLISE DE ENSÕES Fadiga dos Materiais Metáicos Prof. Caros Batista ESADO DE ENSÃO EM UM PONO O estado gera de tesão e u oto de u coro e equiíbrio ode ser reresetado or 6 cooetes: O eso estado

Leia mais

META: Apresentar o conceito de módulo de números racionais e sua representação

META: Apresentar o conceito de módulo de números racionais e sua representação Racioais META: Apresetar o coceito de ódulo de úeros racioais e sua represetação decial. OBJETIVOS: Ao fi da aula os aluos deverão ser capazes de: Idetificar a fora decial de u úeros racioal. Idetificar

Leia mais

(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA:

(d) p(λ) = λ(λ + 1) (b) 4 (c) 1 (d) Seja A uma matriz n n. Assinale a alternativa FALSA: UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno Costa, Luiz Carlos Guimarães, Mário de Oliveira, Milton Ramirez, Monique Carmona, Nilson Bernardes e Nilson Roberty

Leia mais

Teoria Espectral em Otimização Combinatória

Teoria Espectral em Otimização Combinatória Pesquisa Operacioal a Sociedade: Educação, Meio Abiete e Desevolvieto a 5/9/6 oiâia, O eoria Espectral e Otiização Cobiatória [ 5 ] Pesquisa Operacioal a Sociedade: Educação, Meio Abiete e Desevolvieto

Leia mais

Problemas fundamentais da teoria da aproximação funcional

Problemas fundamentais da teoria da aproximação funcional . 24 GAZETA DE MATEM ATIÇA Cosequêcias : ) Caso b>a. a É claro que o acotecieto A 2 Ai é -0 a certeza, isto é, j?(.í4) =. Coo para é AiAj = 0, podeos escrever: * a F- p(a) ^ ou ou aida &

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

TEORIA DE SISTEMAS LINEARES

TEORIA DE SISTEMAS LINEARES Ageda. Algebra Liear (Parte I). Ativadades IV Profa. Dra. Letícia Maria Bolzai Poehls /0/00 Potifícia Uiversidade Católica do Rio Grade do Sul PUCRS Faculdade de Egeharia FENG Programa de Pós-Graduação

Leia mais

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3.

BM&F Câmara de Ativos Taxas de Referência e Seus Limites de Variação Para a Determinação do Túnel de Taxas do Sisbex. - Versão 3. BM&F Câara de Ativos s de Referêcia e Seus Liites de Variação Para a Deteriação do Túel de s do Sisbex - Versão 3.0-1 Itrodução. Neste docueto apresetaos u procedieto pelo qual as taxas de referêcia da

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mateática para Ecooia Les Aulas 4 e 5 Márcia Azaha Ferraz Dias de Moraes 5 e 3//6 (co restrição) Otiização Não Codicioada: Métodos de otiização dos extreos relativos da fução objetivo: Todas as variáveis

Leia mais

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e

(b) A não será diagonalizável sobre C e A será diagonalizável sobre R se, e Q1. Sejam A M 6 (R) uma matriz real e T : R 6 R 6 o operador linear tal que [T ] can = A, em que can denota a base canônica de R 6. Se o polinômio característico de T for então poderemos afirmar que: p

Leia mais

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações. Novas perações com atrizes: lgumas de Suas ropriedades e plicações toiel Nogueira da Silva e Valdair Bofim Itrodução: presete trabalho origiou-se durate o desevolvimeto de um projeto do rograma Istitucioal

Leia mais

. Dessa forma, quanto menor o MSE, mais a imagem

. Dessa forma, quanto menor o MSE, mais a imagem Uiversidade Federal de Perambuco CI / CCEN - Área II 1 o Exercício de Cálculo Numérico ( 18 / 06 / 2014 ) Aluo(a) 1- Questão 1 (2,5 potos) Cosidere uma imagem digital como uma matriz bidimesioal de dimesões

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4.

MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de T ( p(x) ) = p(x + 1) p(x), (a) 8, (b) 5, (c) 0, (d) 3, (e) 4. MAT2458 ÁLGEBRA LINEAR PARA ENGENHARIA II 2 a Prova - 2 o semestre de 218 Q1. Considere a transformação linear T : P 3 (R) P 2 (R), dada por T ( p(x) ) = p(x + 1) p(x), para todo p(x) P 3 (R), e seja A

Leia mais

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z

1. Entre as funções dadas abaixo, verifique quais são transformações lineares: x y z MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 657- - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 8 I SEMESTRE DE Entre as funções dadas abaixo, verifique quais são transformações

Leia mais

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018

MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 MAT3458 ÁLGEBRA LINEAR II 2 a Lista de Exercícios 2 o semestre de 2018 1. Verdadeiro ou falso? Justifique suas respostas. (i) Existe uma transformação linear T : P 3 (R) M 2 (R) cuja matriz em relação

Leia mais

ÁLGEBRA LINEAR - MAT0024

ÁLGEBRA LINEAR - MAT0024 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 11 a Lista de exercícios

Leia mais

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores.

Parte I. Álgebra Linear. Sistemas Dinâmicos Lineares. Autovalores, autovetores. Autovalores, autovetores. Autovalores e Autovetores. Sistemas Dinâmicos Lineares Romeu Reginatto Programa de Pós-Graduação em Engenharia de Sistemas Dinâmicos e Energéticos Universidade Estadual do Oeste do Paraná Parte I Álgebra Linear Adaptado das notas

Leia mais

Interpolação. Interpolação Polinomial

Interpolação. Interpolação Polinomial Iterpolação Iterpolação Poliomial Objetivo Iterpolar uma fução f(x) cosiste em aproximar essa fução por uma outra fução g(x), escolhida etre uma classe de fuções defiidas (aqui, usaremos poliômios). g(x)

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS

A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS 2017-2018, NÚMERO 1 VOLUME 5 ISSN 2319-023X A IRRACIONALIDADE E TRANSCENDÊNCIA DE CERTOS LOGARITMOS Roald Siões de Mattos Pito Colégio Pedro II Liliaa Mauela G. C. da Costa Colégio

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT0032 11 a Lista de

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras;

(c) apenas as afirmações (II) e (III) são necessariamente verdadeiras; Q1. Considere o espaço vetorial R 4 munido do seu produto interno usual. Sejam B uma base de R 4, A M 4 (R) uma matriz e T : R 4 R 4 a transformação linear tal que [T ] B = A. Considere as seguintes afirmações:

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor.

Provas. As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Provas As notas da primeira e segunda prova já foram digitadas no Minha UFMG. Caso você não veja sua nota, entre em contato com o professor. Terceira prova. Sábado, 15/junho, 10:00-12:00 horas, ICEx. Diagonalização

Leia mais

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1).

GAAL - Exame Especial - 12/julho/2013. Questão 1: Considere os pontos A = (1, 2, 3), B = (2, 3, 1), C = (3, 1, 2) e D = (2, 2, 1). GAAL - Exame Especial - /julho/3 SOLUÇÕES Questão : Considere os pontos A = (,, 3), B = (, 3, ), C = (3,, ) e D = (,, ) (a) Chame de α o plano que passa pelos pontos A, B e C e de β o plano que passa pelos

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

Álgebra Linear I - Aula 20

Álgebra Linear I - Aula 20 Álgebra Linear I - Aula 20 1 Matrizes diagonalizáveis Exemplos 2 Forma diagonal de uma matriz diagonalizável 1 Matrizes diagonalizáveis Exemplos Lembramos que matriz quadrada a 1,1 a 1,2 a 1,n a 2,1 a

Leia mais

Distribuição dos Números Primos

Distribuição dos Números Primos Distribuição dos Núeros Prios Rafael Afoso Barbosa, Atôio Carlos Nogueira Bolsista do PET-Mateática da Uiversidade Federal de Uberlâdia Docete da Faculdade de Mateática da Uiversidade Federal de Uberlâdia

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 2- Resolução de Sistemas Não-lieares. 2.- Método de Newto. 2.2- Método da Iteração. 2.3- Método do Gradiete. 2- Sistemas Não Lieares de Equações Cosidere

Leia mais

2. Revisões e definições de matrizes

2. Revisões e definições de matrizes Apotametos de Processameto Adaptativo de Siais 2. Revisões e defiições de matrizes Breve revisão de propriedades de matrizes 1. Valores próprios e vectores próprios A cada matriz quadrada A, de dimesões

Leia mais

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012

Bases e dimensão. Roberto Imbuzeiro Oliveira. 22 de Março de 2012 Bases e dimesão Roberto Imbuzeiro Oliveira 22 de Março de 2012 1 Defiições básicas Nestas otas X é espaço vetorial com mais de um elemeto sobre o corpo F {R, C}. Uma base (ão ecessariamete LI) de X é um

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES AUTOVALORES E AUTOVETORES Prof a Simone Aparecida Miloca Definição 1 Uma tranformação linear T : V V é chamada de operador linear. Definição Seja T : V V um operador linear. existirem vetores não-nulos

Leia mais

Gabarito do Simulado da Primeira Fase - Nível Beta

Gabarito do Simulado da Primeira Fase - Nível Beta Gabarito do Simulado da Primeira Fase - Nível Beta Questão potos Serão laçados dois dados: um dado azul de 4 faces, umeradas de a 4, e um dado vermelho de 8 faces, umeradas de a 8 a Determie a probabilidade

Leia mais

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para

5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão Encontre os autovalores, os autovetores e a exponencial e At para 5 a Lista de Exercícios de Introdução à Álgebra Linear IMPA - Verão 2008 1. Encontre os autovalores, os autovetores e a exponencial e At para [ ] 1 1 1 1 2. Uma matriz diagonal Λ satisfaz a regra usual

Leia mais

3 a Avaliação Parcial - Álgebra Linear

3 a Avaliação Parcial - Álgebra Linear 3 a Avaliação Parcial - Álgebra Linear - 016.1 1. Considere a função T : R 3 R 3 dada por T(x, y, z) = (x y z, x y + z, x y z) e as bases de R 3 B = (1, 1, 1), (1, 0, 1), ( 1,, 0)} (a) Encontre [T] B B.

Leia mais

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Estatística Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice j)

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

A, B, C polinómios conhecidos X, Y polinómios desconhecidos

A, B, C polinómios conhecidos X, Y polinómios desconhecidos Equações Diofantinas 23 Considere-se a equação AX + BY = C A, B, C polinóios conhecidos X, Y polinóios desconhecidos Há soluções? Quantas soluções há para ua dada equação? E geral, a equação pode ser definida

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v.

(d) v é um autovetor de T se, e somente se, T 2 = T ; (e) v é um autovetor de T se, e somente se, T (v) = v. Q1. Seja V um espaço vetorial real de dimensão finita munido de um produto interno. Sejam T : V V um operador linear simétrico e W um subespaço de V tal que T (w) W, para todo w W. Suponha que W V e que

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Introdução a Matemática Superior Professora: Marina Sequeiros 3. Poliômios Defiição: Um poliômio ou fução poliomial P, a variável x, é toda expressão do tipo: P(x)=a x + a x +... a x + ax + a0, ode IN, a i, i = 0,,..., são úmeros reais chamados coeficietes e as parcelas

Leia mais

Propriedades. 1) Combinação linear de linhas duma matriz soma de uma linha com outra linha multiplicada por um factor multiplicativo

Propriedades. 1) Combinação linear de linhas duma matriz soma de uma linha com outra linha multiplicada por um factor multiplicativo ropriedades ) Combiação liear de lihas duma matriz soma de uma liha com outra liha multiplicada por um factor multiplicativo Eemplo: dicioar à liha 3 a liha multiplicada por um factor multiplicativo m

Leia mais

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente.

(I) T tem pelo menos um autovalor real; (II) T é diagonalizável; (III) no espaço vetorial real R n, o conjunto {u, v} é linearmente independente. Q1. Sejam n um inteiro positivo, T : C n C n um operador linear e seja A = [T ] can a matriz que representa T em relação à base canônica do espaço vetorial complexo C n. Suponha que a matriz A tenha entradas

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-458 Álgebra Linear para Engenharia II Terceira Lista de Eercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Seja V um espaço vetorial

Leia mais

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru

Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru 1 Produto Interno - Mauri C. Nascimento - Depto. de Matemática - FC UNESP Bauru Neste capítulo vamos considerar espaços vetoriais sobre K, onde K = R ou K = C, ou seja, os espaços vetoriais podem ser reais

Leia mais

3 a. Lista de Exercícios

3 a. Lista de Exercícios Última atualização 07/05/008 FACULDADE Engenharia Disciplina: Álgebra Linear Professor(: Data / / Aluno(: urma a Lista de Exercícios Dentre as aplicações, as mais importantes são as aplicações lineares

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho

Segunda prova de Álgebra Linear - 01/07/2011 Prof. - Juliana Coelho Segunda prova de Álgebra Linear - 01/07/011 Prof - Juliana Coelho JUSTIFIQUE SUAS RESPOSTAS! Questões contendo só a resposta, sem desenvolvimento ou justificativa serão desconsideradas! QUESTÃO 1, pts

Leia mais

Parte 3 - Produto Interno e Diagonalização

Parte 3 - Produto Interno e Diagonalização Parte 3 - Produto Interno e Diagonalização Produto Escalar: Sejam u = (u 1,..., u n ) e v = (v 1,..., v n ) dois vetores no R n. O produto escalar, ou produto interno euclidiano, entre esses vetores é

Leia mais