6. Inferência para Duas Populações USP-ICMC-SME 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "6. Inferência para Duas Populações USP-ICMC-SME 2013"

Transcrição

1 6. Iferêca ara Duas Poulações UP-ICMC-ME 3

2 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete.

3 Testes de hóteses sobre,, é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda e varâca.,, é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda e varâca. As duas oulações são deedetes. Forulação das hóteses: H : H : À esquerda H : H : À dreta H : H :, Blateral sedo que é ua costate cohecda valor de teste. = corresode à gualdade das duas édas. 3

4 4 Estatístca de teste a e cohecdas:., ~ H sob N Z b descohecda:, ~ H sob t T e que é a varâca cobada ooled varace,. e Testes de hóteses sobre c, abas descohecdas: ete, aroxada, ~ H sob t g T. / / que e g dstrbução t de tudet co + g.l.

5 5 Regão crítca ara u ível de sgfcâca escolhdo: c Z R Z c c T R T c c Z R Z c c T R T c c Z R Z c c T R T c v e Z R C ou T R C, rejeta-se H o ; caso cotráro, ão se rejeta H. H : < H : > H : Testes de hóteses sobre Obs. Nas regões crítcas co Z e T o valor de c ão é o eso.

6 IC ara Estador otual ara :. De fora aáloga ao Ca. 5, u tervalo de cofaça IC de % ara é dado or IC [ L; U] [ E; E], sedo que E é o erro áxo do IC. a e cohecdas: E z. / b c descohecda: E t /,., abas descohecdas: E t g. /, Cálculo de g a lâa 4. 6

7 IC ara e testes de hóteses O teste da hótese H : = cotra H : a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara, dado or [ L; U] [ E; E], sedo que o cálculo do erro áxo E utlzaos a lâa 6. e IC, rejetaos H ; caso cotráro, ão rejetaos H. 7

8 8.,,,,,, : Pares., ~ N D D D Poulação Poulação 8.. Poulações deedetes co dstrbução oral Obs. e a dstrbução de D ão for oral, o resultado é váldo aroxadaete. Dfereça: D = co D = E = E E = e vard = D. Calculaos D =,..., D =,. e D D s D D D Dstrbução:

9 Testes de hóteses sobre D,,D é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda D e varâca D. Forulação das hóteses: H : D H : D À esquerda H : D H : D À dreta H : D H : D, Blateral sedo que é ua costate cohecda valor de teste. = corresode à gualdade das duas édas D =. Estatístca de teste: T D s D ~ sob H t. dstrbução t de tudet co g.l. 9

10 Testes de hóteses sobre Regão crítca ara u ível de sgfcâca escolhdo: H : D < H : D > H : D R c T c T c R c T c R c v e T R C, rejeta-se H o ; caso cotráro, ão se rejeta H. Obs. Cohecdo coo teste t areado ou earelhado ared t test.

11 IC ara Estador otual ara D = : D. De fora aáloga ao Ca. 5, u tervalo de cofaça IC de % ara é dado or IC [ L; U] [ D E; D E], sedo que E é o erro áxo do IC: E t /, s D.

12 IC ara e testes de hóteses O teste da hótese H : D = cotra H : D a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara D =, dado or [ L; U] [ D E; D E], sedo que o cálculo do erro áxo E utlzaos a lâa. e IC, rejetaos H ; caso cotráro, ão rejetaos H.

13 8.3. Poulações deedetes co dstrbução Beroull,,,, ~ N,, aroxadaete. ~ N,, aroxadaete. ~ N,, aroxadaete, e que e são as roorçõesaostras de sucesso. 3

14 4. : H : H : H : H : H : H Blateral À dreta À esquerda Estatístca de teste: aroxadaete,,, sob ~ H N Z Testes de hóteses sobre,, é ua aostra aleatóra de taaho de ua oulação co dstrbução Beroull co robabldade de sucesso.,, é ua aostra aleatóra de taaho de ua oulação co dstrbução Beroull co robabldade de sucesso. As duas oulações são deedetes. Forulação das hóteses:. que e

15 Testes de hóteses sobre Regão crítca ara u ível de sgfcâca escolhdo: H : < H : > H : R c Z c Z c R c Z c R c v e Z R C, rejeta-se H o ; caso cotráro, ão se rejeta H. 5

16 IC ara Estador otual ara :. De fora aáloga ao Ca. 5, u tervalo de cofaça IC aroxado de % ara é dado or IC [ L; U] [ E; sedo que E é o erro áxo do IC: E z / E. ], 6

17 IC ara e testes de hóteses O teste da hótese H : = cotra H : a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara, dado or [ L; U] [ E; E], sedo que o cálculo do erro áxo E utlzaos a lâa 6. e IC, rejetaos H ; caso cotráro, ão rejetaos H. 7

18 Exelo Duas áquas são utlzadas ara evasar u líqudo e frascos de lástco. Co o objetvo de verfcar se há dfereça etre os volues édos evasados, duas aostras de e frascos fora selecoadas. Os volues e l fora eddos resultado os segutes valores : Máqua :3,9, 3,9, 3,8, 3,7, 3,9, 3,6, 3,8, 3,9, 3,7, 3,9, 3,7 e 3,; Máqua : 3,8, 3,9, 3,7, 3,5, 3,5, 3,6, 3,7, 3,3, 3,6 e 3,7. Utlzado os dados coletados, qual o resultado da verfcação. Adote = 5%. olução. Problea evolve duas édas de varáves cotíuas. Defos e coo sedo os volues evasados elas áquas e, tas que E =, var =, E = e var =. Hóteses: H : = cotra H : ou seja, =. 8

19 Exelo Aálse exloratóra: 9

20 Exelo Estatístca de teste varâcas dferetes e descohecdas: Utlzado os dados coletados calculaos. T 3,63 l, 36,3 3,8 l, 369,8 e,9 l 3,63,,4 l 3,8 6.,9 /,4 /,9,4 / / g

21 Exelo A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co g = 6 g.l.: R c = { T >,}. Calculaos 3,8 3,63 T, 97.,4,9 Coo T =,97 R c, rejetaos H. Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, verfcaos que há dfereça etre os volues édos evasados elas duas áquas.

22 Exelo Dos tos de solução de oleto estão sedo avalados ara ossível uso a fabrcação de lâas de so. Trezetas lâas fora oldas usado a rera solução de oleto e, desse úero 7 ão aresetara defetos causados elo oleto. Outras 5 lâas fora oldas usado a seguda solução de oleto, sedo que 6 lâas fora cosderadas satsfatóras. Há otvo ara acredtar que as duas soluções dfere quato aos defetos causados quado usadas e oletos? Adote =,. olução. Problea evolve duas roorções. Ua lâa ão aresetar defetos causados elo oleto é o eveto sucesso. Defos = se ocorre sucesso quado a solução é usada; =, caso cotráro, co P = =, =,..., = 3. Defos = se ocorre sucesso quado a solução é usada; =, caso cotráro, co P = =, =,..., = 5. Hóteses: H : = cotra H :.

23 Exelo Estatístca de teste: Pelo eucado, 7 6,73,,648 e 3 5 Z,73,648,689, , de odo que A regão crítca ara =, é obtda cosultado a tabela da dstrbução oral adrão: R c = { Z >,58}. Coo Z =,9 R c, ão rejetaos H. Z Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de %, ão há otvo ara acredtar que as duas soluções dfere quato aos defetos causados quado usadas e oletos..,689, 3

24 8.4. Probabldade de sgfcâca valor- No exelo lâa 8 a regão crítca é da fora R c = { T > c}, sedo que, se H for verdadera, T te dstrbução t de tudet co 6 g.l. Co os dados coletados calculaos e adotaros c = T =,97 obteos R c = { T >,97} e a robabldade do erro to I é P T >,97; H verdadera = P T >,97; = =,9 =,9%. E Excel: =DITT,97; 6;.,9 é chaado de robabldade de sgfcâca, ível descrtvo, valor- value ou. T, 97. 4

25 8.4. Probabldade de sgfcâca valor- Coo o ível de sgfcâca é a robabldade de u erro to I rejeção de H verdadera, quato eor for valor-, as forteete rejetaos H. Quato eor for valor-, as evdêca cotra H e vce-versa. No exelo lâa a regão crítca é da fora R c = { Z > c}, sedo que Z te dstrbução N,, se H for verdadera. Co os dados coletados calculaos Z =,9. Neste caso, valor- = P Z >,9 = PZ <,9 =,87 =,574. Escolheos o ível de sgfcâca. Calculaos o valor-. e valor- <, rejetaos H ; se valor-, ão rejetaos H. No exelo, se = 5% o resultado do teste sera coclusvo. 5

26 Exelo 3 E u teste de dureza ua esfera de aço é ressoada cotra a suerfíce de u bloco de ateral a ua carga adrão. Mede-se o dâetro e da cavdade roduzda, que está relacoado à dureza do ateral da suerfíce. Na realzação do teste duas esferas A e B estão dsoíves. useta-que a esfera A gera cavdades co dâetro édo co dfereça sueror a, e relação à esfera B. As duas esferas fora utlzadas e blocos = obtedo-se os dados abaxo: Dâetro das cavdades Bloco Esfera A 7,5 4,6 5,7 4,3 5,8 3, 6, 5,6 3,4 6,5 B 5, 4, 4,3 4,7 3, 4,9 5, 4,4 5,7 6, Dfereça,3,5,4 -,4,6 -,7,9, -,3,5 O que os dados erte coclur sobre a suseta forulada? Adote = 5%. 6

27 Exelo 3 olução. Problea evolve duas édas de varáves cotíuas. Defos e coo sedo os dâetros das crateras roduzdas elas esferas A e B, tas que E = e E =. Coo os dados são areados, utlzaos D = co D = E = E E = e vard = D. Hóteses: H : D =, cotra H : D >, ou seja, =,. Estatístca de teste: D T. A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co 9 g.l. = e = %: R c = { T >,833}. s D 7

28 Exelo 3 Calculaos D D 5,,5, D D D D D,5,5 D,5, e T,599. Coo T =,599 R,5 c, ão rejetaos H. s D Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, ão se cofra a suseta de que a esfera A gera cavdades co dâetro édo sueror a, e relação à esfera B. Obs. R c = { T > c}, sedo que, se H for verdadera, T te dstrbução t de tudet co 9 g.l.. Neste caso, valor- = PT >,599 =,8. Não rejetaos H, os valor-. E Excel: =DITT,599; 9;. 8

29 Exelo 4 Estudos aterores dca que a vda e horas de u teroar roduzdo e ua dústra é ua varável aleatóra co dstrbução aroxadaete oral. U grade corador suseta que o teo de vda édo é feror a 56 h. E ua aostra aleatóra de 5 teroares adqurdos fora eddos os teos de vda e h 553, 55, 567, 579, 55, 54, 537, 553, 55, 546, 538, 553, 58, 539 e 59. O que os dados erte coclur sobre a suseta do corador? Adote = 5%. olução. Problea evolve ua oulação co dstrbução oral. Defos coo sedo o teo de vda e h de u teroar, co E = e var =. Pelo eucado, ~ N,, descohecda. Hóteses: H : = 56 cotra H : < 56 ou seja, = 56. Estatístca de teste: T. s 9

30 Exelo 4 A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co 4 g.l. = e = %: R c = { T <,76}. Calculaos ,3 h, 55,3 4,8 h ,3 56 e T,66. s 4,8 Coo T =,66 R c, rejetaos H. Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, cocluíos que a vda éda dos teroares é feror a 56 h. 3

31 Exelo 4 Obs. R c = { T < c }, sedo que T te dstrbução t de tudet co 4 g.l., se H for verdadera. Neste caso, valor- = PT <,66 =,99. Rejetaos H, os valor- <. E Excel: =DITT,66; 4;. 3

32 8.5. Exelos Frase escrta ates da aresetação dos resultados: Resultados: 3

33 8.5. Exelos A ared sales t-test aalyss showed that there was a statstcally sgfcat dfferece betwee studets' re-test M = 6.6, D = 9.8, = ad ost-test M = 76.5, D =.6, = o wrtg erforace t9 = 8.3, <.. 33

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Estatística 15 - Comparação entre Duas Populações

Estatística 15 - Comparação entre Duas Populações Etatítca 5 - Comaração etre Da Polaçõe 5- Comaração de Méda de Da Polaçõe µ Méda da olação µ Méda da olação Tete µ - µ µ - µ > µ - µ µ - µ < µ - µ µ - µ. Dado Emarelhado EemloVte cobaa bmetda drate ma

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA

INFERÊNCIA ESTATÍSTICA: ESTIMAÇÂO PONTUAL E INTERVALOS DE CONFIANÇA INFRÊNCIA STATÍSTICA: STIMAÇÂO PONTUAL INTRVALOS D CONFIANÇA 0 Problemas de iferêcia Iferir sigifica faer afirmações sobre algo descohecido. A iferêcia estatística tem como objetivo faer afirmações sobre

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

Curso de Graduação. Inferência I N F ERÊNCI A ESTAT ÍSTICA

Curso de Graduação. Inferência I N F ERÊNCI A ESTAT ÍSTICA Iferêca Estatístca I N F ERÊNCI A ESTAT ÍSTICA CAPÍTULO N O Ç Õ ES PRELIMINAR ES SOBR E AMOSTRAGEM A elaboração de um projeto de pesqusa por amostragem, objetvado a vestgação sobre um certo feômeo, evolve

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES

CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES CAPÍTULO 7 INTERVALO DE CONFIANÇA E TESTES DE HIPÓTESES 7. Itervalo de cofaça A cada aos (ormalmete), os acostumamos a acomahar as esqusas eletoras. Geralmete elas são mostradas assm: Caddato Iteção de

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

LICENCIATURAS EM ECONOMIA E GESTÃO

LICENCIATURAS EM ECONOMIA E GESTÃO LCENCATURAS EM ECONOMA E GESTÃO ESTATÍSTCA - º TESTE - 4 DE ABRL DE 202 Resoda e folhas searadas ara cada gruo. Se ão fzer algu gruo, etregue e braco a folha resectva devdaete detfcada, ara efetos de cotrolo.

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR. José Antonio Stark Ferreira

AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR. José Antonio Stark Ferreira 1 AVALIAÇÃO DE GANHOS E PERDAS EM FUNDOS DE INVESTIMENTOS UTILIZANDO REGRESSÃO LINEAR José Atoo Stark Ferrera I - INTRODUÇÃO O presete estudo fo desevolvdo objetvado mesurar os gahos e perdas patrmoas

Leia mais

Programação Paralela

Programação Paralela rograação aralela FEU 4. Avalação de steas aralelos Defções Razão etre a velocdade de processaeto coseguda o sstea paralelo e a velocdade coseguda co u processador (pouca foração...) Efcêca Quocete do

Leia mais

Total Bom Ruim Masculino

Total Bom Ruim Masculino UNIDADE I - ESTUDO DIRIGIDO Questão - Classfque as varáves em qualtatva (omal ou ordal ou quattatva (cotíua ou dscreta: a. População: aluos de uma Uversdade. Varável: cor dos cabelos (louro, castaho, ruvo,

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos Poulação ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO

RAD1507 Estatística Aplicada à Administração I Prof. Dr. Evandro Marcos Saidel Ribeiro RESUMO UNIVERSIDADE DE SÃO PAULO FACULDADE DE ECONOMIA, ADMINISTRAÇÃO E CONTABILIDADE DE RIBEIRÃO PRETO DEPARTAMENTO DE ADMINISTRAÇÃO RAD507 Etatítca Aplcada à Admtração I Prof. Dr. Evadro Marco Sadel Rbero RESUMO

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos Poulação ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

Francisco de Assis Amaral Bastos

Francisco de Assis Amaral Bastos Fracsco de sss maral astos Estatístca e robabldade umáro arte - robabldade... 9 Caítulo O ambete das robabldades Itrodução.... Eermetos leatóros.... Esaço mostral.... Evetos... Caítulo robabldade. robabldade.

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro Aálse Estatístca com Excel Prof. Dr. Evadro Marcos adel Rbero E-mal: esadel@usp.br Home page: www.fearp.usp.br/~sadel Módulo Itrodução. Apresetação geral dos tópcos do curso. Estatístca e Excel a empresa

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS ICE DEPARTAMENTO DE ESTATÍSTICA CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA Autores (em ordem alfabétca)

Leia mais

Métodos tipo quadratura de Gauss

Métodos tipo quadratura de Gauss COQ-86 Métodos Numércos ara Sstemas Algébrcos e Dferecas Métodos to quadratura de Gauss Cosderado a tegração: Método de quadratura de Gauss com otos teros I f d a ser comutada com a maor recsão ossível

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

( ) ( ) Es'mador de Máxima-Verossimilhança. ,θ i. L( Θ; X) = f ( X;Θ) = f (x i

( ) ( ) Es'mador de Máxima-Verossimilhança. ,θ i. L( Θ; X) = f ( X;Θ) = f (x i 5.. Esmador de Máxma-Verossmlhaça O prcípo básco do esmador de Máxma-Verossmlhaça cosste a obteção de esmavas de parâmetros populacoas de uma desdade de uma varável aleatóra a parr de um cojuto de formações

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Análise de Regressão Linear Múltipla IV

Análise de Regressão Linear Múltipla IV Análse de Regressão Lnear Múltpla IV Aula 7 Guarat e Porter, 11 Capítulos 7 e 8 He et al., 4 Capítulo 3 Exemplo Tomando por base o modelo salaro 1educ anosemp exp prev log 3 a senhorta Jole, gerente do

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar Dscpla: 04 Relações etre varáves: Regressão Prof. a Dr. a Smoe Daela Sartoro de Mederos DTASeR-Ar Itrodução Cosdere uma varável aleatóra Y de teresse. Já vmos que podemos escrever essa varável como sedo:

Leia mais

Alguns Fundamentos Acerca dos Testes de Hipóteses

Alguns Fundamentos Acerca dos Testes de Hipóteses UNIVERSIDADE DA BEIRA INTERIOR Cêcas Algus Fudametos Acerca dos Testes de Hpóteses Adré Marques de Adrade Relatóro de Estágo para obteção do Grau de Mestre em Eso da Matemátca o 3º Cclo do Eso Básco e

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Noções Básicas de Medidas e Algarismos Significativos

Noções Básicas de Medidas e Algarismos Significativos Noções Báscas de Meddas e Algarsmos Sgfcatvos Prof. Theo Z. Pava Departameto de Físca - Faculdade de Flosofa, Cêcas e Letras de Rberão Preto-USP Físca Acústca Motvações Quas são os padrões de meddas? Podemos

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

Amostragem por Grupos

Amostragem por Grupos Aostrage or Gruos a aostrage or gruos as udades estatístcas são agruadas, de acordo co algu crtéro. É abtual desgar cada gruo de eleetos dsjutos or udade rára, sedo os eleetos ue coõe cada udade rára desgados

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA, SÃO PAULO, BRASIL

A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA, SÃO PAULO, BRASIL A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA SÃO PAULO BRASIL Ezequel Abraham Lóez BAUTISTA Slvo Sadoval ZOCCHI Luz Roberto ANGELOCCI

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

Capítulo 6. Misturas de Gases

Capítulo 6. Misturas de Gases Caítlo 6 stras de Gases Objetvos Desenvolver regras ara se estdar as roredades de stras de gases não-reatvos co base no conhecento da coosção da stra e das roredades dos coonentes ndvdas Defnr grandezas

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais