A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente.

Tamanho: px
Começar a partir da página:

Download "A noção de função homogénea surge logo no primeiro ano dos cursos de licenciatura onde uma disciplina de Análise Matemática esteja presente."

Transcrição

1 HÉLIO BERNARDO LOPES Resuo. O coceto de fução hoogéea está presete desde o íco dos cursos de lcecatura que cotepla os seus plaos de estudos dscplas de Aálse Mateátca. Trata-se de u coceto sples, faclete doável, ebora o eso ão seja sufceteete aprofudado, estado ausetes utas das suas lgações co outros doíos da Mateátca e da Físca, que surge o seo de outras dscplas. U dos doíos cuja apresetação e desevolveto requer o coheceto de quato evolve o coceto de fução hoogéea, é o da Aálse Desoal, estruturada a partr dos prórdos do Século XIX, e que serve de suporte à Teora da Seelhaça, à luz de cuja doutra se estabelece os crtéros de seelhaça e as correspodetes relações, que são teas absolutaete essecas o esao de estruturas dversas por recurso a odelos reduzdos. A oção de fução hoogéea surge logo o prero ao dos cursos de lcecatura ode ua dscpla de Aálse Mateátca esteja presete. Tal coo é apresetada, trata-se de ua oção sples, de fácl apreesão e doâca, ebora, de u odo quase geral, a referda oção ão seja sufceteete aprofudada, e se ostre alguas das suas portates lgações a outros doíos da Mateátca e da Físca Aplcadas, e que surge o seo de outras dscplas de certos cursos de lcecatura. U dos doíos cuja apresetação e desevolveto requer o coheceto de quato gra ao redor da oção de fução hoogéea, é o da Aálse Desoal, cuja estruturação teve o seu íco os prórdos do Século XIX, que é a estrutura que serve de suporte à Teora da Seelhaça, sob cuja doutra se estabelece os crtéros de seelhaça e as correspodetes relações, teas absolutaete opresetes e essecas o esao de estruturas dversas através de odelos reduzdos. Note-se, cotudo, que o doío da Aálse Desoal te tabé aplcação e áreas coo a Ecooa, e até a Socologa e a Pscologa. Seja, etão, a fução, f : R R, k R, ( =,..., ). Dz-se que f codcoalete hoogéea se e só se: = f k,..., k g k,..., k f,...,. À fução g : R R, dá-se o oe de factor de hoogeedade. é Adte-se, claro está, que (,..., ) e ( k k D f R, e que ( k,..., k ) D g R.,..., ) pertece ao doío de f, E cotrapartda, se () só for válda o doío defdo por certas codções os coefcetes k, ( =,..., ), f dz-se codcoalete hoogéea. Atgo Professor e Mebro do Coselho Cetífco da Escola Superor de Políca.

2 Pode deostrar-se faclete que toda a fução, f : R R, que seja u oóo do tpo: α α α = f,..., = = co α R, ( =,..., ), é ua fução codcoalete hoogéea, sedo o correspodete factor de hoogeedade: co k R, ( =,..., ). α α α = g k,..., k = k k = k Pode, poré, r-se as loge, tedo presete que qualquer fução cotíua e certo doío, que seja aí codcoalete hoogéea, é ecessaraete u oóo. Ass, por eeplo, a fução, f : R 3 R, defda por: 3 f (,, ) = 3 é ua fução codcoalete hoogéea, dado ser u oóo e cotíua o seu doío. O correspodete factor de hoogeedade é: 3 3 g k, k, k = k k k. 3 No caso de se estar perate ua fução codcoalete hoogéea, f : R R: f (,..., ) e que as codções os parâetros k R, ( =,..., ), são do tpo ooal, e os teros do sstea que se apreseta a segur: 3 () α α k+ = k k α p αp k+ p = k k co + p =, k R, ( =,..., ), a fução f pode escrever-se a fora: k k p + + f (,..., ) = g,..., α α. α p αp ( 3) Os epoetes,α j, ( =,..., ; j =,..., p ), assue os valores reas adequados a torar cada ua das epressões: + j α j α

3 u oóo hoogéeo, ( =,..., ; j =,..., p ). Coo é evdete, as epressões aterores, para a fução f coo para a fução g, supõe-se sepre que estas fuções estão defdas os potos cosderados. E, tal coo já se referu para o caso codcoalete hoogéeo, tabé a epressão (3) defe f coo ua fução hoogéea, qualquer que seja a fução g, desde que as codções os parâetros, k R, seja as dadas pelo sstea (). Ora, o que se dsse até aqu para ua fução, f : R R, pode esteder-se ao caso de ua equação co N cógtas: co ( f,..., = 0. ( 4) Ass, dz-se que (4) é ua equação codcoalete hoogéea se se tver: quasquer.,..., ) e ( k k f ( k,..., k ) = 0,..., ) pertecetes a D f R, e k R, ( =,..., ), Ao vés, se os parâetros k satsfzere a certas codções, (4) dz-se ua equação codcoalete hoogéea. No caso e que a equação (4) perte eplctar a cógta, por eeplo, coo ua fução das restates: f : R R, ( (,..., ) = f ( 5),..., ) D f R, e f for codcoalete hoogéea, co as codções os parâetros k R, ( =,..., ), dadas pelo sstea abao: α α k+ = k k α p αp k+ p = k k co + p =, (5) pode etão escrever-se a fora: k k = g p + +,...,.,( p ),( p ) α α α α Coo se saletou logo ao íco, o coceto de fução hoogéea é essecal o trataeto da Aálse Desoal, dado auseare-se este doío gradezas ode é essecal defr-se ua relação de gualdade, be coo a operação de adção dos seus valores, de olde que aquela relação e esta operação seja depedetes do sstea de udades que esteja a ser utlzado.

4 Nada pede, cotudo, que se cosdere os parâetros k R, ( =,..., ), coo sedo u úco - seja t R -, dzedo-se, etão, que a fução, f : R R, é hoogéea se e só se: ode se supõe que ( f ( t,..., t ) = t α f (,..., ) ( 6),..., ) e ( t,..., t ) pertece ao doío de f, D f R, e ode α R. À fução t α dá-se a desgação de factor de hoogeedade, desgado a costate real,α, por grau de hoogeedade da fução f. Esta fução dr-se-á postvaete hoogéea de grau de hoogeedadeα, se (6) for válda apeas para valores de t R 0 +. Coo é evdete, ua fução hoogéea é postvaete hoogéea, as a recíproca ão é verdadera. Note-se que, se e (6) se proceder à udaça de varável: vrá: t = f ( f,..., ),,..., = α ( 7) ou seja: f g α (,..., ) =,..., ( 8) co g : R R e co: 0,..., Dg. Coo é evdete, qualquer que seja o sstea de udades co que se esteja a trabalhar o âbto do estudo de certo feóeo, os quocetes: ( =,..., ) 0 são fuções hoogéeas, tal coo co as restates fuções que aparece e (8). No caso de estre as preras dervadas parcas de ua fução f ( ),...,, que seja hoogéea de grau α, cada ua dessas dervadas parcas é ada ua fução hoogéea, as de grau α. E se estre as dervadas parcas de orde k, ( k =,..., ), elas serão, por gual, hoogéeas de grau α k.

5 Por f, salete-se que, sedo, f : R R, ua fução postvaete hoogéea de grau de hoogeedade,α, se te a portate Idetdade de Euler, desde que esta as preras dervadas parcas da fução dada: ou, de odo as stétco: ' ' f + + f = α f ( 9) ' f = α f. = ( 9) A recíproca é, por gual, verdadera: se certa fução, f : R R, for dferecável e verfcar a Idetdade de Euler, (9), essa fução é postvaete hoogéea. Tora-se faclete evdete que se certa fução assur a fora de u polóo as varáves,, ( =,..., ), o eso será hoogéeo de grau α R se for α o grau de cada u dos seus oóos, ou seja, se sedo a fução da fora: se tver, para cada oóo: ( ) = k k f,...,... k + + k = α. A epressão (7) perte coclur que, se f é fução hoogéea de grau de hoogeedade 0, ela depede apeas dos quocetes: k ( =,..., ) 0 etre as suas varáves: f (,..., ) = f,,...,. Toda esta doutra sobre o coceto de fução hoogéea, tal coo se dsse ao íco, é requerda a estruturação da Aálse Desoal, pelo que se justfca alguas referêcas a este doío. Coo é evdete, quado se procede à edção de certa gradeza ecâca ecessta-se de ua udade coo tero de coparação. Ebora as udades utlzadas a edção das dversas gradezas ecâcas possa ser as as dversas, e escolhdas depedeteete uas das outras, tora-se coveete detar ão do que se desga por sstea coerete de udades. U tal sstea é costtuído por u cojuto de udades fadas de odo arbtráro, chaadas udades de base (ou fudaetas), e por udades dervadas, cuja defção se faz a partr das preras, usado certas fórulas, a que se dá o oe de equações de defção.

6 Ass, quado se está perate a equação de defção de certa gradeza ecâca, pode acotecer que aquela apeas fgure udades de base, ou tabé udades dervadas, porvetura, sturadas co as preras. Coo é óbvo, cotudo, esta últa stuação acaba sepre por degeerar a prera. Se a equação de defção de certa gradeza se substtuíre as udades de base por síbolos que as represete, obté-se a desgada equação de desões da gradeza e causa. Dado que as equações de defção são sepre epressões oóas, o eso acotece co as equações de desões. Coo se sabe, o sstea de udades ecâcas teracoalete adoptado é o Sstea Iteracoal de Udades, SI, que fo adoptado pela ª Coferêca Geral de Pesos e Meddas, que teve lugar e Pars, o ao de 960. Neste sstea, e o doío ecâco, as udades de base são o etro, para o copreto, o qulograa, para a assa, e o segudo, para o tepo. As equações de desões das dversas gradezas ecâcas vê, pos, epressas do odo segute: [ ] X = L α M β T γ ode L, M e T represeta, respectvaete, o copreto, a assa e o tepo, e ode α, β e γ são as desões da gradeza X face às gradezas fudaetas o sstea coerete de udades adoptado, ode as udades de base são o etro, o qulograa e o segudo. Neste poto, há dos teoreas que se põe apresetar: o Teorea da Hoogeedade e o Teorea dos Parâetros Adesoas. Veja-se, pos, o TEOREMA DA HOMOGENEIDADE 3. E toda a epressão, equação ou fórula físca, teórca ou eprcaete deduzda, as desões de todos os seus teros deve ser dêtcas. Ou seja, aquela deve ser desoalete hoogéea. Sgfca sto que, se se gualare duas epressões da Mecâca, as desões das duas epressões tê de ser dêtcas. E quado e dada epressão da Mecâca certa gradeza aparece dversas vezes, ela te de vr epressa, e últa aálse, as esas udades de base do sstea de udades adoptado, ou o eso deara de ser coerete. O segudo teorea atrás referdo é o TEOREMA DOS PARÂMETROS ADIMENSIONAIS 4. Dado u feóeo físco qualquer e cohecda ua relação: (,,..., ) f A A A = 0 ( 0) etre todas as varáves, e úero de, que ele tervê, se se escolher u sstea de gradezas fudaetas, a epressão ateror pode trasforar-se ua relação de parâetros adesoas: Tabé cohecdo por Teorea dos ππ, ou Teorea de Vashy-Buckga. 3 O eucado que se apreseta é o que se coté e HIDRÁULICA GERAL, Volue I, Alberto Abecass Mazaares, Técca, AEIST, O eucado que se apreseta é o que se coté e HIDRÁULICA GERAL, Volue I, Alberto Abecass Mazaares, Técca, AEIST, 979.

7 (,,..., π ) ϕ π π 0 = e que cada parâetro coté + varáves, soete ua das quas uda de parâetro para parâetro, sedo as outras as toadas para fudaetas. Se se adtr u sstea coo o teracoalete adoptado, este, coo se sabe, três gradezas fudaetas. Desge-se essas gradezas por A l, A e A t, e supoha-se que estas gradezas são três das que fgura e (0). Nestas crcustâcas, () terá 3 parâetros adesoas, cada u dos quas é u oóo hoogéeo de grau de hoogeedade 0. Cada u desses oóos hoogéeos e adesoas será do tpo: A π = α β γ Al A At ode α, β e γ são as desões da gradeza A toadas e relação às três udades de base, A l, A e A t, respectvaete. Estes parâetros,π, e úero de 3, toa a desgação de úeros ídces 5 do feóeo e estudo. Ass, se depos de be aalsado se decdr que certo feóeo físco depede de cco gradezas ecâcas, o seu estudo tera de fazer-se através do do efeto de cada ua dessas gradezas, co as restates toadas costates. Ua tal tarefa sera, aturalete, casatva. Cotudo, se se toare três dessas gradezas para fudaetas, ser-se-á coduzdo de ua stuação cal do tpo: f A, A, A, A, A = 0 para ua outra da fora: (, ) ϕ π π = 0 ode se te: A A π = α β γ π = α β γ A A A A A A Passa, pos, através de (), a dspor-se de ua equação co apeas dos úeros ídces,π eπ. Realzado esaos dversos do feóeo e estudo, obté-se u cojuto de pares ordeados do tpo, ( π, π ) cartesaos ortogoas., que pode represetar-se u sstea de dos eos Só ua stuação de verdadera rardade se ecotrará ua relação causal do tpo: π = g ( π ) 5 Tabé desgados parâetros característcos do feóeo.

8 pelo que o que haverá a fazer será adaptar ua relação fucoal,φ, que ze os desvos e relação aos pares ordeados, ( π, π ) o feóeo e estudo. ou seja: Essa relação, será, pos:, que será, pos, a cosderada coo represetado A π = φ( π ) α β γ = φ α β γ A A A A A A A A = A A A α β γ A φ α β γ. A A A Fca ass eposto o coceto de fução hoogéea, através de u cojuto vasto de defções e propredades, as tabé a referêca à sua preseça o estudo da Aálse Desoal, que se projecta, coo se dsse ao íco, a Teora da Seelhaça e as suas aplcações à costrução de odelos reduzdos, ode te de detar-se ão de crtéros de seelhaça. Ora, ua codção essecal para que haja seelhaça, à luz de certo crtéro, etre protótpo e odelo, é que os úeros ídces correspodetes, para cada gradeza, seja guas o protótpo e o odelo. Pôde, pos, ostrar-se que o coceto de fução hoogéea é, afal, be as rco e útl do que a ua prera vsta poderá depreeder-se da doutra oralete apresetada as dscplas de Mateátca ode é tratado. BIBLIOGRAFIA AGUDO, F. R. Das (989): Aálse Real, Volue I, Escolar Edtora, Lsboa. ALMEIDA, Gulhere de (988): Sstea Iteracoal de Udades (SI). Gradezas e Udades Físcas. Terologa, Síbolos e Recoedações, Plátao Edtora, SA. BAU, João (974): Teora da Aálse Desoal e da Seelhaça Físca - Aplcação aos Modelos Hdráulcos e aos Modelos Aerodâcos, Tese apresetada a cocurso para especalsta do LNEC, Mstéro das Obras Públcas, Lsboa. MANZANARES, Alberto Abecass ( 979): Hdráulca Geral. I - Fudaetos Teórcos, Técca, AEIST, Lsboa. MENDONÇA, P. de Varees e ( ): Apotaetos de Mecâca Racoal e Teora Geral de Máquas, 9ª Edção cclostlada, Isttuto Superor de Agrooa, Lsboa. QUINTELA, Atóo de Carvalho (98): Hdráulca, Fudação Calouste Gulbeka, Lsboa.

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA

A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A IMPORTÂNCIA DA NOÇÃO DE FUNÇÃO HOMOGÉNEA A oção de fução hoogéea surge logo o prieiro ao dos cursos de liceciatura ode ua disciplia de Aálise Mateática esteja presete. Tal coo é apresetada, trata-se

Leia mais

Capítulo 2. Aproximações de Funções

Capítulo 2. Aproximações de Funções EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo Aproações de Fuções Há bascaete dos tpos de probleas de aproações: ) ecotrar ua fução as sples, coo u polôo, para aproar

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES

CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES CAPÍTULO VIII DIFERENCIAIS DE ORDEM SUPERIOR FÓRMULA DE TAYLOR E APLICAÇÕES. Dferecas de orde superor Tratareos apeas o caso das fuções de A R e R sedo que o caso geral das fuções de A R e R se obté a

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

16 - PROBLEMA DO TRANSPORTE

16 - PROBLEMA DO TRANSPORTE Prof. Volr Wlhel UFPR TP05 Pesqusa Operacoal 6 - PROBLEMA DO TRANSPORTE Vsa zar o custo total do trasporte ecessáro para abastecer cetros cosudores (destos) a partr de cetros forecedores (orges) a, a,...,

Leia mais

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação:

Como primeiro exemplo de uma relação de recorrência, consideremos a seguinte situação: Relações de Recorrêcas - Notas de aula de CAP Prof. José Carlos Becceer. Ao 6. Ua Relação de Recorrêca ou Equação de Recorrêca defe ua fução por eo de ua epressão que clu ua ou as stâcas (eores) dela esa.

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Consideremos a fórmula que nos dá a área de um triângulo: = 2

Consideremos a fórmula que nos dá a área de um triângulo: = 2 6. Cálculo Derecal e IR 6.. Fução Real de Varáves Reas Cosdereos a órula que os dá a área de u trâulo: b h A( b h) Coo podeos vercar a área de u trâulo depede de duas varáves: base (b) e altura (h) Podeos

Leia mais

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA

CAPÍTULO III MÉTODOS DE RUNGE-KUTTA PMR 40 Mecâca Coputacoal CAPÍTULO III MÉTODOS DE RUNGE-KUTTA São étodos de passo sples requere apeas dervadas de prera orde e pode forecer aproxações precsas co erros de trucaeto da orde de, 3, 4, etc.

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering)

Representação dos padrões. Tipos de atributos. Etapas do processo de agrupamento. 7.1 Agrupamento clássico. 7. Agrupamento fuzzy (fuzzy clustering) 7. Agrupaeto fuzzy (fuzzy clusterg) 7. Agrupaeto clássco Agrupaeto é a classfcação ão-supervsoada de padrões (observações, dados, objetos, eeplos) e grupos (clusters). Itutvaete, padrões seelhates deve

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. P x t i x t i x t i x t i Departaeto de Iforátca Dscpla: do Desepeho de Ssteas de Coputação Cadeas de Marov I Processos de Marov (ou PE Marovao) Sea u processo estocástco caracterzado pela seüêca de v.a s X(t ),,,, Sea X(t ) a

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor

SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINITAS-JM Balthazar- Maio Resolvendo um Problema de Condução de Calor SOLUÇÃO DE EQUAÇÕES DIFERENCIAIS POR DIFERENÇAS FINIAS-JM Balthazar- Mao 3 Resolvedo u Problea de Codução de Calor Para troduzr o étodo das dfereças ftas de ua fora prátca vaos cosderar u problea de codução

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

Centro de massa Dinâmica do corpo rígido

Centro de massa Dinâmica do corpo rígido Cetro de assa Dâca do corpo rígdo Nota: As fotografas assaladas co () fora retradas do lvro () A. Bello, C. Portela e H. Caldera Rtos e Mudaça, Porto edtora. As restates são retradas de Sears e Zeasky

Leia mais

Estatística: uma definição

Estatística: uma definição Prof. Lorí Val, Dr. val@pucrs.br http://.pucrs.br/faat/val/ Estatístca: ua defção Coleção de úeros estatístcas O úero de carros veddos auetou e 30%. o país A taa de deseprego atge, este ês, 7,%. As ações

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

Cap. 5. Testes de Hipóteses

Cap. 5. Testes de Hipóteses Cap. 5. Testes de Hpóteses Neste capítulo será estudado o segudo problema da ferêca estatístca: o teste de hpóteses. Um teste de hpóteses cosste em verfcar, a partr das observações de uma amostra, se uma

Leia mais

MÉTODO DOS MÍNIMOS QUADRADOS

MÉTODO DOS MÍNIMOS QUADRADOS MÉTODO DOS MÍNIMOS QUADRADOS I - INTRODUÇÃO O processo de medda costtu uma parte essecal a metodologa cetífca e também é fudametal para o desevolvmeto e aplcação da própra cêca. No decorrer do seu curso

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS ANÁLISE DE ERROS A oservação de um feómeo físco ão é completa se ão pudermos quatfcá-lo. Para é sso é ecessáro medr uma propredade físca. O processo de medda cosste em atrur um úmero a uma propredade físca;

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. Prof. Lorí Val, Dr. val@at.ufrgs.br http://.at.ufrgs.br/~val/ Coleção de úeros estatístcas stcas O úero de carros veddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%. As ações a da Telebrás

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. val@mat.ufrgs.r http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Balanço de Massa e Energia Aula 2

Balanço de Massa e Energia Aula 2 alaço de assa e Eerga ula Udades e Desão Desão: Quatdade que pode ser edda, são as gradezas báscas coo copreto, assa, tepo, teperatura etre outras, ou quatdades calculadas pela dvsão ou ultplcação de outras

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões.

A ciência de coletar, organizar, apresentar, analisar e interpretar dados numéricos com o objetivo de tomar melhores decisões. .pucrs.br/faat/val/.at.ufrgs.br/~val/ Prof. Lorí Val, Dr. val@at.ufrgs.br val@pucrs.br Coleção de úeros estatístcas O úe ro de carros ve ddos o país auetou e 30%. A taa de deseprego atge, este ês, 7,%.

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

II. Propriedades Termodinâmicas de Soluções

II. Propriedades Termodinâmicas de Soluções II. Propredades Termodâmcas de Soluções 1 I. Propredades Termodâmcas de Fludos OBJETIVOS Eteder a dfereça etre propredade molar parcal e propredade de uma espéce pura Saber utlzar a equação de Gbbs-Duhem

Leia mais

Noções Básicas de Medidas e Algarismos Significativos

Noções Básicas de Medidas e Algarismos Significativos Noções Báscas de Meddas e Algarsmos Sgfcatvos Prof. Theo Z. Pava Departameto de Físca - Faculdade de Flosofa, Cêcas e Letras de Rberão Preto-USP Físca Acústca Motvações Quas são os padrões de meddas? Podemos

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR Boestatístca Professor: Celso Luz Borges de Olvera Assuto: Estatístca TEMA: Somatóro RESUMO E NOTAS DA AULA Nº 0 Seja

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

Os Fundamentos da Física (8 a edição)

Os Fundamentos da Física (8 a edição) TEM ESPEI ENTRO DE MSS 1 Os Fudaetos da Físca (8 a edção) R MHO, N IOU E T OEDO Tea especal ENTRO DE MSS 1. etro de gradade e cetro de assa, 1. Propredade da cocetração de assas,. Propredade de setra,

Leia mais

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si.

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si. Prof. Lorí Va, Dr. http://www. ufrgs.br/~va/ va@mat.ufrgs.br aáse de varâca de uma cassfcação (Oe-Way NOV) verfca se as médas de amostras depedetes (tratametos) dferem etre s. Um segudo tpo de aáse de

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas

ESTATÍSTICA Exame Final 1ª Época 3 de Junho de 2002 às 14 horas Duração : 3 horas Faculdade de cooma Uversdade Nova de Lsboa STTÍSTIC xame Fal ª Época de Juho de 00 às horas Duração : horas teção:. Respoda a cada grupo em folhas separadas. Idetfque todas as folhas.. Todas as respostas

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

DISTRIBUIÇÃO HIPERGEOMÉTRICA

DISTRIBUIÇÃO HIPERGEOMÉTRICA 7 DISTRIBUIÇÃO HIPERGEOMÉTRICA Cosdere-se uma população fta costtuída por N elemetos dstrbuídos por duas categoras eclusvas e eaustvas de dmesões M e N M, respectvamete. Os elemetos da prmera categora

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Operadores Lineares e Matrizes

Operadores Lineares e Matrizes Operadores Lieares e Matrizes Ua Distição Fudaetal e Álgebra Liear Prof Carlos R Paiva Operadores Lieares e Matrizes Coeceos por apresetar a defiição de operador liear etre dois espaços lieares (ou vectoriais)

Leia mais

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES

INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES INFERÊNCIA ESTATÍSTICA PARA DUAS POPULAÇÕES . Populações depedetes co dstrbução oral População População,, Y,,Y ~ N, Y ~ N, Y ~ N, Obs. Se a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete.

Leia mais

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1

NOTA BREVE SOBRE O CONCEITO DE MÉDIA 1 NOTA BREVE SOBRE O CONCEITO DE MÉDIA O coceto de méda surge de modo abudate a dscla de Métodos Estatístcos, resete em mutos cursos de lcecatura de sttuções de eso sueror. Surge, de gual modo, em domíos

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas

Leia mais

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências:

Física 1 - Experiência 4 Lei de Hooke Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. Referências: Físca 1 - Experêca 4 Le de Hooe Prof.: Dr. Cláudo S. Sartor ITRODUÇÃO: Fora Geral dos Relatóros É uto desejável que seja u cadero grade (forato A4) pautada co folhas eueradas ou co folhas eueradas e quadrculadas,

Leia mais

8. INFERÊNCIA PARA DUAS POPULAÇÕES

8. INFERÊNCIA PARA DUAS POPULAÇÕES 8 INFERÊNCIA PARA UA POPULAÇÕE 8 Populações depedetes co dstrbução oral População População, L, Y, L,Y ~ N, σ Y ~ N, σ σ σ Y ~ N, Obs e a dstrbução de e/ou Y ão for oral, os resultados são váldos aproxadaete

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Programação Paralela

Programação Paralela rograação aralela FEU 4. Avalação de steas aralelos Defções Razão etre a velocdade de processaeto coseguda o sstea paralelo e a velocdade coseguda co u processador (pouca foração...) Efcêca Quocete do

Leia mais

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida . MODELO DETALHADO: Relações de Recorrêca Exemplo: Algortmo Recursvo para Cálculo do Fatoral Substtução Repetda T T ( ) ( ) t 1, T ( + t, > T ( ) T ( + t T ( ) ( T( ) + t + t ) + t T ( ) T ( ) T ( ) +

Leia mais

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos

5. Métricas para Definição de Níveis de Homogeneidade e Heterogeneidade em Sistemas Computacionais Distribuídos étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos 5. étrcas para Defção de Níves de Hoogeedade e Heterogeedade e steas Coputacoas Dstrbuídos A heterogeedade dos recursos

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Capitulo 1 Resolução de Exercícios

Capitulo 1 Resolução de Exercícios S C J S C J J C FORMULÁRIO Regme de Juros Smples 1 1 S C 1 C S 1 1.8 Exercícos Propostos 1 1) Qual o motate de uma aplcação de R$ 0.000,00 aplcados por um prazo de meses, à uma taxa de 2% a.m, os regmes

Leia mais

Introdução à Decomposição de Dantzig Wolfe

Introdução à Decomposição de Dantzig Wolfe Itrodução à Deoposção de Datzg Wolfe PNV-5765 Probleas de Prograação Mateáta Aplados ao Plaeaeto de Ssteas de Trasportes Maríto Prof. Dr. Adré Bergste Medes Bblografa Utlzada WILLIAMS, H.P. The forulato

Leia mais

d s F = m dt Trabalho Trabalho

d s F = m dt Trabalho Trabalho UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho 1. Itrodução

Leia mais

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8

sendo C uma constante, β = (kt) -1, k a constante de Boltzmann, T a temperatura do sistema e m a massa da molécula. FNC Física Moderna 2 Aula 8 Estatístca Quâtca Sstea físco co utos copoetes trataeto etalhao copleo aborae estatístca. Usaa co sucesso a físca clássca para escreer ssteas teroâcos. Relação etre propreaes obseraas e o coportaeto proáel

Leia mais

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

MÓDULO 8 REVISÃO REVISÃO MÓDULO 1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II)

Cálculo Numérico Interpolação Polinomial Ajuste de Curvas (Parte II) Cálulo Nuéro Iterpolação Poloal Ajuste de Curvas (Parte II) Pro Jore Cavalat joreavalat@uvasedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdsuedubr/~u/ Ajuste de Curvas

Leia mais

HIDROLOGIA E RECURSOS HÍDRICOS. Análise estatística aplicada à hidrologia

HIDROLOGIA E RECURSOS HÍDRICOS. Análise estatística aplicada à hidrologia Aálse estatístca aplcada à hdrologa. Séres hdrológcas oções complemetares HIDROLOGIA E RECURSOS HÍDRICOS Aálse estatístca aplcada à hdrologa O Egehero HIDRÁULICO Echerá? Que população pode abastecer e

Leia mais

Critérios de correção e orientações de resposta exame

Critérios de correção e orientações de resposta exame Mstéro da Cêca, Tecologa e Eso Superor U.C. 1037 Elemetos de Probabldade e Estatístca 1 de Juho de 011 Crtéros de correção e oretações de resposta eame Neste relatóro apresetam-se os crtéros e um eemplo

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Confiabilidade Estrutural

Confiabilidade Estrutural Professor Uversdade de Brasíla Departameto de Egehara Mecâca Programa de Pós graduação em Itegrdade Estrutural Algortmo para a Estmatva do Idce de Cofabldade de Hasofer-Ld Cofabldade Estrutural Jorge Luz

Leia mais

Avaliação da qualidade do ajuste

Avaliação da qualidade do ajuste Avalação da qualdade do ajuste 1 Alguma termologa: Modelo ulo: é o modelo mas smples que pode ser defdo, cotedo um úco parâmetro ( µ) comum a todos os dados; Modelo saturado: é o modelo mas complexo a

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA

ESTATÍSTICA MÓDULO 2 OS RAMOS DA ESTATÍSTICA ESTATÍSTICA MÓDULO OS RAMOS DA ESTATÍSTICA Ídce. Os Ramos da Estatístca...3.. Dados Estatístcos...3.. Formas Icas de Tratameto dos Dados....3. Notação por Ídces...5.. Notação Sgma ()...5 Estatístca Módulo

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança Regressão Smples Parte III: Coefcete de determação, regressão a orgem e método de máxma verossmlhaça Coefcete de determação Proporção da varabldade explcada pelo regressor. R Varação explcada Varação total

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA REGRESSÃO LINEAR CUIABÁ, MT 6/ INTRODUÇÃO Relação dos valores da varável depedete (varável resposta) aos valores de regressoras ou exógeas). SIMPLES MÚLTIPLA (varáves depedetes,... =,,, K=,,, k em que:

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

5 Cálculo Diferencial em IR n

5 Cálculo Diferencial em IR n 5 Cálculo Derecal e IR Irodução Cosdereos a órula que os dá a área de u raulo: b h A b h Coo podeos vercar a área de u râulo depede de duas varáves: base b e alura h. Podeos caracerar esa ução coo sedo

Leia mais

Capítulo V - Interpolação Polinomial

Capítulo V - Interpolação Polinomial Métodos Numércos C Balsa & A Satos Capítulo V - Iterpolação Polomal Iterpolação Cosdere o segute couto de dados: x : x0 x x y : y y y 0 m m Estes podem resultar de uma sequêca de meddas expermetas, ode

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição:

16/03/2014. IV. Juros: taxa efetiva, equivalente e proporcional. IV.1 Taxa efetiva. IV.2 Taxas proporcionais. Definição: 6// IV. Juros: taxa efetva, equvalete e proporcoal Matemátca Facera Aplcada ao Mercado Facero e de Captas Professor Roaldo Távora IV. Taxa efetva Defção: É a taxa de juros em que a udade referecal de seu

Leia mais

Prof. Alvaro Vannucci

Prof. Alvaro Vannucci Pro. Alvaro Vaucc Lebreos o roblea dos sucessvos deslocaetos aleatóros rado - DRUNK - walk Cosderaos cada deslocaeto asso dado ela essoa coo tedo sere o eso coreto L. Chaaos de a robabldade de asso ara

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Establdade o Domío da Freqüêca Itrodução; apeameto de Cotoros o Plao s; Crtéro de Nyqust; Establdade Relatva; Crtéro de Desempeho o Domío do Tempo Especfcado o Domío da Freqüêca; Bada Passate de Sstema;

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Relatório 2ª Atividade Formativa UC ECS

Relatório 2ª Atividade Formativa UC ECS Relatóro 2ª Atvdade Formatva Eercíco I. Quado a dstrbução de dados é smétrca ou apromadamete smétrca, as meddas de localzação méda e medaa, cocdem ou são muto semelhates. O mesmo ão acotece quado a dstrbução

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA

MATEMÁTICA APLICADA RESOLUÇÃO E RESPOSTA GRADUAÇÃO EM ADMINISTRAÇÃO DE EMPRESAS - SP 4/6/7 A Deostre que, se escolheros três úeros iteiros positivos quaisquer, sepre eistirão dois deles cuja difereça é u úero últiplo de. B Cosidere u triâgulo

Leia mais

Distribuições de Probabilidades

Distribuições de Probabilidades Estatístca - aulasestdstrnormal.doc 0/05/06 Dstrbuções de Probabldades Estudamos aterormete as dstrbuções de freqüêcas de amostras. Estudaremos, agora, as dstrbuções de probabldades de populações. A dstrbução

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

5 Critérios para Análise dos Resultados

5 Critérios para Análise dos Resultados 5 Crtéros para Aálse dos Resultados Este capítulo tem por objetvos forecer os crtéros utlzados para aálse dos dados ecotrados a pesqusa, bem como uma vsão geral dos custos ecotrados e a forma de sua evolução

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO

RACIOCÍNIO LÓGICO / ESTATÍSTICA LISTA 2 RESUMO TEÓRICO RACIOCÍIO LÓGICO - Zé Carlos RACIOCÍIO LÓGICO / ESTATÍSTICA LISTA RESUMO TEÓRICO I. Cocetos Icas. O desvo médo (DM), é a méda artmétca dos desvos de cada dado da amostra em toro do valor médo, sto é x

Leia mais

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0 EXEMPLO MOTIVADO II EXEMPLO MOTIVADO II Método da Apromação Polomal Aplcado a Problemas Udrecoas sem Smetra. Equações Dferecas Ordáras Problemas de Valores o otoro Estrutura Geral do Problema: dy() d y()

Leia mais

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1 CAPITULO VII DERIVAÇÃO E DIFERENCIAÇÃO EM R Dervadas parcas de fuções reas de varáves reas Sea f ( ) f ( ) uma fução de A R em R e cosdere-se um poto a (a a a ) A Fado a 3 a 3 a cosdere-se a fução parcal

Leia mais