RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS"

Transcrição

1 Cogreso de Métodos Nércos e Igeería 005 Graada, 4 a 7 de Jlo, 005 SEMNI, España 005 RESOLUÇÃO DE MODELOS FÍSICOS COM O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS Mara do Caro Cobra 1 *, Carlos Sereo e Alíro E. Rodrges 1: Departaeto de Egehara Cvl LSRE - Facldade de Egehara da Uversdade do Porto Ra Dr. Roberto Fras, s/, Porto, Portgal e-al: cobra@fe.p.pt, web: : Departaeto de Egehara Qíca LSRE - Facldade de Egehara da Uversdade do Porto Ra Dr. Roberto Fras, s/, Porto, Portgal e-al: arodrg@fe.p.pt, web: Palavras-chave: Método dos Eleetos Ftos Móves, Malhas Adaptatvas, Probleas de Reacção Dfsão Covecção Reso Mtos probleas da egehara e da cêca são odelzados por ssteas de eqações de reacção dfsão covecção. Neste trabalho cetraos a ossa ateção a slação érca de probleas evoltvos e espaços de desão dos, cjas solções exbe fretes abrptas óves, co o étodo dos eleetos ftos óves (MEFM) co aproxações de gra arbtráro. O algorto desevolvdo é aplcado a problea proveete da teora da cobstão. Os resltados ércos ostra qe o MEFM gera solções ércas de elevada precsão co úero redzdo de eleetos. Mostra tabé o elevado desepeho e fcoaldade do MEFM co aproxações de gra speror a. 1. INTRODUÇÃO O MEFM é a técca de alha adaptatva trodzda por K. Mller [1] e E doíos espacas de desão 1 o MEFM co aproxações leares te sdo aplcado por dversos atores. Baes [] apreseta as cotrbções as sgfcatvas dos trabalhos desevolvdos co aproxações leares e espaços de desão 1 e. A forlação do MEFM qe apresetaos decorre dos trabalhos de Sereo et al. [3] e Cobra et al. [4]. Neste trabalho o algorto baseado o MEFM co aproxações poloas e cada eleeto, de gra arbtráro, é aplcado a problea proveete da teora da cobstão doío espacal de desão. A dscretzação espacal faz-se cosderado a alha espacal úca, defda por a traglarzação cofore hexagoal do doío espacal e

2 aproxado a solção exacta e cada trâglo por a fção poloal. O oveto dos ós espacas é obtdo por zação da ora L do resído pesado co respeto às dervadas teporas da solção aproxada e cada poto de terpolação e co respeto às velocdades dos ós da alha espacal. Deste odo o MEFM perte deterar a solção aproxada e cada state ass coo a alha e qe essa solção está represetada.. PROBLEMAS EVOLUTIVOS O étodo dos eleetos ftos óves fo especalete desehado para a classe de probleas evoltvos odelzada por sstea de eqações do tpo, k k = + + t x y f, k ( ξ, t,, x, y ) g, k ( ξ, t,, x, y ) h ( ξ, t,, x, y ) (1) k = 1 k = 1 0, e qe as varáves depedetes são o tepo, t 0 e o espaço, ξ = ( x, y) Ω e a varável depedete é a fção vectoral e qe ( ξ, t). Por x estaos a represetar o vector das dervadas parcas de prera orde e orde a x de todas as fções copoetes de ; por y estaos a represetar o vector das dervadas parcas de prera orde e orde a y de todas as fções copoetes de. Adtos ada qe são váldas as codções cas, ( ξ,0) = ( ξ ) () 0, 0, a fção dada e codções de frotera de Drchelet, de Nea o de Rob O MÉTODO DOS ELEMENTOS FINITOS MÓVEIS O étodo dos eleetos ftos óves desevolve-se e das etapas. Icalete é feta a dscretzação espacal por eleetos ftos, pertdo qe os ós da alha se ova, dado orge a sstea de eqações dferecas ordáras e qe as cógtas são e cada state o valor da varável depedete os ós espacas ass coo a posção desses esos ós. Na segda fase este sstea é resolvdo recorredo a tegrador aproprado Teora e pleetação A dscretzação espacal faz-se cosderado a traglarzação cofore do doío espacal qe spoos ser rectâglo Ω = [ a, b] [ c, d]. Os vértces dos trâglos Ω defe a alha espacal. A traglarzação escolhda é hexagoal por cada ó espacal teror a Ω é vértce de 6 trâglos. E cada eleeto Ω, a solção

3 aproxada é defda sado coordeadas barcetrcas. O gra da aproxação, p, é o eso e todos os eleetos e ass as posções dos potos de terpolação, qe desgaos por ós locas, relatvaete aos vértces são fxas. O úero de ós locas é = ( p + )( p + 1) /. Desgaos por alha global a alha defda por todos os ós p locas e por g o úero de ós globas. U eleeto da alha global dz-se ó global e pode ser ó local teror a dado eleeto, pode ser ó local sobre a aresta o pode ser vértce. Desgaos por sporte de ó global a reão dos eleetos a qe pertece. Ua vez defda a aproxação eleeto a eleeto defos a solção aproxada se-dscreta, U = ( U,..., 1 U ) e Ω. Cada a das fções U, = 1..., depede do valor da aproxação o j-éso ó glbal, assocado k ao k-éso ó local do -éso eleeto fto,.e., de U, e da posção dos ós da alha espacal ζ = ( x, y ). A solção aproxada fca defda por l l l g U ( t) = Φ ( ζ ) U ( t), ζ Ω (3) k j, j= 1 E qe Φ j é a fção básca global. As eqações geras obtê-se defdo o resído assocado a cada a das fções U, = 1..., e exgdo qe as dervads teporas de U e ζ = ( x, y ) seja escolhdas de odo qe a fção k, l l l seja zada. I = 3.. Teros co segdas dervadas ( R ) dω (4) = 1 Ω Para o cálclo dos tegras sobre o sporte de ó espacal qe evolve segdas dervadas espacas optáos por savzar a solção aproxada a vzhaça do ó. E [4] ostráos qe, para a classe de probleas qe pretedeos resolver, basta calclar os tegras o teror dos eleetos, ao logo das arestas adjacetes a ó espacal e a aresta qe o coté caso o ó ão seja ó espacal. Deste odo é possível calclar todos os tegras recorredo a tegração érca, depedeteete do problea a tratar Estrtra da atrz do MEFM e Fções de pealzação A atrz qe defe o sstea de eqações ordáras, qe desgaos por atrz do MEFM, ao cotráro da atrz de assa dos eleetos ftos fxos, ão é defda postva, é apeas se-defda postva []. Tal coo e espaços de desão 1 as sglardades pode ocorrer por paralelso o por deforação da alha. As 3

4 sglardades da atrz do MEFM decorre do facto desta atrz ser obtda por processo de optzação e portato toda a foração reddate resltar e sglardade. O paralelso ocorre sepre qe a paraetrzação de degeera. A t deforação da alha pode levar a qe a área dos eleetos se ale o eso se tore egatva. Para cotorar os probleas proveetes das possíves sglardades da atrz do MEFM, optáos por ater a tlzação de fções de pealzação tal coo e [1,3-5]. As fções de pealzação são as defdas e [4], fções essas qe depede da área de cada eleeto,, P = ε S (4) e qe ε e S depede de 3 costates postvas, c1, c e c 3 a defr pelo tlzador. c é a área ía perssível para cada eleeto. As fções de pealzação ão 3 terfere a solção érca obtda, apeas pede a ocorrêca de sglardades a atrz do MEFM. 4. SIMULAÇÃO NUMÉRICA: EQUAÇÃO DE REACÇÃO - DIFUSÃO EM D A slação érca qe apresetaos procra resolver problea de cobstão escalar. O odelo ateátco para este problea evolve a eqação de reacção co dfsão. Apresetáos e [5] a solção e doíos espacas de desão 1. Cosdereos agora o problea doío espacal de desão. A eqação oralzada qe descreve este problea é δ = d + D + ( 1+ α ) e t x y (5) e qe a teperatra de a stra reagete sstea qíco é represetada pela fção. As varáves depedetes oralzadas são o tepo, t 0 e o espaço, δ e ( x, y) Ω = [ 0,1] [ 0,1]. As costates d, D = R, R, α e δ são parâetros qe αδ caracterza o sstea qíco. As codções cas e de frotera são expressas por ( x, y,0) = 1, ( x, y) Ω (0, y, t) = 0 (1, y, t) = 1, x t 0,0 y 1 ( x,0, t ) = 0 ( x,1, t ) = 1, y t 0,0 x 1 Para tepos peqeos a teperatra e toro da orge aeta gradalete. N (6) 4

5 dado state ocorre a gção e a teperatra passa rapdaete para valor perto de 1 para 1+ α. Esta varação é tato as rápda qato eor o valor do coefcete de dfsão d. Cosdereos para valores dos parâetros os referdos e [5], R = 5, α = 1 e δ = 30. Para valores do coefcete de dfsão cosdereos casos, d = 1 e d = 0,1. Para valores eores de d tereos fretes as abptas e a gção ocorre as cedo. Na fgra 1 podeos ver as hstóras de teperatra a orge para dferetes valores do coefcete de dfsão. Para d = 1 a gção ocorre o state t = 0, 89 eqato qe para d = 0,1 a gção ocorre o state t = 0, 4. Na fgra apresetaos os perfs da solção e evolção da alha para o caso de d = 0,1. Esta solção fo obtda co a alha cal fore, co 7 7 ós e aproxações cúbcas e cada eleeto. As 4 6 costates de pealzação sadas fora c = 10 e c = c = 10. Para as tolerâcas relatva e absolta do tegrador de EDO cosdero-se CONCLUSÕES O étodo e o algorto coptacoal costte a portate cotrbção para a resolção de probleas de evolção cjas solções apreseta regões de grade actvdade espacal qe se ove co o tepo. Apesar de a estrtra coplexa o MEFM, e espaços de desão, ostro-se efcaz, pertdo obter solções ércas precsas para problea da teora da cobstão. Os parâetros do MEFM são e úero elevado. O tlzador é lvre de escolher o úero de eleetos, a posção cal da alha espacal, o gra da aproxação, os valores das 3 costates de pealzação, o úero de potos para a qadratra e ada os valores da tolerâca para o tegrador de EDO. A escolha dos parâetros ão terfere a qaldade da solção o setdo de qe dferetes parâetros prodze solções de qaldade seelhate. O MEFM perte pos o cálclo de solções ércas de elevada precsão e lvres de osclações co peqeo úero de eleetos ftos óves. REFERÊNCIAS [1] K. Mller ad R.N. Mller, Movg Fte Eleets, SIAM Joral of Nercal Aalyss, Vol. 18, pp , (1981). [] M.J. Baes, Movg Fte Eleets, Claredo Press, Oxford, (1994). [3] C. Sereo, A.E. Rodrges, J. Vlladse, Solto of partal dfferetal eqatos systes by the ovg fte eleet ethod, Copyters ad Checal Egeergl, Vol. 16, pp , (199). [4] Mara do Caro Cobra, C. Sereo, A.E. Rodrges, A ovg fte eleet ethod for the solto of two-desoal te-depedet odels, Appled Nercal Matheatcs, Vol. 44, pp , (003). [5] Mara do Caro Cobra, C. Sereo, A.E. Rodrges, Applcatos of a ovg fte eleet ethod, Checal Egeerg Joral, Vol. 84, pp. 3-9, (001). 5

6 d=1 d= t Fgra 1. Hstóras de teperatra a orge para dferetes valores do coefcete de dfsão. Fgra. Solção e evolção da alha e para d = 0,1. 6

7 ACKNOWLEDGEMENTS The athors grateflly ackowledge FCT, Fdação para a Cêca e Tecologa, Project Grat POCI/EQU/6100/004, for the facal spport. 7

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i

Tecnologia de Grupo. 1. Justificativa e Importância da Tecnologia de Grupo. 2. Algoritmo de Ordenação Binária. = 1 se a máquina i Tecnologa de Grpo 1. Jstfcatva e Iportânca da Tecnologa de Grpo Tecnologa de grpos é conceto portante aplcado na foração de céllas de anfatra. A organzação do sstea de prodção e céllas de anfatra poss

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINIAS-JM Balthazar- Mao 3 Resolvedo u Problea de Codução de Calor Para troduzr o étodo das dfereças ftas de ua fora prátca vaos cosderar u problea de codução

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

A METHODOLOGY FOR DATA CLEANING OF WIND SPEED TIME SERIES

A METHODOLOGY FOR DATA CLEANING OF WIND SPEED TIME SERIES A METHODOLOGY FOR DATA CLEANING OF WIND SPEED TIME SERIES José F.M. Pessaha, Val L.O. Castella, Thataa J. Coceção, Debora D.J. Pea, Mara E. P. Macera CEPEL Cetro de Pesqsas de Eerga Elétrca fracsc@cepel.br

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II)

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II) Cálulo Nuéro Iterpolação Poloal Ajuste de Curvas (Parte II) Pro Jore Cavalat joreavalat@uvasedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdsuedubr/~u/ Ajuste de Curvas

Leia mais

Capítulo II ESPAÇOS VECTORIAIS

Capítulo II ESPAÇOS VECTORIAIS Cpítlo II ESPAÇOS VECTORIAIS Cpítlo II Espços Vectors Cpítlo II Cosdereos coto K o ql estão defds pelo eos ds operções: dt e ltplct sbolzds respectete por + e O coto K será corpo se: b K + b K + b b +

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

e represente as no plano Argand-Gauss.

e represente as no plano Argand-Gauss. PROFESSOR: Cládo Das BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================== - Determe o módlo dos segtes úmeros

Leia mais

XV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA - SENDI Técnicas de Cluster Analysis na Construção de Tipologias de Curva de Carga

XV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA - SENDI Técnicas de Cluster Analysis na Construção de Tipologias de Curva de Carga XV SEMINÁRIO NACIONAL DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA - SENDI Téccas de Clster Aalyss a Costrção de Tpologas de Crva de Carga J. F. M. Pessaha CEPEL/UERJ, R. M. G. Velasqez CEPEL A. C. G. Melo - CEPEL/UERJ,

Leia mais

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx

(1) no domínio : 0 x < 1 Sujeita às condições de contorno: (2-a) CC1: (2-b) CC2: x dx EXEMPLO MOTIVADOR I Método da Aproxmação Polomal Aplcado a Problema Udrecoa com Smetra. Eqaçõe Dfereca Ordára Problema de Valor o Cotoro Etrtra Geral do Problema: d dy( x) x f x, yx x dx dx o domío : x

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS - Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas..- Apromação de Fções...- Apromação por Polômos...- Aste de Dados: M ímos Qadrados..-

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

Capítulo III TRANSFORMAÇÕES LINEARES

Capítulo III TRANSFORMAÇÕES LINEARES Capítlo III RANSFORAÇÕES LINEARES Capítlo III rasforações Lieares Capítlo III rasforações o Aplicações Seja dois cojtos A e B Se a cada eleeto a A for associado e só eleeto b B dir-se-á qe foi defiida

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 e 8 06/204 Ajuste de Curvas AJUSTE DE CURVAS Cálculo Nuérco 3/64 INTRODUÇÃO E geral, experentos gera ua gaa de dados que

Leia mais

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0 EXEMPLO MOTIVADO II EXEMPLO MOTIVADO II Método da Apromação Polomal Aplcado a Problemas Udrecoas sem Smetra. Equações Dferecas Ordáras Problemas de Valores o otoro Estrutura Geral do Problema: dy() d y()

Leia mais

Programação Paralela

Programação Paralela rograação aralela FEU 4. Avalação de steas aralelos Defções Razão etre a velocdade de processaeto coseguda o sstea paralelo e a velocdade coseguda co u processador (pouca foração...) Efcêca Quocete do

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

EN3224 Dinâmica de Fluidos Computacional

EN3224 Dinâmica de Fluidos Computacional Uversdade Federal do ABC EN34 Dâmca de Fldos Compacoal Apreseação do Crso EN34 Dâmca de Fldos Compacoal Uversdade Federal do ABC Sod s Shock Tbe Problem Um smples modelo de ma dmesoal de m gás rodzdo por

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Establdade o Domío da Freqüêca Itrodução; apeameto de Cotoros o Plao s; Crtéro de Nyqust; Establdade Relatva; Crtéro de Desempeho o Domío do Tempo Especfcado o Domío da Freqüêca; Bada Passate de Sstema;

Leia mais

MODELAGEM MATEMÁTICA E ANÁLISE DO PROCESSO DE FLOCULAÇÃO EM CÂMARAS EM SÉRIE

MODELAGEM MATEMÁTICA E ANÁLISE DO PROCESSO DE FLOCULAÇÃO EM CÂMARAS EM SÉRIE MODELAGEM MATEMÁTICA E ANÁLISE DO POCESSO DE FLOCULAÇÃO EM CÂMAAS EM SÉIE odrgo B Moruzz, Sauel Coceção de Olvera Professor da Uesp, Capus de o Claro, o Claro-SP, Brasl, roruzz@rcuespbr Professor da Uesp,

Leia mais

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 }

5. Funções teste. L 2 ( )= {u :? ; Borel mensurável com u 2 dx < 8 } 5. Fções teste Até agora estvemos tratado tesvamete com a tegração. Uma cosa qe temos vsto é qe, cosderado espaços das, podemos pesar as fções como fcoas. Vamos rever brevemete esta déa. osdere a bola

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Nome: Ao / Trma: N.º: Data: - - Não é permtdo o so de corretor. Deves rscar aqlo qe pretedes qe ão seja classfcado. A prova cl m formláro. As cotações dos tes ecotram-se o fal do ecado da prova. CADERNO

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita Decoposção Lagrageaa co Geração de Coluas para o Problea de Prograação Quadrátca Bára Irrestrta Geraldo Regs Maur,2, Luz Atoo Noguera Lorea 2 Cetro de Cêcas Agráras, Departaeto de Egehara Rural Uversdade

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

Atividades relacionadas à ManjarBrancoG

Atividades relacionadas à ManjarBrancoG Atdades relacoadas à MajarBracoG Neste cojto de atdades está oblzado o estdo da ção ajar braco, sto é, a ção qe o doío é o teralo echado [0,] e asse alores o cojto dos úeros reas. Essa ção é deda coo o

Leia mais

6 Formulação probabilística para problemas de acoplamento fluido mecânico

6 Formulação probabilística para problemas de acoplamento fluido mecânico 6 Forulação probablístca para probleas de acoplaeto ludo ecâco 6.. Itrodução Nesse capítulo do trabalho apreseta-se a orulação probablístca para probleas de acoplaeto ludo ecâco. Nu prero oeto são descrtos

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS 4- Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas. 4.- Apromação de Fções. 4..- Apromação por Polômos. 4..- Aste de Dados: M ímos Qadrados.

Leia mais

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES . Populações depedetes co dstrbução oral População População,, Y,,Y ~ N, Y ~ N, Y ~ N, Obs. Se a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete.

Leia mais

18 a 21 de novembro de 2014, Caldas Novas - Goiás

18 a 21 de novembro de 2014, Caldas Novas - Goiás 8 a de novebro de 4, Caldas Novas - Goás SIMULAÇÃO NUMÉRICO-COMPUTACIONAL DE PLACAS FINAS EM GRANDES DESLOCAMENTOS Andressa Fernanda Rosa de La, andressaernanda@hotal.co.br Antôno Marcos Gonçalves de La,

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS

1- RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS - RESPOSTA TEMPORAL EM FUNÇÃO DA POSIÇÃO DOS POLOS Seja R( F( E( a repota de u tea lear, cocetrado e varate. Se F ( e E () ão fuçõe rea racoa, etão R ( é real racoal e pode er exprea coo: N() R( a / b

Leia mais

2 Fundamentos Teóricos

2 Fundamentos Teóricos Fdaetos Teórcos. Terodâca de Mcrotrbas A operação básca de a crotrba a gás é slar a do cclo de potêca a vapor, poré o fldo de trabalho tlzado é o ar. O ar atosférco é asprado, coprdo o copressor e ecahado,

Leia mais

Balanço de Massa e Energia Aula 2

Balanço de Massa e Energia Aula 2 alaço de assa e Eerga ula Udades e Desão Desão: Quatdade que pode ser edda, são as gradezas báscas coo copreto, assa, tepo, teperatura etre outras, ou quatdades calculadas pela dvsão ou ultplcação de outras

Leia mais

Introdução à Decomposição de Dantzig Wolfe

Introdução à Decomposição de Dantzig Wolfe Itrodução à Deoposção de Datzg Wolfe PNV-5765 Probleas de Prograação Mateáta Aplados ao Plaeaeto de Ssteas de Trasportes Maríto Prof. Dr. Adré Bergste Medes Bblografa Utlzada WILLIAMS, H.P. The forulato

Leia mais

Capítulo V - Interpolação Polinomial

Capítulo V - Interpolação Polinomial Métodos Numércos C Balsa & A Satos Capítulo V - Iterpolação Polomal Iterpolação Cosdere o segute couto de dados: x : x0 x x y : y y y 0 m m Estes podem resultar de uma sequêca de meddas expermetas, ode

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos

DISPOSITIVOS ELECTRÓNICOS. Problemas Resolvidos DISPOSITIVOS ELECTRÓNICOS Probleas Resolvdos CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS

CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS CAPÍTULO 1 SEMICONDUTORES HOMOGÉNEOS Ca. 1 1 Problea SH1 Cosderar ua resstêca de gerâo de to co 1 de secção e 1 c de coreto que a 300 K areseta ua resstêca de 0 Ω. a) Calcular o valor da desdade de urezas,

Leia mais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

Diferenciais Ordinárias. Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais Exstêca e Ucdade de Soluções de Equações Dferecas Ordáras Regaldo J Satos Departameto de Matemátca-ICEx Uversdade Federal de Mas Geras http://wwwmatufmgbr/ reg 10 de ulho de 2010 2 1 INTRODUÇÃO Sumáro

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

8. INFERÊNCIA PARA DUAS POPULAÇÕES

8. INFERÊNCIA PARA DUAS POPULAÇÕES 8 INFERÊNCIA PARA UA POPULAÇÕE 8 Populações depedetes co dstrbução oral População População, L, Y, L,Y ~ N, σ Y ~ N, σ σ σ Y ~ N, Obs e a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete

Leia mais

Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN)

Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN) Aas do IX Cogresso Braslero de Redes Neuras / Itelgêca Coputacoal (IX CBRN) Socedade Braslera de Redes Neuras ABORDAGEM DE ALGORITMO COMPETITIVO IMPERIALISTA APLICADA À PROBLEMA DE OTIMIZAÇÃO EM ENGENHARIA

Leia mais

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si.

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si. Prof. Lorí Va, Dr. http://www. ufrgs.br/~va/ va@mat.ufrgs.br aáse de varâca de uma cassfcação (Oe-Way NOV) verfca se as médas de amostras depedetes (tratametos) dferem etre s. Um segudo tpo de aáse de

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

ANÁLISE DINÂMICA de de SISTEMAS COM COM N GRAUS DE DE LIBERDADE

ANÁLISE DINÂMICA de de SISTEMAS COM COM N GRAUS DE DE LIBERDADE 9. 9.. AÁLISE DIÂICA de de SISEAS CO CO GRAUS DE DE LIBERDADE sstea co gras de lberdade, a solção depede de parâetros. o caso dos pórtcos plaos, por exeplo, te-se Para sstea de orças qalqer: Para sstea

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES

SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a 11 de novembro de 2002, Rio de Janeiro/RJ A PESQUISA OPERACIONAL E AS CIDADES SIMPÓSIO BRASILEIRO DE PESQUISA OPERACIONAL 8 a de ovebro de 00 Ro de Jaero/RJ PROGRAMAÇÃO NÃO LINEAR COM PARÂMETROS FUZZY Luza Aala Pto Catão Akebo Yaaka DT FEEC UNICAMP CP: 60 3083-970 Capas SP Brasl

Leia mais

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42

Instituto Tecnológico de Aeronáutica VIBRAÇÕES MECÂNICAS MPD-42 Inso ecnológco de Aeronáca VIBRAÇÕES MECÂNICAS MPD-4 Inso ecnológco de Aeronáca SISEMAS DISCREOS MPD-4 Inso ecnológco de Aeronáca SISEMAS COM n GRAUS DE LIBERDADE DESACOPLAMENO DAS EQUAÇÕES DO MOVIMENO

Leia mais

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8 Estatístca Quâtca Sstea físco co utos copoetes trataeto etalhao copleo aborae estatístca. Usaa co sucesso a físca clássca para escreer ssteas teroâcos. Relação etre propreaes obseraas e o coportaeto proáel

Leia mais

Alguns elementos disponíveis na biblioteca do programa 5.6 para resolução de problemas planos

Alguns elementos disponíveis na biblioteca do programa 5.6 para resolução de problemas planos Algus eleetos dspoíves a bbloteca do prograa ANSYS@ 5.6 para resolução de probleas plaos PLANE2-2 DOF/ó, trâgulo quadrátco de 6 ós; PLANE42-2 DOF/ó, quadrlateral lear de 4 ós; PLANE82-2 DOF/ó, quadrlateral

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

DISTRIBUIÇÃO HIPERGEOMÉTRICA

DISTRIBUIÇÃO HIPERGEOMÉTRICA 7 DISTRIBUIÇÃO HIPERGEOMÉTRICA Cosdere-se uma população fta costtuída por N elemetos dstrbuídos por duas categoras eclusvas e eaustvas de dmesões M e N M, respectvamete. Os elemetos da prmera categora

Leia mais

Figura 7.1: O problema do ajuste de funções a um conjunto de dados

Figura 7.1: O problema do ajuste de funções a um conjunto de dados Fgura 7: O problea do ajuste de funções a u conjunto de dados Capítulo 7 Aproxação de Funções por Mínos Quadrados 7 Introdução Dado u conjunto de observações (dados), frequenteente deseja-se condensar

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Estimação Pontual

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Estimação Pontual Estatístca: Aplcação ao Sesorameto Remoto SER 04 - ANO 08 Estmação Potual Camlo Daleles Reó camlo@dp.pe.br http://www.dp.pe.br/~camlo/estatstca/ Iferêca Estatístca Cosdere o expermeto: retram-se 3 bolas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. val@mat.ufrgs.r http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

II. Propriedades Termodinâmicas de Soluções

II. Propriedades Termodinâmicas de Soluções II. Propredades Termodâmcas de Soluções 1 I. Propredades Termodâmcas de Fludos OBJETIVOS Eteder a dfereça etre propredade molar parcal e propredade de uma espéce pura Saber utlzar a equação de Gbbs-Duhem

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Professor Uversdade de Brasíla Departameto de Egehara Mecâca Programa de Pós graduação em Itegrdade Estrutural Algortmo para a Estmatva do Idce de Cofabldade de Hasofer-Ld Cofabldade Estrutural Jorge Luz

Leia mais

Capítulo 8. Método de Rayleigh-Ritz

Capítulo 8. Método de Rayleigh-Ritz Grupo : Gustavo de Souza Routma; Luís Ferado Hachch de Souza; Ale Pascoal Palombo Capítulo 8. Método de Raylegh-Rtz 8.. Itrodução Nos problemas de apromação por dfereças ftas, para apromar a solução para

Leia mais

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos 5. étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos A heterogeedade dos recursos

Leia mais

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3)

Projeto e Análise de Algoritmos Aula 2: Função de Complexidade Notação Assintótica (GPV 0.3) Projeto e Aálise de Algoritos Aula 2: Fução de Coplexidade Notação Assitótica (GPV 0.3) DECOM/UFOP 202/2 5º. Período Aderso Aleida Ferreira Material desevolvido por Adréa Iabrudi Tavares BCC 24/202-2 BCC

Leia mais

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P)

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P) PROGRAMA DE MESTRADO PROGRAMAÇÃO LIEAR PROFESSOR BALEEIRO Método Splex Dual no Tableau Garfnkel-ehauser E-al: abaleero@gal.co Ste: www.eeec.ufg.br/~baleero Sea o problea pral o qual será soluconado utlzando

Leia mais

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA REGRESSÃO LINEAR CUIABÁ, MT 6/ INTRODUÇÃO Relação dos valores da varável depedete (varável resposta) aos valores de regressoras ou exógeas). SIMPLES MÚLTIPLA (varáves depedetes,... =,,, K=,,, k em que:

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS CCUTOS ELÉTCOS CONCETOS BÁSCOS Prof. Marcos Fergütz jul/07 - Carga Elétrca (Q, q) [ Udade: Coulomb C ] e - Quado se forece ou retra eerga do elétro (e - ), pode-se movmetá-lo por etre as camadas (K, L,

Leia mais

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é ARIZES E VEORES PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ NIVELAENO -. Sc. - 6 Álgebra Vetoral e atrcal -)CONCEIOS BÁSICOS Os cálclos/operações assm como cocetos evolvedo matrzes e vetores costtem a base

Leia mais

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente. HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete

Leia mais

Mecânica Computacional no Balanceamento

Mecânica Computacional no Balanceamento 4 Mecâca Comptacoal o Balaceameto 4. Hstórco A grade maora das téccas exstetes para se fazer balaceameto de seções geológcas é baseada em metodologas empírcas, o seja, parte-se de premssas geológcas e

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

4 Métodos Sem Malha Princípio Básico dos Métodos Sem Malha

4 Métodos Sem Malha Princípio Básico dos Métodos Sem Malha 4 Métodos Sem Malha Segudo Lu (9), os métodos sem malha trabalham com um cojuto de ós dstrbuídos detro de um domío, assm como com cojutos de ós dstrbuídos sobre suas froteras para represetar, sem dscretzar,

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro.

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro. PUCRS - FENG - DEE - estrado e Egehara Elétrca Redes Neuras Artfcas Ferado César C. de Castro e ara Crsta F. de Castro Capítulo 6 Redes Neuras Artfcas para Decoposção de u Espaço Vetoral e Sub-Espaços

Leia mais

UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO

UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO MODELAÇÃO MATEMÁTICA TRIDIMENSIONAL DE ESCOAMENTOS COSTEIROS E ESTUARINOS USANDO UMA ABORDAGEM DE COORDENADA VERTICAL GENÉRICA Flávo Agsto Bastos

Leia mais

2a VERIFICAÇÃO REFINO DOS AÇOS I Julho Um aço é dessulfurado por uma escória, em condições desoxidantes.

2a VERIFICAÇÃO REFINO DOS AÇOS I Julho Um aço é dessulfurado por uma escória, em condições desoxidantes. a VERIFICAÇÃ REFIN D AÇ I Julho 8 U aço é dessulfurado por ua escóra, e condções desoxdantes. Reação quíca na nterface: + - = - +. Faça u esquea da nterface aço-escóra, lstando todas as etapas que pode

Leia mais

Probabilidades como ferramentas de controle da quantidade de poluentes emitidos pelo tráfego de veículos motorizados

Probabilidades como ferramentas de controle da quantidade de poluentes emitidos pelo tráfego de veículos motorizados XXV Ecotro Nac. de Eg. de Produção Porto Alegre, RS, Brasl, 29 out a 0 de ov de 2005 Probabldades coo ferraetas de cotrole da quatdade de poluetes etdos pelo tráfego de veículos otorzados Luz Delca Castllo

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais