6. Inferência para Duas Populações USP-ICMC-SME 2013

Tamanho: px
Começar a partir da página:

Download "6. Inferência para Duas Populações USP-ICMC-SME 2013"

Transcrição

1 6. Iferêca ara Duas Poulações UP-ICMC-ME 3

2 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete.

3 Testes de hóteses sobre,, é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda e varâca.,, é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda e varâca. As duas oulações são deedetes. Forulação das hóteses: H : H : À esquerda H : H : À dreta H : H :, Blateral sedo que é ua costate cohecda valor de teste. = corresode à gualdade das duas édas. 3

4 4 Estatístca de teste a e cohecdas:., ~ H sob N Z b descohecda:, ~ H sob t T e que é a varâca cobada ooled varace,. e Testes de hóteses sobre c, abas descohecdas: ete, aroxada, ~ H sob t g T. / / que e g dstrbução t de tudet co + g.l.

5 5 Regão crítca ara u ível de sgfcâca escolhdo: c Z R Z c c T R T c c Z R Z c c T R T c c Z R Z c c T R T c v e Z R C ou T R C, rejeta-se H o ; caso cotráro, ão se rejeta H. H : < H : > H : Testes de hóteses sobre Obs. Nas regões crítcas co Z e T o valor de c ão é o eso.

6 IC ara Estador otual ara :. De fora aáloga ao Ca. 5, u tervalo de cofaça IC de % ara é dado or IC [ L; U] [ E; E], sedo que E é o erro áxo do IC. a e cohecdas: E z. / b c descohecda: E t /,., abas descohecdas: E t g. /, Cálculo de g a lâa 4. 6

7 IC ara e testes de hóteses O teste da hótese H : = cotra H : a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara, dado or [ L; U] [ E; E], sedo que o cálculo do erro áxo E utlzaos a lâa 6. e IC, rejetaos H ; caso cotráro, ão rejetaos H. 7

8 8.,,,,,, : Pares., ~ N D D D Poulação Poulação 8.. Poulações deedetes co dstrbução oral Obs. e a dstrbução de D ão for oral, o resultado é váldo aroxadaete. Dfereça: D = co D = E = E E = e vard = D. Calculaos D =,..., D =,. e D D s D D D Dstrbução:

9 Testes de hóteses sobre D,,D é ua aostra aleatóra de taaho de ua oulação co dstrbução oral co éda D e varâca D. Forulação das hóteses: H : D H : D À esquerda H : D H : D À dreta H : D H : D, Blateral sedo que é ua costate cohecda valor de teste. = corresode à gualdade das duas édas D =. Estatístca de teste: T D s D ~ sob H t. dstrbução t de tudet co g.l. 9

10 Testes de hóteses sobre Regão crítca ara u ível de sgfcâca escolhdo: H : D < H : D > H : D R c T c T c R c T c R c v e T R C, rejeta-se H o ; caso cotráro, ão se rejeta H. Obs. Cohecdo coo teste t areado ou earelhado ared t test.

11 IC ara Estador otual ara D = : D. De fora aáloga ao Ca. 5, u tervalo de cofaça IC de % ara é dado or IC [ L; U] [ D E; D E], sedo que E é o erro áxo do IC: E t /, s D.

12 IC ara e testes de hóteses O teste da hótese H : D = cotra H : D a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara D =, dado or [ L; U] [ D E; D E], sedo que o cálculo do erro áxo E utlzaos a lâa. e IC, rejetaos H ; caso cotráro, ão rejetaos H.

13 8.3. Poulações deedetes co dstrbução Beroull,,,, ~ N,, aroxadaete. ~ N,, aroxadaete. ~ N,, aroxadaete, e que e são as roorçõesaostras de sucesso. 3

14 4. : H : H : H : H : H : H Blateral À dreta À esquerda Estatístca de teste: aroxadaete,,, sob ~ H N Z Testes de hóteses sobre,, é ua aostra aleatóra de taaho de ua oulação co dstrbução Beroull co robabldade de sucesso.,, é ua aostra aleatóra de taaho de ua oulação co dstrbução Beroull co robabldade de sucesso. As duas oulações são deedetes. Forulação das hóteses:. que e

15 Testes de hóteses sobre Regão crítca ara u ível de sgfcâca escolhdo: H : < H : > H : R c Z c Z c R c Z c R c v e Z R C, rejeta-se H o ; caso cotráro, ão se rejeta H. 5

16 IC ara Estador otual ara :. De fora aáloga ao Ca. 5, u tervalo de cofaça IC aroxado de % ara é dado or IC [ L; U] [ E; sedo que E é o erro áxo do IC: E z / E. ], 6

17 IC ara e testes de hóteses O teste da hótese H : = cotra H : a u ível de sgfcâca ode ser efetuado utlzado u IC co coefcete de cofaça gual a. Costruíos o IC de -% ara, dado or [ L; U] [ E; E], sedo que o cálculo do erro áxo E utlzaos a lâa 6. e IC, rejetaos H ; caso cotráro, ão rejetaos H. 7

18 Exelo Duas áquas são utlzadas ara evasar u líqudo e frascos de lástco. Co o objetvo de verfcar se há dfereça etre os volues édos evasados, duas aostras de e frascos fora selecoadas. Os volues e l fora eddos resultado os segutes valores : Máqua :3,9, 3,9, 3,8, 3,7, 3,9, 3,6, 3,8, 3,9, 3,7, 3,9, 3,7 e 3,; Máqua : 3,8, 3,9, 3,7, 3,5, 3,5, 3,6, 3,7, 3,3, 3,6 e 3,7. Utlzado os dados coletados, qual o resultado da verfcação. Adote = 5%. olução. Problea evolve duas édas de varáves cotíuas. Defos e coo sedo os volues evasados elas áquas e, tas que E =, var =, E = e var =. Hóteses: H : = cotra H : ou seja, =. 8

19 Exelo Aálse exloratóra: 9

20 Exelo Estatístca de teste varâcas dferetes e descohecdas: Utlzado os dados coletados calculaos. T 3,63 l, 36,3 3,8 l, 369,8 e,9 l 3,63,,4 l 3,8 6.,9 /,4 /,9,4 / / g

21 Exelo A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co g = 6 g.l.: R c = { T >,}. Calculaos 3,8 3,63 T, 97.,4,9 Coo T =,97 R c, rejetaos H. Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, verfcaos que há dfereça etre os volues édos evasados elas duas áquas.

22 Exelo Dos tos de solução de oleto estão sedo avalados ara ossível uso a fabrcação de lâas de so. Trezetas lâas fora oldas usado a rera solução de oleto e, desse úero 7 ão aresetara defetos causados elo oleto. Outras 5 lâas fora oldas usado a seguda solução de oleto, sedo que 6 lâas fora cosderadas satsfatóras. Há otvo ara acredtar que as duas soluções dfere quato aos defetos causados quado usadas e oletos? Adote =,. olução. Problea evolve duas roorções. Ua lâa ão aresetar defetos causados elo oleto é o eveto sucesso. Defos = se ocorre sucesso quado a solução é usada; =, caso cotráro, co P = =, =,..., = 3. Defos = se ocorre sucesso quado a solução é usada; =, caso cotráro, co P = =, =,..., = 5. Hóteses: H : = cotra H :.

23 Exelo Estatístca de teste: Pelo eucado, 7 6,73,,648 e 3 5 Z,73,648,689, , de odo que A regão crítca ara =, é obtda cosultado a tabela da dstrbução oral adrão: R c = { Z >,58}. Coo Z =,9 R c, ão rejetaos H. Z Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de %, ão há otvo ara acredtar que as duas soluções dfere quato aos defetos causados quado usadas e oletos..,689, 3

24 8.4. Probabldade de sgfcâca valor- No exelo lâa 8 a regão crítca é da fora R c = { T > c}, sedo que, se H for verdadera, T te dstrbução t de tudet co 6 g.l. Co os dados coletados calculaos e adotaros c = T =,97 obteos R c = { T >,97} e a robabldade do erro to I é P T >,97; H verdadera = P T >,97; = =,9 =,9%. E Excel: =DITT,97; 6;.,9 é chaado de robabldade de sgfcâca, ível descrtvo, valor- value ou. T, 97. 4

25 8.4. Probabldade de sgfcâca valor- Coo o ível de sgfcâca é a robabldade de u erro to I rejeção de H verdadera, quato eor for valor-, as forteete rejetaos H. Quato eor for valor-, as evdêca cotra H e vce-versa. No exelo lâa a regão crítca é da fora R c = { Z > c}, sedo que Z te dstrbução N,, se H for verdadera. Co os dados coletados calculaos Z =,9. Neste caso, valor- = P Z >,9 = PZ <,9 =,87 =,574. Escolheos o ível de sgfcâca. Calculaos o valor-. e valor- <, rejetaos H ; se valor-, ão rejetaos H. No exelo, se = 5% o resultado do teste sera coclusvo. 5

26 Exelo 3 E u teste de dureza ua esfera de aço é ressoada cotra a suerfíce de u bloco de ateral a ua carga adrão. Mede-se o dâetro e da cavdade roduzda, que está relacoado à dureza do ateral da suerfíce. Na realzação do teste duas esferas A e B estão dsoíves. useta-que a esfera A gera cavdades co dâetro édo co dfereça sueror a, e relação à esfera B. As duas esferas fora utlzadas e blocos = obtedo-se os dados abaxo: Dâetro das cavdades Bloco Esfera A 7,5 4,6 5,7 4,3 5,8 3, 6, 5,6 3,4 6,5 B 5, 4, 4,3 4,7 3, 4,9 5, 4,4 5,7 6, Dfereça,3,5,4 -,4,6 -,7,9, -,3,5 O que os dados erte coclur sobre a suseta forulada? Adote = 5%. 6

27 Exelo 3 olução. Problea evolve duas édas de varáves cotíuas. Defos e coo sedo os dâetros das crateras roduzdas elas esferas A e B, tas que E = e E =. Coo os dados são areados, utlzaos D = co D = E = E E = e vard = D. Hóteses: H : D =, cotra H : D >, ou seja, =,. Estatístca de teste: D T. A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co 9 g.l. = e = %: R c = { T >,833}. s D 7

28 Exelo 3 Calculaos D D 5,,5, D D D D D,5,5 D,5, e T,599. Coo T =,599 R,5 c, ão rejetaos H. s D Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, ão se cofra a suseta de que a esfera A gera cavdades co dâetro édo sueror a, e relação à esfera B. Obs. R c = { T > c}, sedo que, se H for verdadera, T te dstrbução t de tudet co 9 g.l.. Neste caso, valor- = PT >,599 =,8. Não rejetaos H, os valor-. E Excel: =DITT,599; 9;. 8

29 Exelo 4 Estudos aterores dca que a vda e horas de u teroar roduzdo e ua dústra é ua varável aleatóra co dstrbução aroxadaete oral. U grade corador suseta que o teo de vda édo é feror a 56 h. E ua aostra aleatóra de 5 teroares adqurdos fora eddos os teos de vda e h 553, 55, 567, 579, 55, 54, 537, 553, 55, 546, 538, 553, 58, 539 e 59. O que os dados erte coclur sobre a suseta do corador? Adote = 5%. olução. Problea evolve ua oulação co dstrbução oral. Defos coo sedo o teo de vda e h de u teroar, co E = e var =. Pelo eucado, ~ N,, descohecda. Hóteses: H : = 56 cotra H : < 56 ou seja, = 56. Estatístca de teste: T. s 9

30 Exelo 4 A regão crítca ara =,5 é obtda cosultado a tabela da dstrbução t de tudet co 4 g.l. = e = %: R c = { T <,76}. Calculaos ,3 h, 55,3 4,8 h ,3 56 e T,66. s 4,8 Coo T =,66 R c, rejetaos H. Coclusão. De acordo co os dados coletados e co u ível de sgfcâca de 5%, cocluíos que a vda éda dos teroares é feror a 56 h. 3

31 Exelo 4 Obs. R c = { T < c }, sedo que T te dstrbução t de tudet co 4 g.l., se H for verdadera. Neste caso, valor- = PT <,66 =,99. Rejetaos H, os valor- <. E Excel: =DITT,66; 4;. 3

32 8.5. Exelos Frase escrta ates da aresetação dos resultados: Resultados: 3

33 8.5. Exelos A ared sales t-test aalyss showed that there was a statstcally sgfcat dfferece betwee studets' re-test M = 6.6, D = 9.8, = ad ost-test M = 76.5, D =.6, = o wrtg erforace t9 = 8.3, <.. 33

Organização de dados -Dados não agrupados n. Mediana:

Organização de dados -Dados não agrupados n. Mediana: Orgazação de dado -Dado ão agruado Medaa: Poto de ocoameto: Méda: Moda: valor que ocorre com maor freqüêca Méda de Itervalo: + m max + Quartl: (ara j, ou 3) j( +) Poto de ocoameto: 4 Méda da Juta: Q +

Leia mais

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP

Inferência Estatística e Aplicações I. Edson Zangiacomi Martinez Departamento de Medicina Social FMRP/USP Iferêca Estatístca e Aplcações I Edso Zagacom Martez Departameto de Medca Socal FMRP/USP edso@fmrp.usp.br Rotero Parte I Escola frequetsta Defções: parâmetros, estmatvas Dstrbuções de probabldade Estmação

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL

TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL TESTES DE PROPORÇÕES TESTE DE UMA PROPORÇÃO POPULACIONAL As hpóteses a serem testadas serão: H 0 : p p 0 H : p p 0 p > p 0 p < p 0 Estatístca do Teste: pˆ p0 z c p ( p ) 0 0 EXEMPLOS. Uma máqua está regulada

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Estatística 15 - Comparação entre Duas Populações

Estatística 15 - Comparação entre Duas Populações Etatítca 5 - Comaração etre Da Polaçõe 5- Comaração de Méda de Da Polaçõe µ Méda da olação µ Méda da olação Tete µ - µ µ - µ > µ - µ µ - µ < µ - µ µ - µ. Dado Emarelhado EemloVte cobaa bmetda drate ma

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

3. TESTES DE QUALIDADE DE AJUSTAMENTO

3. TESTES DE QUALIDADE DE AJUSTAMENTO Testes da qualdade de ajustameto 3 TESTES DE QULIDDE DE JUSTMENTO 3 Itrodução formação sobre o modelo da população dode se extra uma amostra costtu, frequetemete, um problema estatístco forma da dstrbução

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Cetífca Matemátca Udade Curso Egehara do Ambete Ao º Semestre º Folha Nº 8: Aálse de Regressão e de Correlação Probabldades e Estatístca Ao 00/0. Pretede-se testar um strumeto que mede a cocetração

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

Regressão e Correlação

Regressão e Correlação Regressão e Correlação Júlo Osóro Regressão & Correlação: geeraldades Em mutas stuações de pesqusa cetífca, dspomos de uma amostra aleatóra de pares de dados (x, ), resultates da medda cocomtate de duas

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

Controle Estatístico de Qualidade. Capítulo 6 (montgomery)

Controle Estatístico de Qualidade. Capítulo 6 (montgomery) Cotrole Estatístco de Qualdade Capítulo 6 (motgomery) Gráfcos de Cotrole para Atrbutos Itrodução Mutas característcas da qualdade ão podem ser represetadas umercamete. Nestes casos, classfcamos cada tem

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

LICENCIATURAS EM ECONOMIA E GESTÃO

LICENCIATURAS EM ECONOMIA E GESTÃO LCENCATURAS EM ECONOMA E GESTÃO ESTATÍSTCA - º TESTE - 4 DE ABRL DE 202 Resoda e folhas searadas ara cada gruo. Se ão fzer algu gruo, etregue e braco a folha resectva devdaete detfcada, ara efetos de cotrolo.

Leia mais

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens

Dados Experimentais. Isto é chamado de experimento controlado. Uma das vantagens Dados xpermetas Para medr a produção de certa varedade de mlho, faremos um expermeto o qual a varedade de mlho semete é platada em váras parcelas homogêeas com o mesmo fertlzate, pestcda etc. Depos mede-se

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos Poulação ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Estimação pontual, estimação intervalar e tamanho de amostras

Estimação pontual, estimação intervalar e tamanho de amostras Estmação potual, estmação tervalar e tamaho de amostras Iferêca: por meo das amostras, cohecer formações geras da população. Problemas de ferêca, em geral, se dvdem em estmação de parâmetros e testes de

Leia mais

Estatística Descritiva

Estatística Descritiva Estatístca Descrtva Cocetos Báscos Poulação ou Uverso Estatístco: coj. de elemetos sobre o qual cde o estudo estatístco; Característca Estatístca ou Atrbuto: a característca que se observa os elemetos

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento:

3. ANPEC Questão 15 Ainda em relação à questão anterior pode-se concluir que, exceto por erro de arredondamento: Lsta de Exercícos #9 Ass uto: Aáls e de Re gres s ão Mé todo de Mímos Quadrados. ANPEC 99 - Questão 8 A capacdade de produção stalada (Y), em toeladas, de uma frma, pode ser fução da potêca stalada (X),

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL

13 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL 3 ESTIMAÇÃO DE PARÂMETROS E DISTRIBUIÇÃO AMOSTRAL Como vto em amotragem o prmero bmetre, etem fatore que fazem com que a obervação de toda uma população em uma pequa eja mpratcável, muta veze em vrtude

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama

Conceitos básicos de metrologia. Prof. Dr. Evandro Leonardo Silva Teixeira Faculdade UnB Gama Prof. Dr. Evadro Leoardo Slva Teera Faculdade UB Gama Metrologa: Cêca que abrage os aspectos teórcos e prátcos relatvos a medção; Descreve os procedmetos e métodos para determar as certezas de medções;

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro

Análise Estatística com Excel. Prof. Dr. Evandro Marcos Saidel Ribeiro Aálse Estatístca com Excel Prof. Dr. Evadro Marcos adel Rbero E-mal: esadel@usp.br Home page: www.fearp.usp.br/~sadel Módulo Itrodução. Apresetação geral dos tópcos do curso. Estatístca e Excel a empresa

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA

CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS ICE DEPARTAMENTO DE ESTATÍSTICA CADERNO DE EXERCÍCIOS PARA ACOMPANHAMENTO DA DISCIPLINA INTRODUÇÃO À BIOESTATÍSTICA Autores (em ordem alfabétca)

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO

PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO PUCRS FAMAT DEPTº DE ESTATÍSTICA ESTATÍSTICA DESCRITIVA SÉRGIO KATO A expressão dados, será ctada dversas vezes esta dscpla, em lguagem ormal, dados são ormações (úmeros ou ão) sobre um dvíduo (pessoa,

Leia mais

3 Modelos Lineares Generalizados

3 Modelos Lineares Generalizados 3 Modelos Leares Geeralzados No capítulo foram cosderados apeas modelos leares com dstrbução ormal e fução de lgação detdade. Neste capítulo apresetamos os modelos leares geeralzados (MLG, que foram propostos

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

ESTATÍSTICA 2º. SEMESTRE DE 2016

ESTATÍSTICA 2º. SEMESTRE DE 2016 ESTATÍSTICA O presete materal fo elaborado com o objetvo de facltar as atvdades em sala de aula, segudo a bblografa apresetada o fal do texto. Esclarece-se que o materal, ão substtu a bblografa apresetada,

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Noções Básicas de Medidas e Algarismos Significativos

Noções Básicas de Medidas e Algarismos Significativos Noções Báscas de Meddas e Algarsmos Sgfcatvos Prof. Theo Z. Pava Departameto de Físca - Faculdade de Flosofa, Cêcas e Letras de Rberão Preto-USP Físca Acústca Motvações Quas são os padrões de meddas? Podemos

Leia mais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais

2 Procedimentos para Ajuste e Tratamento Estatístico de Dados Experimentais 48 Procedmetos para Ajuste e Tratameto Estatístco de Dados Expermetas. Itrodução Modelos matemátcos desevolvdos para descrever eômeos íscos a partr de observações expermetas devem ser baseados em dados

Leia mais

Amostragem por Grupos

Amostragem por Grupos Aostrage or Gruos a aostrage or gruos as udades estatístcas são agruadas, de acordo co algu crtéro. É abtual desgar cada gruo de eleetos dsjutos or udade rára, sedo os eleetos ue coõe cada udade rára desgados

Leia mais

A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA, SÃO PAULO, BRASIL

A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA, SÃO PAULO, BRASIL A DISTRIBUIÇÃO GENERALIZADA DE VALORES EXTREMOS APLICADA AO AJUSTE DOS DADOS DE VELOCIDADE MÁXIMA DO VENTO EM PIRACICABA SÃO PAULO BRASIL Ezequel Abraham Lóez BAUTISTA Slvo Sadoval ZOCCHI Luz Roberto ANGELOCCI

Leia mais

Hipóteses do Modelo de Regressão Linear Clássico

Hipóteses do Modelo de Regressão Linear Clássico Uversdade Federal da Baha Facldade de Cêcas coômcas Departameto de cooma CO 66 Itrodção à coometra Hpóteses do Modelo de Regressão Lear Clássco Gerváso F. Satos Propredades dos estmadores de MQO As estmatvas

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística. Volume 1 Edição Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Volume 1 Edção 007 Curso: Pscologa Amostragem, Séres Estatístcas, Dstrbução de Freqüêca, Méda, Medaa, Quartl, Percetl e Desvo Padrão Prof. Dr. Celso Eduardo Tua 1 Capítulo 1 - Itrodução

Leia mais

Capítulo 6. Misturas de Gases

Capítulo 6. Misturas de Gases Caítlo 6 stras de Gases Objetvos Desenvolver regras ara se estdar as roredades de stras de gases não-reatvos co base no conhecento da coosção da stra e das roredades dos coonentes ndvdas Defnr grandezas

Leia mais

9 Medidas Descritivas

9 Medidas Descritivas 1 9 Meddas Descrtvas Vmos aterormete que um cojuto de dados pode ser resumdo através de uma dstrbução de freqüêcas, e que esta pode ser represetada através de uma tabela ou de um gráfco. Se o cojuto refere-se

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

Objectivo da Estatística: fornecer informação. (conhecimento), utilizando quantidades numéricas.

Objectivo da Estatística: fornecer informação. (conhecimento), utilizando quantidades numéricas. Objectvo da Estatístca: forecer formação (cohecmeto), utlzado quatdades umércas.. Obteção dos dados Amostragem. Descrção, classfcação e apresetação dos dados Estatístca descrtva 3. Coclusão a trar dos

Leia mais

Desafio em Física 2013 PUC-Rio 05/10/2013

Desafio em Física 2013 PUC-Rio 05/10/2013 Desafio e Física 2013 PUC-Rio 05/10/2013 Noe: GABARITO Idetidade: Nº iscrição o vestibular: Questão Nota 1 2 3 4 5 6 7 8 Total O teo de duração da rova é de 3 horas É eritido o uso de calculadora eletrôica;

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO UVERDADE FEDERAL DO RO GRADE DO UL UO DE AEÁCA CADERO DE AEÁCA E EAÍCA ÉRE B: RABALHO DE APOO DDÁCO AORAGE Elsa Crsta de udstock ÉRE B, º 53 Porto Alegre, agosto de 006. Aostrage ÍDCE. AORAGE EÁCA... 4.

Leia mais

Testes de Hipótese Multivariados para Matrizes de Covariâncias em Processos Autocorrelacionados com Aplicações em Controle de Qualidade

Testes de Hipótese Multivariados para Matrizes de Covariâncias em Processos Autocorrelacionados com Aplicações em Controle de Qualidade Uversdade Federal de Mas Geras Isttuto de Cêcas Eatas Programa de Pós-Graduação em Estatístca Dssertação de Mestrado: estes de Hótese Multvarados ara Matrzes de Covarâcas em Processos Autocorrelacoados

Leia mais

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES

CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES CÁLCULO DE RAÍZES DE EQUAÇÕES NÃO LINEARES Itrodução Em dversos camos da Egehara é comum a ecessdade da determação de raízes de equações ão leares. Em algus casos artculares, como o caso de olômo, que

Leia mais

Teoria das Comunicações

Teoria das Comunicações Teora das Comucações.6ª Revsão de robabldade rof. dré Noll arreto rcíos de Comucação robabldade Cocetos áscos Eermeto aleatóro com dversos resultados ossíves Eemlo: rolar um dado Evetos são cojutos de

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

3 Precificação de resseguro

3 Precificação de resseguro Precfcação de Resseguro 35 3 Precfcação de resseguro Este capítulo traz prmeramete uma oção ampla das aplcações das metodologas de precfcação de resseguro para melhor compreesão do mesmo Da seção 3 até

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076

NOTAS DE AULA DA DISCIPLINA CE076 9. ANÁISE DE AGUPAENTOS (CUSTER) 9. INTRODUÇÃO A Aálse e Agruametos é uma técca stta os étoos e Classfcação (Aálse Dscrmate, Regressão ogístca). Na Classfcação temos um úmero e gruos cohecos, e o objetvo

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo:

A redução na pressão sangüínea (mm Hg) em um período de quatro semanas observadas em cães experimentais está tabulada abaixo: UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE CIÊNCIAS AGRÁRIAS E VETERINÁRIAS CAMPUS DE JABOTICABAL ª PROVA DE ESTATÍSTICA EXPERIMENTAL - MEDICINA VETERINÁRIA NOME: DATA / / ª QUESTÃO (,): A redução da

Leia mais