Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias"

Transcrição

1 Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar a posição de um corpo em movimeto e que apeas se coece a sua velocidade ou a sua aceleração. No fudo quer determiar-se uma fução descoecida utilizado certos dados relacioados por uma equação que cotém pelo meos uma das derivadas dessa fução. Estas equações camam-se equações às derivadas ou equações difereciais. Tal como acotece com o cálculo do itegral de uma fução os métodos aalíticos para a resolução de equações difereciais aplicam-se apeas a certos tipos de problemas. Por isso recorre-se com frequêcia ao uso de métodos uméricos para obter a solução de uma equação diferecial sueita a uma dada codição.. Defiição e coceitos básicos de equações difereciais Uma equação diferecial é uma equação que evolve uma fução descoecida (icógita e suas derivadas. Defiição: Sea uma fução de x e um úmero iteiro positivo etão uma relação de igualdade que evolva x... ( é camada uma equação diferecial ordiária (EDO. d d Exemplo: e dx dx Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

2 Se a fução descoecida depede de mais do que uma variável as derivadas que aparecem a equação diferecial são derivadas parciais e a equação cama-se equação diferecial parcial (EDP. d Exemplo: 4 d 0 dt dx A ordem de uma equação diferecial é a ordem da derivada mais elevada da fução icógita presete a equação. Exemplos: Equação Diferecial Ordiária Ordem x São do tipo f(x d dx 3 d 3 dx d dx 5x ( 4 -x ( 5 4xxe x 3 x 3 ( (4 3 4 f(x (3 f(x (4 f(x (3 M M M Uma solução de uma equação diferecial a fução icógita e a variável idepedete x é uma fução (x que verifica a equação para todo o x. Exemplo: ( x c se( x c cos( x (com c c costates arbitrárias é solução da equação diferecial '' 4 0. Sedo ( x c se( x c cos( x Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

3 ' ( x c cos( x c se( x ' ( ' x 4cse( x 4c cos( x substituido a equação diferecial vem que ( c se( x 4c cos( x 4( c se( x c cos( x 0 4 isto é verificam a equação. Uma solução particular (ou itegral particular de uma equação diferecial é qualquer solução da mesma. A solução geral (ou itegral geral de uma equação diferecial é o couto de todas as soluções. Exemplo: ( x c se( x c cos( x com c c IR é a solução geral da equação diferecial '' 4 0 ; equato ( x se( x cos( x é uma solução particular com c c. Um problema de valor iicial (PVI cosiste uma equação diferecial utamete com codições relativas à fução icógita e suas derivadas dadas para o mesmo valor da variável idepedete. Exemplo: '' 4 0 (0 0 ' (0 PVI de ª ordem. Págia 3 de 4 Resolução Numérica de Equações Difereciais Ordiárias

4 Uma solução de um PVI é uma fução f(x que satisfaz a equação diferecial e todas as codições relativas à fução icógita. Vamos a seguir ver métodos uméricos para a resolução de EDO s.. Métodos Numéricos para a resolução de Equações Difereciais Ordiárias Defiição do problema Neste capítulo cosideraremos o problema de determiar a fução (x que satisfaz simultaeamete a equação diferecial (ª ordem e a codição iicial: '(x f(x(x (x 0 0 x x 0 [ ab] [ ab] (7. Este é camado um problema de valor iicial (PVI de ª ordem. Existêcia e uicidade de solução Teorema: Sea f defiida e cotíua em D{(x: a x b IR } com a e b df fiitos. Sea d 0 0 cotíua e limitada em D. Etão x [ ab] e IR problema (7. tem solução úica cotiuamete difereciável para x [ ab]. o Estudaremos métodos camados métodos de variável discreta para resolver problemas de valor iicial da forma (7.. Págia 4 de 4 Resolução Numérica de Equações Difereciais Ordiárias

5 Assim estes métodos determiam aproximações para a solução (x um couto discreto de potos x 0 x x... da variável idepedete. Isto é a solução aproximada obtida é apresetada por uma tabela de valores ( x... ode (x. Para obter a solução (x em potos x [ab] diferetes de x ( 0... pode usarse iterpolação. Vamos cosiderar apeas o caso em que o passo é costate tedo-se x x x 0 ( 0... Apresetaremos apeas métodos da classe de métodos de passo úico isto é o valor de pode ser calculado se apeas é coecido. Supoamos que o PVI (7. satisfaz as codições de existêcia e uicidade de solução vai tetar-se ecotrar uma solução umérica para o problema. b a Cosiderem-se m subitervalos de [a b] (m e sea x x 0 ode m 0...m e x [ab]. Ao couto I {x 0 x...x m } obtido da forma aterior cama-se rede ou mala de [ab]. O obectivo dos métodos uméricos é o cálculo das aproximações... m para as soluções exactas (x (x... (x m. Notação: (x 0...m solução exacta do PVI os potos x I (x sigifica que é aproximação para (x x I. Págia 5 de 4 Resolução Numérica de Equações Difereciais Ordiárias

6 .. Método de série de Talor... Método de Talor de ª ordem ( método de Euler O método de Euler é um método de passo úico e o mais simples de todos os métodos uméricos para problemas de valor iicial. Cosideremos etão o problema defiido por (7.. Se é cotiuamete difereciável até à seguda ordem em [ab] e x x [ab] etão pela fórmula de Talor ' '' (x (x. (x ( ξ ode x < ξ < x. Dode da equação diferecial de (7. e de (7. cocluimos que (x (x.f(x (x '' ( ξ. '' Se é pequeo o termo ( ξ será também pequeo e podemos escrever (x (x.f(x (x. (7. O método de Euler cosiste etão em calcular recursivamete a sucessão { } através das fórmulas: 0 (x0.f(x 0... m (7.3. Págia 6 de 4 Resolução Numérica de Equações Difereciais Ordiárias

7 Exemplo ' x Acar aproximações para a solução do PVI ( 0 a mala [0] com 0. usado o método de Euler. Resolução: Tem-se que x 0 0 e 0. b a 0 Além disso m 5 0. m - 4. A fórmula de recorrêcia será: 0.f(x * ( x ª iteração 0 0.*(x *(0 x ª iteração 0.*(x - 0.*(0..04 x Págia 7 de 4 Resolução Numérica de Equações Difereciais Ordiárias

8 3ª iteração 3 0.*(x *( x ª iteração *(x ( x ª iteração *(x *( x As soluções aproximadas para o PVI a mala [0 ] com passo 0. são { }. Erros de discretização Supodo que se coece exactamete o valor de (x ao aproximar (x (x.f(x itroduz-se um erro camado erro de trucatura (ou discretização local. '' Este erro é igual a ( ξ ξ ] x x [ itroduzido o passo de x para x. (x e é o erro de trucatura Cotudo ao calcular uma aproximação para (x pelo método de Euler (7.3 o valor usado é uma aproximação para (x. O valor foi calculado usado uma Págia 8 de 4 Resolução Numérica de Equações Difereciais Ordiárias

9 aproximação - para (x - e assim sucessivamete. Assim o cálculo da aproximação para (x tem-se ão só o erro de discretização local itroduzido esse passo mas também o erro resultate da acumulação de erros de discretização local itroduzido os passos ateriores. e x cama-se erro de trucatura (ou discretização global. A ( Covergêcia do método de Euler A aproximação da solução um poto x coverge para a solução exacta esse poto (x quado o passo tede para zero isto é Cometários lim ( x 0. x x 0 O método de Euler ão é muito usado uma vez que os resultados obtidos têm em geral pouca precisão a ão ser que se seleccioe uma valor para o passo demasiado pequeo o que tora o processo demasiado leto. O método foi deduzido trucado o desevolvimeto dado pela fórmula de Talor de seguda ordem ates do termo em.... Método de Talor de ª ordem Cosideremos o problema de valor iicial (7. e seam x [ ab] x. Etão se tem derivadas cotíuas até à terceira ordem em [ab] pela fórmula de Talor Págia 9 de 4 Resolução Numérica de Equações Difereciais Ordiárias

10 Págia 0 de 4 Resolução Numérica de Equações Difereciais Ordiárias Tem-se etão se x - x é pequeo. (x (x. (x (x '' ' Defie-se o método de Talor de ª ordem pela fórmula (x f.f(x (x ' 0 0 m ode: ( ( ( (. ' x.f x f x x f x f Exemplo Acar aproximações para a solução do PVI 0 ( x ' a mala [0] com 0. usado o método de Talor de ª ordem.. x x ( 6 (x (x. (x (x ''' 3 '' ' < < ξ ξ

11 Resolução Tem-se que x 0 0 e 0. b a 0 Além disso m 5 0. m - 4. método de Talor de ª ordem A fórmula de recorrêcia será: 0 0. * ( x * (- x x ª iteração 0.8* 0 0.8*x * 0.8* x ª iteração 0.8* 0.8*x *.0 0.8* x Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

12 3ª iteração 3 0.8* 0.8*x * * x ª iteração 4 0.8* 3 0.8*x * * x ª iteração 5 0.8* 4 0.8*x * * x As soluções aproximadas para o PVI a mala [0 ] com passo 0. são { }. De modo similar se defie o método de Talor de 4ª ordem: 0 (x0.f(x 3 ' f (x 6 4 '' ''' f (x f (x m -. Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

13 .. Métodos de Ruge-Kutta Os métodos de Ruge-kutta foram desevolvidos com o obectivo de produzirem resultados com a mesma precisão que os obtidos pelo método de Talor mas evitado o cálculo das derivadas. Limitar-os-emos a apresetar as fórmulas.... Métodos de Ruge-Kutta de ª ordem As fórmulas têm a forma geral ( x 0 0 [ a. f ( x b. f ( x α. β..f ( x ] 0... m -. sedo as costates a b α e β escolidas de modo a que o erro de trucatura local do método sea proporcioal a 3 ª ordem. Tal codição implica a - b α β b tal como o método de Talor de sedo b arbitrário. Substituido a fórmula aterior a α e β obtemos ( b f ( x b. f x...f ( x b b 0... m -. Págia 3 de 4 Resolução Numérica de Equações Difereciais Ordiárias

14 Apresetaremos aqui os dois métodos mais coecidos de Ruge-Kutta de ª ordem.... Método de Euler melorado ( ou método de Heu Correspode à escola b ( x 0 0 k f k f ( k k ( x ( x. k 0... m. Exemplo: Acar aproximações para o PVI o método de Euler melorado. ' x ( 0 a mala [0] com 0. usado Resolução: Tem-se que x 0 0 e 0. b a 0 Além disso m 5 0. m - 4. Págia 4 de 4 Resolução Numérica de Equações Difereciais Ordiárias

15 A fórmula de recorrêcia será: 0 k f k f 0.* ( k k ( x x - ( x * k 0. 8* x 0.8 * º iteração: 0 0.*(k k k x 0-0 k 0 k 0 k 0.8x k 0.8*0 0.8*.8 k 0. dode 0.*( e x º iteração: 0.*(k k k x - k 0..0 k 0.8 k 0.8x k 0.8*0. 0.8*.0.8 k dode.0 0.*( e x Págia 5 de 4 Resolução Numérica de Equações Difereciais Ordiárias

16 3º iteração: 3 0.*(k k k x k k k 0.8x k 0.8* * dode *( e x º iteração: *(k k k x 3 3 k k k 0.8x k 0.8* * dode *( e x º iteração: *(k k k x 4 4 k k k 0.8x k 0.8*( dode *( e x Págia 6 de 4 Resolução Numérica de Equações Difereciais Ordiárias

17 As soluções aproximadas para o PVI a mala [0 ] com passo 0. são: { }.... Método de Euler modificado Correspode à escola b ( x 0 0. k k ( f x k f x. k 0... m -. Exemplo: Acar aproximações para o PVI o método de Euler modificado. Resolucão: ' x a mala [0] com 0. usado ( 0 Tem-se que x 0 0 e 0. b a 0 Além disso m 5 m Págia 7 de 4 Resolução Numérica de Equações Difereciais Ordiárias

18 A fórmula de recorrêcia será: k k 0 x f - 0. * k ( x * k 0. 9* x 0.9 * º iteração: 0 0.*k k 0.9*(x k 0.9*(0.9 k 0. dode 0.*0..0 e x º iteração: 0.*k k 0.9*(x -.9 k 0.9*( k 0.6 dode.0 0.* e x Págia 8 de 4 Resolução Numérica de Equações Difereciais Ordiárias

19 3º iteração: 3 0.*k k 0.9*(x -.9 k 0.9*( dode * e x º iteração: *k k 0.9*(x k 0.9*( dode * e x º iteração: *k k 0.9*(x k 0.9*( k dode *( e x Págia 9 de 4 Resolução Numérica de Equações Difereciais Ordiárias

20 Págia 0 de 4 Resolução Numérica de Equações Difereciais Ordiárias As soluções aproximadas para o PVI a mala [0 ] com passo 0. são: { } Métodos de Ruge-Kutta de 4ª ordem Fórmulas de Ruge-Kutta de ordem superior podem ser desevolvidas com o mesmo obectivo. A mais usada é a que correspode ao método coecido por método de Ruge-Kutta de 4ª ordem k f(x k k f(x k k f(x k f(x k k k k (k 6 (x m Exemplo: Acar aproximações para o PVI 0 ( x ' a mala [0] com 0. usado o método de Euler modificado.

21 Resolucão: Tem-se que x 0 0 e 0. b a 0 Além disso m 5 0. m - 4. A fórmula de recorrêcia será: k k k k x f f f - 0. * 6 ( k k k k ( x * k ( x * k 0. 9* x 0. 9* x 0.9 * 0.9* ( x * k 0. 88* x 0. 88* Cálculos auxiliares: k f x ( x k f f f f x ( x 0. 0.* k ( x 0. 0.* ( x ( x 0. 0.* x 0.* 0. ( x * 0.* x ( 0.9 * 0.* x * x 0.9 *.9 Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

22 k 3 f f f f x ( x 0. 0.* k ( x 0. 0.* ( 0.9 * x 0.9 *.9 ( x * x 0.09 * 0.9 ( x * 0.09 * x ( 0.9* 0.09 * x 0.9* x 0.9*.9 k 4 f f f f x ( x * k3 ( x * ( 0.9* x 0.9*.9 ( x * x 0.8 * 0.38 ( x * 0.8 * x ( 0.88 * 0.8 * x 0.88 * x 0.88 *.88 Etão * 0. 6 ( k k k k * (( x - ( 0. 9* x 0.9 *. 9 ( 0. 9* x 0.9 *. 9 ( * x 0.88 *. 88 * ( * x * * * x º iteração: * *x Págia de 4 Resolução Numérica de Equações Difereciais Ordiárias

23 * * x º iteração: * *x * * x º iteração: * *x * * x º iteração: * *x * * Págia 3 de 4 Resolução Numérica de Equações Difereciais Ordiárias

24 x º iteração: * *x * * e x As soluções aproximadas para o PVI a mala [0 ] com passo 0. são: { }. Págia 4 de 4 Resolução Numérica de Equações Difereciais Ordiárias

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial

Capítulo 7: Equações Diferenciais Ordinárias. 1. Problema de valor inicial Capítulo 7: Equações Diferenciais Ordinárias. Problema de valor inicial Definição: Sea uma função de e n um número inteiro positivo então uma relação de igualdade que envolva... n é camada uma equação

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamatieses Itegradas (FAI) www.fai.com.br BAZÃO, Vaderléa Rodrigues; MEIRA, Suetôio de Almeida; NOGUEIRA, José Roberto. Aálise de Fourier para o estudo aalítico da equação da oda. Omia Exatas,

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

Notas de Aula. Equações Diferenciais Numéricas

Notas de Aula. Equações Diferenciais Numéricas Notas de Aula Equações Difereciais Numéricas Rodey Josué Biezuer Departameto de Matemática Istituto de Ciêcias Exatas ICEx) Uiversidade Federal de Mias Gerais UFMG) Notas de aula da disciplia Equações

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Equações Diferenciais (ED) Resumo

Equações Diferenciais (ED) Resumo Equações Difereciais (ED) Resumo Equações Difereciais é uma equação que evolve derivadas(diferecial) Por eemplo: dy ) 5 ( y: variável depedete, : variável idepedete) d y dy ) 3 0 y ( y: variável depedete,

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Ajuste de Curvas pelo Método dos Quadrados Mínimos

Ajuste de Curvas pelo Método dos Quadrados Mínimos Notas de aula de Métodos Numéricos. c Departameto de Computação/ICEB/UFOP. Ajuste de Curvas pelo Método dos Quadrados Míimos Marcoe Jamilso Freitas Souza, Departameto de Computação, Istituto de Ciêcias

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Sinais de Tempo Discreto

Sinais de Tempo Discreto Siais de Tempo Discreto Siais defiidos em istates discretos do tempo t 0, t 1, t 2,..., t,... são siais de tempo-discreto, deotados pelos símbolos f(t ), x(t ), y(t )... (sedo um iteiro). x(t )... t 1

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

ALGORITMO PARA A RAIZ N-ÉSIMA DE UM REAL

ALGORITMO PARA A RAIZ N-ÉSIMA DE UM REAL ALGORITMO PARA A RAIZ N-ÉSIMA DE UM REAL Marly Moreira Dias * Alexadre Martis Dias ** Carlos Alberto V. de Melo *** Istituto de Eg. e Ciêcias Exatas. Uiversidade de Alfeas. Caixa Postal 23. 37130-000 Alfeas,

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

y x f x y y x y x a x b

y x f x y y x y x a x b 50 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Uma equação diferencial é uma equação que envolve uma função desconecida e algumas de suas derivadas. Se a função é de uma só variável, então a equação

Leia mais

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x):

APROXIMAÇÃO POR MÍNIMOS QUADRADOS. Consideremos a seguinte tabela de valores de uma função y = f(x): APROXIAÇÃO POR ÍNIOS QUADRADOS Cosideremos a seguite tabela de valores de uma fução y = f(x): i 3 x i 6 8 y i 8 Pretede-se estimar valores da fução em potos ão tabelados. Poderíamos utilizar o poliómio

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL Editora da Uiversidade Estadual de Marigá Reitor: Prof Dr Gilberto Cezar Pavaelli Vice-Reitor: Prof Dr Agelo Priori Pró-Reitora de Pesquisa e Pós-Graduação:

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL 1. Itrodução. Teorema Cetral do Limite 3. Coceitos de estimação potual 4. Métodos de estimação potual 5. Referêcias Estatística Aplicada à Egeharia 1 Estatística

Leia mais

Os testes da Comparação, Raiz e Razão e Convergência absoluta

Os testes da Comparação, Raiz e Razão e Convergência absoluta Os testes da Comparação, Raiz e Razão e Covergêcia absoluta Prof. Flávia Simões AULA 4 Os testes de Comparação Comparar uma série dada com uma que já sabemos se coverge ou diverge. Usamos geralmete as

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

APROXIMAÇÕES AO FILTRO IDEAL

APROXIMAÇÕES AO FILTRO IDEAL APROXIMAÇÕE AO FILTRO IDEAL INTRODUÇÃO No capítulo estudaram-se vários tipos de fuções de trasferêcia de primeira e de seguda ordem, que são ecessárias para realizar qualquer fução de trasferêcia Neste

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

Lei de Fourier da condução

Lei de Fourier da condução Aula 11 Equação de Fourier da codução de calor/ Lei de Fick da difusão Solução estacioária: Equação de Laplace Equação de Poisso Método da relaxação Codições froteira (Dirichlet e vo Neuma) 1 Lei de Fourier

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Govero do Estado do Rio Grade do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Cálculo IV: Métodos da Física-Matemática

Cálculo IV: Métodos da Física-Matemática Uiversidade Federal do Rio de Jaeiro - UFRJ Istituto de Matemática - IM Departameto de Matemática Cálculo IV: Métodos da Física-Matemática Professor Adá J. Corcho Ferádez Rio de Jaeiro-RJ, 22 de ovembro

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (IV ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Ídice 4 4 Defiição e exemplos 4 Subespaços4 4 Cojutos

Leia mais

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações. Novas perações com atrizes: lgumas de Suas ropriedades e plicações toiel Nogueira da Silva e Valdair Bofim Itrodução: presete trabalho origiou-se durate o desevolvimeto de um projeto do rograma Istitucioal

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos

objetivo Exercícios Meta da aula Pré-requisitos Exercícios A U L A 6 Meta da aula Aplicar o formalismo quâtico estudado as Aulas a 5 deste módulo à resolução de um cojuto de exercícios. objetivo Esperamos que, após o térmio desta aula, você teha cosolidado

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO LIMITES. Itrodução: Usamos a palavra ite o osso cotidiao para idicar, geericamete, um poto que pode ser evetualmete

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

Cálculo III - SMA 333. Notas de Aula

Cálculo III - SMA 333. Notas de Aula Cálculo III - SMA 333 Notas de Aula Sumário 1 Itrodução 2 2 Seqüêcias Numéricas 6 2.1 Defiição, Exemplos e Operações........................ 6 2.2 Seqüêcias Limitadas e Ilimitadas........................

Leia mais

Variáveis Aleatórias e Distribuições de Probabilidade

Variáveis Aleatórias e Distribuições de Probabilidade PROBABILIDADES Variáveis Aleatórias e Distribuições de Probabilidade BERTOLO Fução de Probabilidades Vamos cosiderar um experimeto E que cosiste o laçameto de um dado hoesto. Seja a variável aleatória

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Les 201 Matemática Aplicada à Economia. Relações entre CMg e CMe. Aulas Relações entre CMg e CMe. dct. dcme. CMe = = = =

Les 201 Matemática Aplicada à Economia. Relações entre CMg e CMe. Aulas Relações entre CMg e CMe. dct. dcme. CMe = = = = Les 0 Matemática Aplicada à Ecoomia Aulas -4 Derivadas Aplicação em Ecoomia Derivadas de Ordem Superiores Derivadas Parciais Determiate Jacobiao 9 e 0/09/06 Aplicações da a. Derivada em Ecoomia Dada a

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

Método de Monte Carlo. Técnica de redução da variância. Monte Carlo Method. Variance reduction technique

Método de Monte Carlo. Técnica de redução da variância. Monte Carlo Method. Variance reduction technique Método de Mote Carlo ARTIGO ORIGIAL / ORIGIAL ARTICLE Método de Mote Carlo. Técica de redução da variâcia Mote Carlo Method. Variace reductio techique Aa Vergíia Libos Messetti* Simoe de Castro Queiroz**

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

SEQUÊNCIAS IMPORTANTES PARA O LIMITE

SEQUÊNCIAS IMPORTANTES PARA O LIMITE começado a eteder CÁLCULO Volume Um - SEQUÊNCIAS IMPORTANTES PARA O LIMITE Uma sequêcia ifiita de úmeros () é covergete a um úmero o quado () se tora (ou é sempre) igual a o, ou se tora cada vez mais próima

Leia mais

Carlos Fabiano Rosa. Série de Taylor e Aplicações

Carlos Fabiano Rosa. Série de Taylor e Aplicações Carlos Fabiao Rosa Série de Taylor e Aplicações UNIVERSIDADE FEDERAL DE SANTA CATARINA Floriaópolis - SC 2013 Carlos Fabiao Rosa Série de Taylor e Aplicações Curso de Matemática - Habilitação Liceciatura

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA

CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA Itrodução CINÉTICA QUÍMICA FATORES DE INFLUÊNCIA - TEORIA A Ciética Química estuda a velocidade com a qual as reações acotecem e os fatores que são capazes de realizar ifluêcia sobre ela. A medida mais

Leia mais

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N Capítulo 3 Séries Numéricas 3. Geeralização da operação adição A operação adição ou soma é iicialmete defiida como a aplicação que a cada par de úmeros reais faz correspoder um úmero real, de acordo com

Leia mais

FENÔMENOS DE TRANSPORTE TERMODINÂMICA

FENÔMENOS DE TRANSPORTE TERMODINÂMICA UNIERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE TERMODINÂMICA CICLO DE POTÊNCIA E DE REFRIGERAÇÃO CALOR E TRABALHO Prof. Roberto ieira Pordeus Mossoró-RN

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Análise de Regressão Linear Múltipla I

Análise de Regressão Linear Múltipla I Aálise de Regressão Liear Múltipla I Aula 04 Gujarati e Porter, 0 Capítulos 7 e 0 tradução da 5ª ed. Heij et al., 004 Capítulo 3 Wooldridge, 0 Capítulo 3 tradução da 4ª ed. Itrodução Como pode ser visto

Leia mais

Experimento 1 Estudo da Lei de Hooke

Experimento 1 Estudo da Lei de Hooke Experimeto 1 Estudo da Lei de Hooke 1.1 Objetivos Físicos Verificação experimetal da lei de Hooke para uma mola helicoidal: Medida experimetal do módulo de rigidez do material μ. 1. Objetivos Didáticos

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais