AULA Espaços Vectoriais Estruturas Algébricas.

Tamanho: px
Começar a partir da página:

Download "AULA Espaços Vectoriais Estruturas Algébricas."

Transcrição

1 Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resolvedo os problemas apresetados a bblografa, sem cosulta préva das soluções propostas, aálse comparatva etre as suas resposta e a respostas propostas, e posteror exposção juto do docete de todas as dúvdas assocadas. TÓPICOS Estruturas algébrcas. Espaço vectoral. Combação lear. Idepedêca lear. AULA Espaços Vectoras Estruturas Algébrcas. Na geeraldade, uma estrutura algébrca é costtuída por um ou mas cojutos (suportes da estrutura), mudos de uma ou mas operações (les de composção tera ou extera, operações uáras, etc.) evolvedo elemetos daquele(s) cojutos e satsfazedo certas propredades formas. Caso ão exsta ambgudade, pode detfcar-se um dos cojutos suporte com a estrutura algébrca. Por exemplo, o corpo ( R, +, ) refere-se, geralmete, apeas como o corpo R (o corpo dos reas). Algumas estruturas algébrcas evolvem mas de um cojuto. Por exemplo, um espaço vectoral tem eretes dos cojutos: um cojuto de vectores e outro de escalares (um corpo), uma le de composção tera (adção vectoral) e outra extera (multplcação de escalar por vector). Prof. Isabel Matos & José Amaral ALGA A

2 Grupóde Todo par ( A, ) costtuído por um cojuto A e uma operação bára 2 de A em A (le de composção tera). Semgrupo Todo o grupóde ( A, ) em que a operação é assocatva. é assocatva a ( b = ( a b) c é comutatva a b = b a Moóde elemeto eutro u a: a u = u a = a Todo o semgrupo ( A, ) com elemeto eutro (que é úco). Grupo elemeto oposto a a : a a = a a = u Grupo Comutatvo (Abelao) Todo o moóde em que todos os elemetos têm oposto (que é úco). Todo o grupo ( A, ) em que é comutatva. Ael Todo o tero ( A, +, ) em que( A, + ) é um grupo comutatvo, ( A, ) é um semgrupo e é dstrbutva em relação a, ou seja, + à esquerda e à dreta. ( A, + ) ( A, ) + é assocatva. + é comutatva. eutro 0. oposto (smétrco) para todos os elemetos é assocatva. ( a+ b) c = ( a + ( b a ( b + = ( a b) + ( a Corpo Todo o ael ( A, +, ) em que ( A, ) é um moóde e todos os elemetos dferetes de 0 são vertíves., ou seja, ( A, + ) + é assocatva. + é comutatva. eutro 0. oposto (smétrco) para todos os elemetos ( A, ) é assocatva. é comutatva. eutro 1. oposto (verso) para todos os elemetos dferetes de 0. ( a+ b) c = ( a + ( b a ( b + = ( a b) + ( a Prof. Isabel Matos & José Amaral ALGA A

3 10.2. Espaço Vectoral. Seja E um cojuto de elemetos uv,,, w, chamados vectores, e K um corpo, de elemetos αβ,,, γ, chamados escalares. Dz-se que E é um espaço vectoral (ou espaço lear) sobre o corpo K sse: a. estver defda em E a operação adção vectoral, +, que a u E e a v E assoca o elemeto u + v E, tal que ( E, + ) é um grupo comutatvo, ou seja, uvw,, E : a1. u + v = v + u (+ é assocatva) a2. ( u + v) + w = u + ( v + w ) (+ é comutatva) a E :( u + 0) = 0 + u = u (elemeto eutro de +, desgado por zero) a4. u 1 u E : u + ( u) = 0 (elemeto oposto de u para a operação +, desgado por smétrco de u ) m. estver defda a operação multplcação de escalar por vector,, que a α K e a u E assoca o elemeto α u E (ou, smplesmete αu ), que verfca: m1. α ( u + v) = α u + αv ( é dstrbutva em relação à adção dos elemetos de E ) m2. ( α + β) u = αu + βu ( é dstrbutva em relação à adção de elemetos de K ) m3. α ( βu ) = ( αβ) u (assocatvdade msta) m4. 1 u = u (elemeto eutro de à esquerda) A operação bára + de E 2 em E desga-se por adção vectoral, e a operação bára de E K em E desga-se por multplcação de escalar por vector. Salete-se que um espaço vectoral é fechado relatvamete à adção vectoral. Quado K = R dz-se que E é um espaço vectoral real, e quado K = C dz-se que E é um espaço vectoral complexo. 1. São exemplos de espaços vectoras (ou seja, pode demostrar-se que verfcam as 8 propredades acma eucadas) os segutes cojutos, com a defção habtual de adção etre os seus elemetos, e de multplcação dos seus elemetos por um escalar do corpo K dcado: O cojuto R, como temos vdo a cosderar até aqu, com K = R. O cojuto dos segmeto oretados, que apropradamete desgámos por vectores, com K = R. O cojuto C, com K = C (e também com K = R ). Prof. Isabel Matos & José Amaral ALGA A

4 10.3. Combação Lear. Seja E um espaço vectoral sobre um corpo K. Dz-se que um vector u E é combação lear dos vectores u 1, u 2,, u E, se exstrem escalares k1, k2,, k K, desgados por coefcetes da combação lear, tas que 2. O vector de 4 u = k u + k u + + k u = k u = 1 R, u = ( 1, 2, 3, 4) é combação lear dos vectores u = (2,0, 1,0), u = ( 1,2,0,0 ), u = (0, 0, 1,2) e u = (2,0,0, 1), dado que = 2, k2 = 1, k3 = 1, k4 = exstem escalares, k 2, tas que Com efeto 4 u = k u = 1 ku + k u + k u + k u = 2u u + u 2u = 2 (2, 0, 1, 0) ( 1, 2, 0, 0) + (0, 0, 1, 2) 2(2, 0, 0, 1) = (4, 0, 2, 0) + (1, 2, 0, 0) + (0, 0, 1, 2) + ( 4, 0, 0, 2) = (1, 2, 3, 4) = u Prof. Isabel Matos & José Amaral ALGA A

5 10.4. Idepedêca lear. O cojuto de vectores { u u u } depedete sse a equação só possu a solução trval V = 1, 2,, E, dz-se learmete ku + k u + + k u = k k k 1 = 2 = = = 0 Ou, o que é equvalete, ehum dos vectores pode ser expresso como combação lear dos restates. Caso cotráro, sto é, se a equação possu uma solução ão trval, dzemos que os vectores de V são learmete depedetes. Equvaletemete, V é learmete depedete sse um dos seus elemetos é combação lear dos restates. 3. O cojuto de vectores = { u, u, u, u } V , com u 1 = (2,0, 1,0), u 2 = ( 1,2,0,0), u 3 = (0, 0, 1,2) e u 4 = (2,0,0, 1), é learmete depedete dado que k1u1 + k2u2 + k3u3 + k4u4 = 0 k1(2, 0, 1, 0) + k2( 1, 2, 0, 0) + k3(0, 0, 1, 2) + k4(2, 0, 0, 1) = 0 (2 k1,0, k1,0) + ( k2,2 k2,0,0) + (0, 0, k3, 2 k3) + (2 k4, 0, 0, k4) = 0 (2k1 k2 + 2 k4, 2 k2, k1 k3, 2 k3 k4) = 0 2k k + 2k = 0 2k = 0 k k = 0 2k k = Resolvedo o sstema podemos verfcar que só exste a solução trval k = k = 0 k = 0 k = Prof. Isabel Matos & José Amaral ALGA A

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

AULA Os 4 espaços fundamentais Complemento ortogonal.

AULA Os 4 espaços fundamentais Complemento ortogonal. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

1. Revisão Matemática

1. Revisão Matemática 1. Revsão Matemátca Dervadas Seja a fução f : R R, fxe x R, e cosdere a expressão : f ( x+ αe ) lmα 0 α f, ode e é o vector utáro. Se o lmte acma exstr, chama-se a dervada parcal de f o poto x e é represetado

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

TÓPICOS. Transformação linear.

TÓPICOS. Transformação linear. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira Chama-se a ateção para a importâcia do trabalho pessoal a realizar pelo aluo resolvedo

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é

AULA Exercícios. ORTOGONALIDADE EM R N. , o vector u tem norma. O produto interno entre os vector u e v, é Note bem: a letra destes apontamentos não dspensa de modo algm a letra atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo alno resolvendo os problemas

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Os Skew Anéis de Polinômios Tipo Automorfismo e a Fatoração Única

Os Skew Anéis de Polinômios Tipo Automorfismo e a Fatoração Única Os Skew Aés de Polômos Tpo Automorfsmo e a Fatoração Úca Skew Polyomals Rgs of Automorphsm Type ad Uque Factorsato Marlo Soares Uversdade Estadual do Cetro-Oeste - UNICENTRO Departameto de Matemátca, Guarapuava,

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves. A aálse de regressão e correlação compreedem

Leia mais

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Desigualdade de Cauchy-Schwarz. Desigualdade triangular. Ângulo. Distância.

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Desigualdade de Cauchy-Schwarz. Desigualdade triangular. Ângulo. Distância. Note bem: a leitra destes apotametos ão dispesa de modo algm a leitra ateta da bibliografia pricipal da cadeira TÓPICOS Vectores lires AULA 4 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

DISTRIBUIÇÃO HIPERGEOMÉTRICA

DISTRIBUIÇÃO HIPERGEOMÉTRICA 7 DISTRIBUIÇÃO HIPERGEOMÉTRICA Cosdere-se uma população fta costtuída por N elemetos dstrbuídos por duas categoras eclusvas e eaustvas de dmesões M e N M, respectvamete. Os elemetos da prmera categora

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - stemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. - Vetor

Leia mais

Capítulo V - Interpolação Polinomial

Capítulo V - Interpolação Polinomial Métodos Numércos C Balsa & A Satos Capítulo V - Iterpolação Polomal Iterpolação Cosdere o segute couto de dados: x : x0 x x y : y y y 0 m m Estes podem resultar de uma sequêca de meddas expermetas, ode

Leia mais

Relatório 2ª Atividade Formativa UC ECS

Relatório 2ª Atividade Formativa UC ECS Relatóro 2ª Atvdade Formatva Eercíco I. Quado a dstrbução de dados é smétrca ou apromadamete smétrca, as meddas de localzação méda e medaa, cocdem ou são muto semelhates. O mesmo ão acotece quado a dstrbução

Leia mais

Forma padrão do modelo de Programação Linear

Forma padrão do modelo de Programação Linear POGAMAÇÃO LINEA. Forma Padrão do Modelo de Programação Lear 2. elações de Equvalêca 3. Suposções da Programação Lear 4. Eemplos de Modelos de PPL 5. Suposções da Programação Lear 6. Solução Gráfca e Iterpretação

Leia mais

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si.

A análise de variância de uma classificação (One-Way ANOVA) verifica se as médias de k amostras independentes (tratamentos) diferem entre si. Prof. Lorí Va, Dr. http://www. ufrgs.br/~va/ va@mat.ufrgs.br aáse de varâca de uma cassfcação (Oe-Way NOV) verfca se as médas de amostras depedetes (tratametos) dferem etre s. Um segudo tpo de aáse de

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 6 Equlíbro e o Potecal de Nerst Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

Estatística - exestatmeddisper.doc 25/02/09

Estatística - exestatmeddisper.doc 25/02/09 Estatístca - exestatmeddsper.doc 5/0/09 Meddas de Dspersão Itrodução ão meddas estatístcas utlzadas para avalar o grau de varabldade, ou dspersão, dos valores em toro da méda. ervem para medr a represetatvdade

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0

(1) no domínio : 0 x < 1, : constante não negativa. Sujeita às condições de contorno: (2-a) (2-b) CC2: 0 EXEMPLO MOTIVADO II EXEMPLO MOTIVADO II Método da Apromação Polomal Aplcado a Problemas Udrecoas sem Smetra. Equações Dferecas Ordáras Problemas de Valores o otoro Estrutura Geral do Problema: dy() d y()

Leia mais

6.1 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS

6.1 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS 7 6 - PROCEDIMENTO DE AVALIAÇÃO DE INCERTEZA EM MEDIÇÕES DIRETAS A medção dreta é aquela cuja dcação resulta aturalmete da aplcação do sstema de medção sobre o mesurado Há apeas uma gradeza de etrada evolvda

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Introdução à Teoria da Medida Texto Tutorial

Introdução à Teoria da Medida Texto Tutorial Itrodução à Teora da Medda Texto Tutoral J.P. Marques de Sá FEUP DEEC 2003 jmsa@fe.up.pt J.P. Marques de Sá, FEUP, 2003 Ídce Classes de Subcojutos... 2. Classe... 2.2 Sem-Ael... 2.3 Ael... 3.4 Campo (Álgebra)...

Leia mais

ANÁLISE DE REGRESSÃO E CORRELAÇÃO

ANÁLISE DE REGRESSÃO E CORRELAÇÃO ANÁLISE DE REGRESSÃO E CORRELAÇÃO Quado se cosderam oservações de ou mas varáves surge um poto ovo: O estudo das relações porvetura estetes etre as varáves A aálse de regressão e correlação compreedem

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 3- Autovalores e Autovetores. 3.- Autovetores e Autovalores de ua Matrz. 3.- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. 3.- Autovetores

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR Boestatístca Professor: Celso Luz Borges de Olvera Assuto: Estatístca TEMA: Somatóro RESUMO E NOTAS DA AULA Nº 0 Seja

Leia mais

Centro de massa, momento linear de sistemas de partículas e colisões

Centro de massa, momento linear de sistemas de partículas e colisões Cetro de massa, mometo lear de sstemas de partículas e colsões Prof. Luís C. Pera stemas de partículas No estudo que temos vdo a fazer tratámos os objectos, como, por exemplo, blocos de madera, automóves,

Leia mais

Apostila de Introdução Aos Métodos Numéricos

Apostila de Introdução Aos Métodos Numéricos Apostla de Itrodução Aos Métodos Numércos PARTE III o Semestre - Pro a. Salete Souza de Olvera Buo Ídce INTERPOAÇÃO POINOMIA...3 INTRODUÇÃO...3 FORMA DE AGRANGE... 4 Iterpolação para potos (+) - ajuste

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Variáveis indexadas, somatórios e produtórios

Variáveis indexadas, somatórios e produtórios 1 Computação MIEC - FEUP complado por Ana Mara Faustno Varáves ndexadas, somatóros e produtóros Varáves ndexadas Quando se pretende estudar váras característcas de um conjunto de ndvíduos convém armazenar

Leia mais

NOTAS DE AULA DA DISCIPLINA CE076. ], T 2 = conhecido como T 2 de Hotelling

NOTAS DE AULA DA DISCIPLINA CE076. ], T 2 = conhecido como T 2 de Hotelling 4 INFERÊNCIA SOBRE O VETOR DE MÉDIAS 4. TESTE PARA UM VETOR DE MÉDIAS µ Lembrado o caso uvarado: H : µ = µ H : µ µ Nível de sgfcâca: α Estatístca do teste: X µ t = s/ ~ t Decsão: se t > t - (α/) rejeta-se

Leia mais

? Isso é, d i= ( x i. . Percebeu que

? Isso é, d i= ( x i. . Percebeu que Estatístca - Desvo Padrão e Varâca Preparado pelo Prof. Atoo Sales,00 Supoha que tehamos acompahado as otas de quatro aluos, com méda 6,0. Aluo A: 4,0; 6,0; 8,0; méda 6,0 Aluo B:,0; 8,0; 8,0; méda 6,0

Leia mais

Econometria: 3 - Regressão Múltipla

Econometria: 3 - Regressão Múltipla Ecoometra: 3 - Regressão Múltpla Prof. Marcelo C. Mederos mcm@eco.puc-ro.br Prof. Marco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo de regressão

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA

REGRESSÃO LINEAR 05/10/2016 REPRESENTAÇAO MATRICIAL. Y i = X 1i + 2 X 2i k X ni + i Y = X + INTRODUÇÃO SIMPLES MÚLTIPLA REGRESSÃO LINEAR CUIABÁ, MT 6/ INTRODUÇÃO Relação dos valores da varável depedete (varável resposta) aos valores de regressoras ou exógeas). SIMPLES MÚLTIPLA (varáves depedetes,... =,,, K=,,, k em que:

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística

Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Viali, Dr. PUCRS FAMAT: Departamento de Estatística Prof. Lorí Val, Dr. http://www.pucrs.br/famat/val/ val@pucrs.br Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Prof. Lorí Val, Dr. PUCRS FAMAT: Departameto de Estatístca Obetvos A Aálse de

Leia mais

2-Geometria da Programação Linear

2-Geometria da Programação Linear I 88 Otmzação Lear -Geometra da Programação Lear ProfFeradoGomde DC-FEEC-Ucamp Coteúdo. Poledros e cojutos coveos. Potos etremos vértces soluções báscas factíves 3. Poledros a forma padrão 4. Degeeração

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

7 Análise de covariância (ANCOVA)

7 Análise de covariância (ANCOVA) Plejameto de Expermetos II - Adlso dos Ajos 74 7 Aálse de covarâca (ANCOVA) 7.1 Itrodução Em algus expermetos, pode ser muto dfícl e até mpossível obter udades expermetas semelhtes. Por exemplo, pode-se

Leia mais

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole

Bioestatística Curso de Saúde. Linha Reta 2 Parábola ou curva do segundo grau. terceiro grau curva do quarto. grau curva de grau n Hipérbole Teora da Correlação: Probleas relatvos à correlação são aqueles que procura estabelecer quão be ua relação lear ou de outra espéce descreve ou eplca a relação etre duas varáves. Se todos os valores as

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Regressao Simples. Parte II: Anova, Estimação Intervalar e Predição

Regressao Simples. Parte II: Anova, Estimação Intervalar e Predição egressao Smples Parte II: Aova, Estmação Itervalar e Predção Aálse de Varâca Nem todos os valores das amostras estão cotdos a reta de regressão, e quato mas afastados estverem por, a reta represetará a

Leia mais

Álgebra Linear e Geometria Analítica. 7ª aula

Álgebra Linear e Geometria Analítica. 7ª aula Álgebra Linear e Geometria Analítica 7ª aula ESPAÇOS VECTORIAIS O que é preciso para ter um espaço pç vectorial? Um conjunto não vazio V Uma operação de adição definida nesse conjunto Um produto de um

Leia mais

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES.

AULA Exercícios. VERIFICAR SE UM VECTOR É UMA COMBINAÇÃO LINEAR DE UM CONJUNTO DE VECTORES. Note bem: a leitura destes apontamentos não dispensa de modo algum a leitura atenta da bibliografia principal da cadeira Chama-se a atenção para a importância do trabalho pessoal a realizar pelo aluno

Leia mais

Problemas fundamentais da teoria da aproximação func/onal

Problemas fundamentais da teoria da aproximação func/onal 18 GAZETA DE MA TEM ATIÇA 2 5 ) ( A - se) l + (T _ y) * + ( Z - z) K=O p 1 1 " 1 d p 1 df-j pl - p ds T d íj (A'~ «)> -f (Y - y) ft + (2-z)v = - 3 1 e resolve-se rapdamete. X x + Aa + B\ r = y + Aß + Bp,

Leia mais

MODELOS DE REGRESSÃO NÃO LINEARES

MODELOS DE REGRESSÃO NÃO LINEARES M. Mede de Olvera Excerto da ota peoa obre: MODELOS DE REGRESSÃO NÃO LINEARES Obervação No modelo de regreão dto leare, a varável depedete é exprea como fução lear do coefcete de regreão. É rrelevate,

Leia mais

Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP. Aula 10: Ordenação

Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP. Aula 10: Ordenação Bruo Hott Algortmos e Estruturas de Dados I DECSI UFOP Aula 10: Ordeação O Crtéro de Ordeação Ordea-se de acordo com uma chave: typedef t TChave; typedef struct{ TChave chave; /* outros compoetes */ Item;

Leia mais

Problema geral de interpolação

Problema geral de interpolação Problema geral de terpolação Ecotrar p() que verfque as codções: f j ( ) y,,,,,, j,,, m ( j) ( ) dervada de ordem j ós valores odas Eemplo: ecotrar p() que verfque:, f () 4 3, f( 3) 3, f'(3) 4 3 p() 3

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

USANDO PROBABILIDADES PARA APROXIMAR FUNÇÕES POR POLINÓMIOS

USANDO PROBABILIDADES PARA APROXIMAR FUNÇÕES POR POLINÓMIOS USANDO PROBABILIDADES PARA APROXIMAR FUNÇÕES POR POLINÓMIOS JOEL MOREIRA Resumo. Uma dea cetral em Aálse modera é a de aproxmar objectos potecalmete mal comportados por objectos mas smples. O Teorema de

Leia mais

PROPOSTAS DE RESOLUÇÃO. Capítulo 8

PROPOSTAS DE RESOLUÇÃO. Capítulo 8 MATEMÁTICA,.ª CLASSE Actvdades de vestgação PROPOSTAS DE RESOLUÇÃO Pág. Não, porque a descoberta do tesouro ão depede do poto ode se ca a marcha. Localação: da palmera: P = a + b do sâdalo: S = c + d do

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou. experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal ou Prof. Lorí Val, Dr. val@mat.ufrgs.r http://www.mat.ufrgs.r/~val/ expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Capítulo 8. Método de Rayleigh-Ritz

Capítulo 8. Método de Rayleigh-Ritz Grupo : Gustavo de Souza Routma; Luís Ferado Hachch de Souza; Ale Pascoal Palombo Capítulo 8. Método de Raylegh-Rtz 8.. Itrodução Nos problemas de apromação por dfereças ftas, para apromar a solução para

Leia mais

3- Autovalores e Autovetores.

3- Autovalores e Autovetores. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Autovalores e Autovetores..- Autovetores e Autovalores de ua Matrz..- Métodos para ecotrar os Autovalores e Autovetores de ua Matrz. Cotuação da

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo IV, Iterolação Polomal, estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são

Leia mais

Momento Linear duma partícula

Momento Linear duma partícula umáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Mometo lear de uma partícula e de um sstema de partículas. - Le fudametal da dâmca para um sstema de partículas. - Impulso

Leia mais

Revisão de Estatística X = X n

Revisão de Estatística X = X n Revsão de Estatístca MÉDIA É medda de tedêca cetral mas comumete usada ara descrever resumdamete uma dstrbução de freqüêca. MÉDIA ARIMÉTICA SIMPLES São utlzados os valores do cojuto com esos guas. + +...

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição:

( ) III) ESPAÇOS VETORIAIS REAIS. Definição: Denomina-se espaço vetorial sobre os Reais (R) ao conjunto não vazio. 1) Existe uma adição: Elemetos de Álgebra Liear ESPAÇOS VETORIAIS REAIS III) ESPAÇOS VETORIAIS REAIS Defiição: Deomia-se espaço vetorial sobre os Reais (R) ao cojuto ão vazio + : V V V ) Existe uma adição: com as seguites propriedades:

Leia mais

Prof. Janete Pereira Amador 1

Prof. Janete Pereira Amador 1 Prof. Jaete Perera Amador 1 1 Itrodução Mutas stuações cotdaas podem ser usadas como expermeto que dão resultados correspodetes a algum valor, e tas stuações podem ser descrtas por uma varável aleatóra.

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi

REGESD Prolic Matemática e Realidade- Profª Suzi Samá Pinto e Profº Alessandro da Silva Saadi REGESD Prolc Matemátca e Realdade- Profª Suz Samá Pto e Profº Alessadro da Slva Saad Meddas de Posção ou Tedêca Cetral As meddas de posção ou meddas de tedêca cetral dcam um valor que melhor represeta

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é

Se A = ( a ij ) é tal que aij = 0 para todo i e j então a matriz A é dita nula e é ARIZES E VEORES PROGRAA DE ENGENHARIA QUÍICA/COPPE/UFRJ NIVELAENO -. Sc. - 6 Álgebra Vetoral e atrcal -)CONCEIOS BÁSICOS Os cálclos/operações assm como cocetos evolvedo matrzes e vetores costtem a base

Leia mais

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança

Regressão Simples. Parte III: Coeficiente de determinação, regressão na origem e método de máxima verossimilhança Regressão Smples Parte III: Coefcete de determação, regressão a orgem e método de máxma verossmlhaça Coefcete de determação Proporção da varabldade explcada pelo regressor. R Varação explcada Varação total

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercíco Cosdere a dstrbução expoecal com fução de desdade de probabldade dada por f (y; λ) = λe λy, em que y, λ > 0 e E(Y) = /λ Supor que o parâmetro λ pode ser expresso proporcoalmete aos valores de

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos eercícios da aula prática 6 MATRIZES DETERMINANTES a) Epadido ao logo da primeira

Leia mais

INSTITUTO SUPERIOR DE EDUCAÇÃO ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA NO CÁLCULO NUMÉRICO

INSTITUTO SUPERIOR DE EDUCAÇÃO ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA NO CÁLCULO NUMÉRICO INSIUO SUPERIOR DE EDUCÇÃO Departameto de Cêca & ecologa N ELEN VRES SILV ÁLGEBR LINER E GEOMERI NLÍIC NO CÁLCULO NUMÉRICO LICENCIUR EM ENSINO DE MEMÁIC ISE/008 INSIUO SUPERIOR DE EDUCÇÃO Departameto de

Leia mais

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística

Média. Mediana. Ponto Médio. Moda. Itabira MEDIDAS DE CENTRO. Prof. Msc. Emerson José de Paiva 1 BAC011 - ESTATÍSTICA. BAC Estatística BAC 0 - Estatístca Uversdade Federal de Itajubá - Campus Itabra BAC0 - ESTATÍSTICA ESTATÍSTICA DESCRITIVA MEDIDAS DE CENTRO Méda Medda de cetro ecotrada pela somatóra de todos os valores de um cojuto,

Leia mais

Métodos iterativos. Capítulo O Método de Jacobi

Métodos iterativos. Capítulo O Método de Jacobi Capítulo 4 Métodos teratvos 41 O Método de Jacob O Método de Jacob é um procedmeto teratvo para a resolução de sstemas leares Tem a vatagem de ser mas smples de se mplemetar o computador do que o Método

Leia mais

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida

2. MODELO DETALHADO: Relações de Recorrência. Exemplo: Algoritmo Recursivo para Cálculo do Fatorial Substituição Repetida . MODELO DETALHADO: Relações de Recorrêca Exemplo: Algortmo Recursvo para Cálculo do Fatoral Substtução Repetda T T ( ) ( ) t 1, T ( + t, > T ( ) T ( + t T ( ) ( T( ) + t + t ) + t T ( ) T ( ) T ( ) +

Leia mais

Parte 3 - Regressão linear simples

Parte 3 - Regressão linear simples Parte 3 - Regressão lear smples Defção do modelo Modelo de regressão empregado para eplcar a relação lear etre duas varáves (ajuste de uma reta). O modelo de regressão lear smples pode ser epresso a forma:

Leia mais

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1

CAPITULO VII. DERIVAÇÃO E DIFERENCIAÇÃO EM R n. = h 1. , fx 1 CAPITULO VII DERIVAÇÃO E DIFERENCIAÇÃO EM R Dervadas parcas de fuções reas de varáves reas Sea f ( ) f ( ) uma fução de A R em R e cosdere-se um poto a (a a a ) A Fado a 3 a 3 a cosdere-se a fução parcal

Leia mais

Projeto e Análise de Algoritmos Recorrências. Prof. Humberto Brandão

Projeto e Análise de Algoritmos Recorrências. Prof. Humberto Brandão Projeto e Aálse de Algortmos Recorrêcas Prof. Humberto Bradão humberto@dcc.ufmg.br Uversdade Federal de Alfeas Laboratóro de Pesqusa e Desevolvmeto LP&D Isttuto de Cêcas Exatas ICEx versão da aula: 0.

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional. ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional. ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: correlacoal Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val/ ou expermetal. Numa relação expermetal os valores de uma das varáves

Leia mais

Espaços Vetoriais Reais

Espaços Vetoriais Reais Espaços Vetoriais Reais Laura Goulart UESB 1 de Agosto de 2018 Laura Goulart (UESB) Espaços Vetoriais Reais 1 de Agosto de 2018 1 / 1 Denição Seja V um conjunto não vazio munido das seguintes operações:

Leia mais

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS

CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS CAP. V AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS No caítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas or taelas de valores. Frequetemete, estas taelas são otdas com ase em

Leia mais

Aula 25 - Espaços Vetoriais

Aula 25 - Espaços Vetoriais Espaço Vetorial: Aula 25 - Espaços Vetoriais Seja V um conjunto não vazio de objetos com duas operações definidas: 1. Uma adição que associa a cada par de objetos u, v em V um único objeto u + v, denominado

Leia mais

Critérios de correção e orientações de resposta exame

Critérios de correção e orientações de resposta exame Mstéro da Cêca, Tecologa e Eso Superor U.C. 1037 Elemetos de Probabldade e Estatístca 1 de Juho de 011 Crtéros de correção e oretações de resposta eame Neste relatóro apresetam-se os crtéros e um eemplo

Leia mais

8 Programação linear 78

8 Programação linear 78 8 Programação lear 78 8 Programação lear A programação lear cosderou duas fuções objetvo: (a) maxmzação da comercalzação do gás e (b) mmzação das perdas (recetas e multas cotratuas). Foram dealzados dos

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

Matemática C Extensivo V. 4

Matemática C Extensivo V. 4 Matemátca C Extesvo V. Resolva Aula.0) a) 8 0 resto.0) b) 78 0 resto.. 6 + c) 89679 resto Oberve que 896796 é dvsível por, pos terma em 6. Assm, 89679 apreseta resto quado dvddo por..0) x + x + 0 6.. x

Leia mais