16 - PROBLEMA DO TRANSPORTE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "16 - PROBLEMA DO TRANSPORTE"

Transcrição

1 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,..., a ofertas b, b,..., b deadas quatdades a sere trasportadas da orge para o desto. s. a Z c 0 a b,,...,,,...,,,...,,,..., Soado as restrções de oferta e as restrções de deada obte-se a e b a b dcado que o odelo do trasporte ege ua gualdade etre oferta total e deada total. Poré o algorto a ser apresetado tabé pode ser utlzado quado a oferta total ão for gual a deada total. Se a deada é eor que a oferta, basta clur u cosudor fctíco, cua deada sea, eataete, a dfereça etre o total de oferta e o total da deada, equato que os custos de trasporte de cada orge ao cosudor fctíco são toados guas a zero Se a oferta é eor que a deada total, basta clur ua orge fctíca, cua oferta restabeleça o equlíbro etre deada total e oferta total. Neste caso deve-se far gual a zero os custos deste depósto fctíco para todos os cetros cosudores. Estudar eeplos o lvro do Pucc, págas,, 4, 5. Eeplo da pága. Ua fra fabrca u deterado produto e quatro cdades,, e 4; o produto desta-se a três cetros de cosuo A, B e C. Sabe-se que a) As cdades A, B, C e D dspõe respectvaete de 0, 0, 50 e 0 udades do produto. b) Os cetros de cosuo I, II e III ecessta respectvaete de 0, 40 e 50 udades. c) Os custos utáros de trasporte ($) A B C A 0 B... C 8 A B 4 C 4A 5 4B 4C O odelo de trasporte correspodete será

2 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal DETERMINAÇÃO DE UMA SOLUÇÃO INICIAL Já fo estudado o problea do trasporte e sua forulação u problea de prograação lear. Nesta etapa serão estudadas téccas para gerar soluções cas para tal odelo de prograação lear. Serão vstos A regra do Cato Noroeste O processo do Custo Mío O Método de Vogel A obteção de ua solução cal pode ser feta de fora quase arbtrára. As egêcas são uto as sples que aquelas do étodo sple e são as segutes - ser vável, sto é, satsfazer todas as restrções do odelo; - coter ( + - ) varáves báscas; e - as varáves báscas ão deve forar u crcuto fechado. a) Regra do Cato Noroeste A regra será aplcada o quadro de soluções segudo os segutes passos - Passo coece pela célula superor esquerda; - Passo coloque essa célula a aor quatdade pertda pela oferta e deada correspodetes; - Passo atualze os valores da oferta e da deada que fora odfcados pelo Passo ; - Passo 4 sga para a célula da dreta se houver algua oferta restate e volta ao Passo. Caso cotráro, sga para a célula feror e volte ao Passo. O processo cotua até que sea esgotadas as ofertas de todas as orges e suprdas as deadas de todos os destos. EXEMPLO 0 (7) 7 () (, 0) 8 (4) 9 (6) 0 (4, 0) 8 (4) 4 (4) 8 (4, 0) Deada 7 (0) 6 (4, 0) 0 (4) 4 (0) Deada Prero deve-se verfcar se a deada total é gual a oferta total. - A solução cal será A =7, B =, B = 4, C =6, C =4, D =4, Z=8 - Usado a regra do Cato Noroeste, a solução cal depede dos custos, sto é, depede eclusvaete das ofertas das orges e das deadas dos destos.

3 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 4 b) Regra do Custo Mío A regra será aplcada o quadro de soluções segudo os segutes passos - Passo localze o quadro de custos o eor c que ão teha oferta ou deada ula; - Passo coloque essa célula a aor quatdade pertda pela oferta e deada correspodetes; - Passo atualze os valores da oferta e da deada que fora odfcados pelo Passo. O processo cotua até que sea esgotadas as ofertas de todas as orges e suprdas as deadas de todos os destos. EXEMPLO (9) 5 9 (0) (6) 8 9 (4) 0 (6,0) () (6) 8 () 4 8 (7,6,0) Deada 7 (,0) 6 (0) 0 (,0) 4 (0) Deada A solução cal será C =9, A =, D = 4, A =, B =4, C =, Z=6. Usado a regra do Custo ío, a solução depede dos custos. c) Método de Vogel Método das Pealdades O étodo de Vogel depede tato dos custos coo das deadas e ofertas. A regra será aplcada o quadro de soluções segudo os segutes passos - Passo e cada lha, detfque a dfereça de custo etre o eor valor e o segudo eor - Passo e cada colua, detfque tabé a varação de custo etre o eor valor e o segudo eor - Passo a lha ou colua correspodete à aor de todas as varações selecoe a célula de eor custo e coloque aí a aor quatdade pertda pela oferta e deada correspodetes - Passo 4 atualze os valores de oferta e deada que fora odfcados pelo Passo ; caso a lha teha tdo sua oferta reduzda a zero, cacele a lha e volte ao Passo ; caso a colua teha zerado sua deada, volte ao Passo e, depos, Passo. O processo cotua até que sea esgotadas as ofertas de todas as orges e suprdas as deadas de todos os destos. Eeplo do porque o étodo de Vogel geralete é elhor que os outros étodos A B Oferta Deada 50 0

4 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 5 EXEMPLO Deada (7) () Deada 7 (0) (6) () (7) 8 9 () 0 (,0) Deada 7 (0) 6 (0) 0 4 () (6) () (7) 8 9 () 0 (,0) 8 4 () 8 (7) 4 Deada 7 (0) 6 (0) 0 4 (,0) 0 7 (6) 6 () 5 9 (,0) (7) 8 9 () 0 (,0) 8 4 () 8 (7) Deada 7 (0) 6 (0) 0 (7) 4 (,0) 0 7 (6) 6 () 5 9 (,0) (7) 8 9 () 0 (,0) 8 (7) 4 () 8 (7,0) Deada 7 (0) 6 (0) 0 (7,0) 4 (,0)

5 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal Deada A solução cal será B =6, C =, A =7, D =, C =7, D =, Z=7. MÉTODO U-V PARA ACHAR A SOLUÇÃO ÓTIMA A segur será estudado o étodo de Vogel (tabé cohecdo coo étodo u-v) para obteção da solução óta para o problea do trasporte. a) Deteração da varável que etra a base Supohaos que teos orges e destos e a atrz de custos C = c. Etão o odelo dos trasportes é Z c 0 a b 0 u v,...,,..., Se tveros ua solução cal, etão será ecessáro elar as varáves báscas da fução obetvo. Sea u, u,..., u e v, v,..., v as costates pelas quas deve ser ultplcadas as restrções, ates de soá-las à fução obetvo. Soado esses últplos das restrções à fução obetvo, ela se trasfora e Z c u v e portato, cohecda a solução cal vável deve-se ter, para cada ua das ( + ) varáves báscas, c u v 0 fcado a fução obetva epressa soete e fução das varáves ão-báscas. Os últplos ( + ) u e v serão deterado a partr de ( + - ) equações do tpo c u v 0. Por teros ua varável a as que equações, pode-se atrbur valor ulo a ua delas e deterar as deas. No eeplo desevolvdo a aula passada costruíos a segute solução cal básca através do Processo do Custo Mío. u a u u u 6 v v v v 4 v b

6 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 7 Portato o valor das ( + ) varáves u e v será obtdo das equações Varável básca 6-u -v 0 Varável básca Varável básca Varável básca Varável básca Varável básca C 8-u-v Fazedo, por eeplo u = 0 te-se v 6 v 0 u 7 etão E te-se falete u 4 u a v 9 09 C A D A B v 4 -u -v -u -v -u -v u -v v b Coefcet e Coefcet e Coefcet e Coefcet e Coefcet e Coefcet e A B D B C D Z 6 A B D 5B 0C 6D Coclu-se que a solução óta ada ão fo ecotrada pos a fução obetvo coté coefcetes egatvos (pos é u problea de zação) Todos estes cálculos pode ser fetos utlzado os segutes quadros u u = 0 º 8 9 u = -7 6º 8 4 u = º v v = 9 5º v = 0 4º v = 6 º v 4 = 8 Os valores dos coefcetes das varáves ão báscas é faclete calculado.

7 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 8 u 0 () 7 (-) 6 5 (-) u = 0 8 (5) 9 (0) u = (-6) u = v v = 9 v = 0 v = 6 v 4 = 8 Até agora sabeos deterar ua solução básca cal e atualzar os coefcetes da fução obetvo e fução desta base. Devereos deterar, agora, que será a próa varável a etrar a base, e que deverá sar da base b) Deteração da varável que sa da base No eeplo ateror verfca-se que a solução ada ão é óta pos a fução obetvo este coefcetes egatvos, ou sea, Z 6 A B D 5B 0C 6D A varável que deverá etrar a base é D pos se ela torar-se postva etão rá zar as ada a fução obetvo. Sabe-se, do étodo sple que a varável que deve sar da base é aquela que se aular as rapdaete quado D auetar de valor. Veaos sto a partr do próo quadro ) Iagado que a varável D etrará a base co valor > 0, que deve ser o aor possível. ) Soar e subtrar aos valores de certas varáves báscas de tal odo a se fechar u crcuto que garata a copatbldade da ova solução. ) Deterar o aor valor pertdo a. No osso eeplo será =. v) O ovo quadro será As deas varáves báscas (fora do crcuto) ão terão seus valores alterados.

8 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 9 EXEMPLO COMPLETO Após D etrar a base, os custos serão Z u 0 (7) 7 (-) 6 5 () u = - 8 (-) 9 (4) u = - (6) 8 4 u = 0 v v = 5 v = v = 8 v 4 = O eor coefcete é de B e portato deverá etrar a base. Se = 6 etão B deverá sar da base e os ovos quadros serão ( Z ) u 0 (7) () u = 0 8 () 9 (4) u = - 5 (6) () 8 4 u = v v = 6 v = 7 7 v = 6 v 4 = 4 Todos os coefcetes das varáves ão báscas são postvos, e portato se qualquer ua delas etrar a base rá porar o valor da fução obetvo. Logo, a solução ecotrada é óta. B A C C D D

9 Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 40 CASOS ESPECIAIS a) Epate a etrada escolha aleatóra b) Epate a saída degeeração deve-se elar apeas a lha ou a colua, ão pode-se elar a lha e a colua sultaeaete c) Solução últplas quado algua varável básca for ula d) Eeplo copleto pága 9. Of De Solução fal Of De

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

Introdução à Decomposição de Dantzig Wolfe

Introdução à Decomposição de Dantzig Wolfe Itrodução à Deoposção de Datzg Wolfe PNV-5765 Probleas de Prograação Mateáta Aplados ao Plaeaeto de Ssteas de Trasportes Maríto Prof. Dr. Adré Bergste Medes Bblografa Utlzada WILLIAMS, H.P. The forulato

Leia mais

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P)

Seja o problema primal o qual será solucionado utilizando o método simplex Dual: (P) PROGRAMA DE MESTRADO PROGRAMAÇÃO LIEAR PROFESSOR BALEEIRO Método Splex Dual no Tableau Garfnkel-ehauser E-al: abaleero@gal.co Ste: www.eeec.ufg.br/~baleero Sea o problea pral o qual será soluconado utlzando

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Capitulo 7 Resolução de Exercícios

Capitulo 7 Resolução de Exercícios FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN 1 1 1 1 C p R Cp R R a, R C p, 1 1 1 a LN 1 Sp LN 1 1 1 S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Os Fundamentos da Física (8 a edição)

Os Fundamentos da Física (8 a edição) TEM ESPEI ENTRO DE MSS 1 Os Fudaetos da Físca (8 a edção) R MHO, N IOU E T OEDO Tea especal ENTRO DE MSS 1. etro de gradade e cetro de assa, 1. Propredade da cocetração de assas,. Propredade de setra,

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro.

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro. PUCRS - FENG - DEE - estrado e Egehara Elétrca Redes Neuras Artfcas Ferado César C. de Castro e ara Crsta F. de Castro Capítulo 6 Redes Neuras Artfcas para Decoposção de u Espaço Vetoral e Sub-Espaços

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Ex: Cálculo da média dos pesos dos terneiros da fazenda Canoas-SC, à partir dos dados originais: x = 20

Ex: Cálculo da média dos pesos dos terneiros da fazenda Canoas-SC, à partir dos dados originais: x = 20 . MEDIDAS DE TENDÊNCIA CENTRAL (OU DE POSIÇÃO) Coceto: São aquelas que mostram o alor em toro do qual se agrupam as obserações.. MÉDIA ARITMÉTICA ( ) Sea (x, x,..., x ), uma amostra de dados: Se os dados

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA CADERNOS DE MATEMÁTICA E ESTATÍSTICA SÉRIE B: TRABALHO DE APOIO DIDÁTICO UVERDADE FEDERAL DO RO GRADE DO UL UO DE AEÁCA CADERO DE AEÁCA E EAÍCA ÉRE B: RABALHO DE APOO DDÁCO AORAGE Elsa Crsta de udstock ÉRE B, º 53 Porto Alegre, agosto de 006. Aostrage ÍDCE. AORAGE EÁCA... 4.

Leia mais

Balanço de Massa e Energia Aula 2

Balanço de Massa e Energia Aula 2 alaço de assa e Eerga ula Udades e Desão Desão: Quatdade que pode ser edda, são as gradezas báscas coo copreto, assa, tepo, teperatura etre outras, ou quatdades calculadas pela dvsão ou ultplcação de outras

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios

Previsão de demanda quantitativa Regressão linear Regressão múltiplas Exemplos Exercícios Objetvos desta apresetação Plaejameto de produção: de Demada Aula parte Mauro Osak TES/ESALQ-USP Pesqusador do Cetro de Estudos Avaçados em Ecooma Aplcada Cepea/ESALQ/USP de demada quattatva Regressão

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.uemat.br/eugeo Estudar sem racocar é trabalho 009/ TAXA INTERNA DE RETORNO A taa tera de retoro é a taa que equalza o valor presete de um ou mas pagametos (saídas de caa) com o valor presete

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita

Decomposição Lagrangeana com Geração de Colunas para o Problema de Programação Quadrática Binária Irrestrita Decoposção Lagrageaa co Geração de Coluas para o Problea de Prograação Quadrátca Bára Irrestrta Geraldo Regs Maur,2, Luz Atoo Noguera Lorea 2 Cetro de Cêcas Agráras, Departaeto de Egehara Rural Uversdade

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão

Estatística Descritiva. Medidas estatísticas: Localização, Dispersão Estatístca Descrtva Meddas estatístcas: Localzação, Dspersão Meddas estatístcas Localzação Dspersão Meddas estatístcas - localzação Méda artmétca Dados ão agrupados x x Dados dscretos agrupados x f r x

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Apêndice. Uso de Tabelas Financeiras

Apêndice. Uso de Tabelas Financeiras Apêdce C Uso de Tabelas Faceras 1. INTRODUÇÃO...2 2. SIMBOLOGIA ADOTADA E DIAGRAMA PADRÃO...2 3. RELAÇÃO ENTRE PV E FV...2 3.1. DADO PV ACHAR FV: FATOR (FV/PV)...3 3.1.1. EXEMPLOS NUMÉRICOS...5 3.2. DADO

Leia mais

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência)

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência) 4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (fuções de trasferêa) 4. Trasforada de Laplae É u operador lear, que opera sobre fuções de varável otíua postva, defdo por: L f(t) = f(s) = f(t) e -st dt Nota:

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

Regressão Linear Múltipla

Regressão Linear Múltipla Prof. Lorí Val, Dr. http://www.pucrs.br/faat/val/ val@pucrs.br Regressão Lear Múltpla O odelo de regressão lear últpla Itrodução Defção e terologa Iterpretação Estação Iterpretação revstada Qualdade do

Leia mais

= { 1, 2,..., n} { 1, 2,..., m}

= { 1, 2,..., n} { 1, 2,..., m} IME ITA Apostila ITA E 0 Matrizes Ua atriz de orde é, iforalete, ua tabela co lihas e coluas, e que lihas são as filas horizotais e coluas são as filas verticais Co esta idéia teos a seguite represetação

Leia mais

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores.

( ) ( IV ) n ( ) Escolha a alternativa correta: A. III, II, I, IV. B. II, III, I, IV. C. IV, III, I, II. D. IV, II, I, III. E. Nenhuma das anteriores. Prova de Estatístca Epermetal Istruções geras. Esta prova é composta de 0 questões de múltpla escolha a respeto dos cocetos báscos de estatístca epermetal, baseada os lvros BANZATTO, A.D. e KRONKA, S.N.

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Arquitetura da ART Controle 1 Controle 2

Arquitetura da ART Controle 1 Controle 2 Teora de Ressoâca Adaptatva - ART Arqutetura da ART Cotrole Cotrole 2 Desevolvda por Carpeter e Grossberg como uma alteratva para resolver o dlema establdade-plastcdade (rede ão aprede ovos padrões). Realme

Leia mais

Disciplina: Análise Multivariada I Prof. Dr. Admir Antonio Betarelli Junior AULA 6.1

Disciplina: Análise Multivariada I Prof. Dr. Admir Antonio Betarelli Junior AULA 6.1 Dscpla: álse Multvaraa I Prof. Dr. mr too Betarell Juor UL 6. MÉTODO DE ESCLONMENTO MULTIDIMENSIONL (MDS) Proposto por Youg (987) esse métoo poe ser utlzao para agrupameto. É uma técca para represetar

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Módulo 4 Sistema de Partículas e Momento Linear

Módulo 4 Sistema de Partículas e Momento Linear Módulo 4 Sstea de Partículas e Moento Lnear Moento lnear Moento lnear (quantdade de oento) de ua partícula: Grandeza etoral Undades S.I. : kg./s p Moento lnear e ª Le de ewton: Se a assa é constante: F

Leia mais

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2

= n. Observando a fórmula para a variância, vemos que ela pode ser escrita como, i 2 Etatítca II Atoo Roque Aula 4 O Coefcete de Correlação de Pearo O coefcete de correlação de Pearo é baeado a déa de varâca, dada o curo de Etatítca I Como vto aquele curo, quado temo uma amotra compota

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

Algoritmos de partição e geração de colunas para dimensionamento de lotes de produção

Algoritmos de partição e geração de colunas para dimensionamento de lotes de produção C. Petel, F. Alvelos, J. Carvalho / Ivestgação Operacoal, 26 (2006) 129-146 129 Algortos de partção e geração de coluas para desoaeto de lotes de produção Cara Mara Olvera Petel Flpe Perera e Alvelos José

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS

CIRCUITOS ELÉTRICOS CONCEITOS BÁSICOS CCUTOS ELÉTCOS CONCETOS BÁSCOS Prof. Marcos Fergütz jul/07 - Carga Elétrca (Q, q) [ Udade: Coulomb C ] e - Quado se forece ou retra eerga do elétro (e - ), pode-se movmetá-lo por etre as camadas (K, L,

Leia mais

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período.

Determine a média de velocidade, em km/h, dos veículos que trafegaram no local nesse período. ESTATÍSTICA - 01 1. (UERJ 01) Téccos do órgão de trâsto recomedaram velocdade máxma de 80 km h o trecho de uma rodova ode ocorrem mutos acdetes. Para saber se os motorstas estavam cumprdo as recomedações,

Leia mais

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD

Distribuições Amostrais. Estatística. 8 - Distribuições Amostrais UNESP FEG DPD Dstrbuções Amostras Estatístca 8 - Dstrbuções Amostras 08- Dstrbuções Amostras Dstrbução Amostral de Objetvo: Estudar a dstrbução da população costtuída de todos os valores que se pode obter para, em fução

Leia mais

6. Medidas de assimetria e curtose

6. Medidas de assimetria e curtose 6. Meddas de assetra e curtose 0 6.. Meddas de assetra Ua varável aleatóra cotíua X te dstrbução sétrca (syetrc) e relação a u valor 0 se f( 0 a) f( 0 + a), para todo a. Dstrbuções sétrcas: f() 0.00 0.05

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida...

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida... Curso: Pós-graduação / MBA Campus Vrtual Cruzero do Sul - 2009 Professor Resposável: Carlos Herque de Jesus Costa Professores Coteudstas: Carlos Herque e Douglas Madaj UNIVERSIDADE CRUZEIRO DO SUL Cohecedo

Leia mais

Palavras-chave: Problemas de corte e empacotamento, carregamento de contêineres com múltiplos destinos, otimização combinatória, modelagem matemática.

Palavras-chave: Problemas de corte e empacotamento, carregamento de contêineres com múltiplos destinos, otimização combinatória, modelagem matemática. 1 ABORDAGENS PARA PROBEMAS DE CARREGAMENTO DE CONTÊINERES COM CONSIDERAÇÕES DE MÚTIPOS DESTINOS eoardo Juquera Realdo Morabto Dese Sato Yaashta Departaeto de Egehara de Produção Uversdade Federal de São

Leia mais

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente. HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete

Leia mais

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano

ESTATÍSTICA Aula 7. Prof. Dr. Marco Antonio Leonel Caetano ESTATÍSTICA Aula 7 Prof. Dr. Marco Atoo Leoel Caetao Dstrbuções de Probabldade DISCRETAS CONTÍNUAS (Números teros) Bomal Posso Geométrca Hper-Geométrca Pascal (Números reas) Normal t-studet F-Sedecor Gama

Leia mais

Programação Paralela

Programação Paralela rograação aralela FEU 4. Avalação de steas aralelos Defções Razão etre a velocdade de processaeto coseguda o sstea paralelo e a velocdade coseguda co u processador (pouca foração...) Efcêca Quocete do

Leia mais

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA.

CCI-22 CCI-22 DEFINIÇÃO REGRA DO RETÂNGULO FÓRMULAS DE NEWTON-COTES CCI - 22 MATEMÁTICA COMPUTACIONAL INTEGRAÇÃO NUMÉRICA. CCI - MATMÁTICA COMPUTACIONAL INTGRAÇÃO NUMÉRICA CCI- Fórulas de Newto-Cotes Regras de Sipso Regra de Sipso de / Regra de Sipso de / Fórula geral de Newto-Cotes stiativas de erros DFINIÇÃO deteriadas situações,

Leia mais

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL

ESTATÍSTICA MÓDULO 3 MEDIDAS DE TENDÊNCIA CENTRAL ESTATÍSTICA MÓDULO 3 MEDIDAS DE TEDÊCIA CETRAL Ídce. Meddas de Tedêca Cetral...3 2. A Méda Artmétca Smles ( μ, )...3 3. A Méda Artmétca Poderada...6 Estatístca Módulo 3: Meddas de Tedêca Cetral 2 . MEDIDAS

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais