MÓDULO 8 REVISÃO REVISÃO MÓDULO 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MÓDULO 8 REVISÃO REVISÃO MÓDULO 1"

Transcrição

1 MÓDULO 8 REVISÃO REVISÃO MÓDULO A Estatístca é uma técca que egloba os métodos cetícos para a coleta, orgazação, apresetação, tratameto e aálse de dados. O objetvo da Estatístca é azer com que dados dspersos se trasormem em ormação valosa. Uverso é o cojuto de possíves elemetos a serem observados e de ode obteríamos os dados. População sera um subcojuto do uverso, a medda em que se costtu de um grupo de objetos ou dvíduos com característcas comus. A amostra é uma parte represetatva da população que será eamada quado or mpossível ou mpratcável observar todo o grupo represetado pela população. Uma ote estatístca é dreta quado eu colho a ormação dretamete a ote e produzo as ormações a partr dsto. Fote dreta é quado o dado é obtdo através de uma ote secudára. Estatístca descrtva é a parte da estatístca que procura orgazar, resumr e smplcar ormações compleas, a m de torá las de mas ácl etedmeto, eposção e dscussão. Se ão há a possbldade da descrção de atos pela estêca de crcustâcas ou epermetos que evolvam o acaso usa se a probabldade. A erêca estatístca propõe se a aalsar e a terpretar dados que são obtdos através de uma amostra. Dados brutos dados ada ão oram umercamete orgazados e processados. Varável cotíua: é a varável que pode assumr qualquer valor um tervalo cotíuo. Varável dscreta: orgam se da cotagem de tes e só podem assumr valores teros. Varáves omas: são aquelas que estem com o objetvo de der categoras. Varáves por posto: quado este o desejo de dspor os elemetos observados segudo uma ordem de preerêca ou desempeho. Rol: quado orgazamos os dados brutos em ordem crescete ou decrescete de gradeza. Dstrbução de reqüêca: orgazar os dados brutos em classes, a m de detcar o úmero de tes pertecetes a cada classe, deomado reqüêca de classe. Se uma determada varável y tver os valores 3, 5, 7, 9 e, o y será: y = = = = c. = c...

2 c = c. = ( + y ) = + = = = ( y ) = y = = = ( ) = ( ) = y REVISÃO MÓDULO Meddas de Tedêca Cetral = Méda artmétca smples: méda = Méda artmétca para a população: X = µ =, ode µ méda artmétca da população (parâmetro) Total de observações da população (total da população) X Cada varável populacoal I Méda artmétca para a amostra: = =, ode méda artmétca da amostra (estmatva) úmero de dados da amostra cada varável da amostra A soma de uma costate à méda: ( c + ) = = c = = + = + c Soma algébrca dos desvos em toro da méda: = 0 Méda artmétca poderada: = p = ( + ) Posção da medaa: posmed = Medaa: o elemeto que ocupa a posção cetral um determado = w w

3 cojuto de dados ordeado Moda: o valor ou valores que mas se repetem em um cojuto de dados. REVISÃO MÓDULO 3 Meddas de Dspersão Ampltude total: Ampltude total = Valor mámo ~ Valor mímo = Desvo médo absoluto: D médo = Varâca Populacoal: ( µ ) σ = Varâca Amostral: ( ) s = Se somar ou subtrar uma costate a cada elemeto de um cojuto de dados, o valor da varâca ão se altera. Ao multplcarmos uma costate pela varâca, a ova varâca será: σ = c.σ Ao dvdrmos a varâca por uma costate, a ova varâca será: σ σ = c A varâca de uma costate é gual a zero Desvo padrão populacoal: ( µ ) σ =, ( ) Desvo padrão amostral: s =. REVISÃO MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊCIAS A dstrbução de reqüêcas é o modo de tratameto de dados utlzado quado é grade a quatdade de dados brutos, e passamos a agrupar os dados estatístcos em subcojutos com característcas semelhates as classes ou categoras. Ampltude total: A total = V mámo V mímo A teora estatístca tem se desevolvdo ao logo dos aos e chegou ao coseso que é acoselhável estabelecer o úmero de classes etre um mímo de 5 e um mámo de 0 classes.

4 Para determar o úmero de classes: úmero classes = Para determar a ampltude de classes: Ampltude total Ampltude classes = úmero classes O tervalo de classes é composto por um lmte eror (úmero meor) e por um lmte superor (úmero maor) Após o cálculo do úmero de classes e da ampltude de classes, deveremos der os lmtes eror e superor de cada classe Freqüêca absoluta smples ( ): úmero de observações estetes em um dado tervalo Freqüêcas absolutas smples acumuladas (, A ), que dca o úmero de observações acumuladas até o lmte superor de uma classe Freqüêca relatva smples mostra a partcpação relatva do úmero de observações em uma dada classe:, R = A soma das reqüêcas relatvas de todas as classes será gual a. REVISÃO MÓDULO 5 MEDIDAS DE POSIÇÃO E VARIABILIDADE UMA DISTRIBUIÇÃO DE FREQÜÊCIAS As observações em dada dstrbução de reqüêca serão represetadas pelo poto médo de cada classe: Lmte eror + Lmte sup eror P médo = X = o cálculo da méda artmétca usa se uma órmula que derva da órmula de cálculo da méda poderada para determar a méda de uma dstrbução de reqüêca: X = A medaa é o elemeto que ocupa a posção cetral um determado cojuto de dados ordeado. Posção da medaa: Medaa: ~ = l ( ). h + F l : lmte eror da classe da medaa : tamaho da amostra : soma das reqüêcas aterores a da medaa h : ampltude da classe da medaa F : reqüêca da classe da medaa.

5 D Moda: M od = L + ( ). h D D + M od : valor da moda L : lmte eror da classe modal D : dereça etre a reqüêca da classe modal e a reqüêca da classe ateror D : dereça etre a reqüêca da classe modal e a reqüêca da classe posteror h: ampltude de classe. Desvo Médo: D médo X. = D médo : desvo médo absoluto X poto médo de cada classe : : méda da dstrbução de reqüêca reqüêca absoluta : : total de observações. ( X µ ) Varâca Populacoal: σ = Varâca amostral: ( X ) s = σ :varâca populacoal : X poto médo de cada classe µ : méda populacoal : reqüêca absoluta smples : tamaho da população. s : varâca amostral X poto médo de cada classe : : méda artmétca amostral reqüêca absoluta smples : : total de observações da amostra. Desvo padrão populacoal: σ = Desvo padrão amostral: s = s σ REVISÃO MÓDULO 6 ITRODUÇÃO À PROBABILIDADE

6 Fatos que apresetam resultados de dícl prevsbldade, dado que varam de uma observação para outra, mesmo em codções ormas de epermetação, devem ser aalsados através da probabldade As probabldades surgem para der quas as chaces de ocorrerem certos evetos determados A probabldade de ocorrer determado eveto será sempre um úmero etre 0 e : 0 P ( A ) Quato mas próma de, maor é a probabldade de ocorrer este eveto quato mas próma de zero, meor a chace do eveto acotecer úmero de subcojutos de um cojuto: úmero de elemetos do cojuto. subcojut os =, ode = Epermeto: eperêca que poderá ser repetda sob as mesmas codções dedamete Espaço amostral: todos os possíves resultados de um epermeto Eveto: subcojuto do espaço amostral Cojutos dsjutos: dos ou mas cojutos que ão possuam elemetos em comum Cojutos ão dsjutos: dos ou mas cojutos apresetam elemetos em comum Evetos complemetares: quado completam um determado espaço amostral Evetos mutuamete ecludetes: Dos ou mas evetos que ão possuam elemetos comus, ou ão podem ocorrer smultaeamete Evetos ão mutuamete ecludetes: Quado dos evetos apresetam elemetos em comum ou podem ocorrer smultaeamete Evetos coletvamete eaustvos: quado os evetos em questão ocuparem todo o espaço amostral, torado mpossível qualquer outro resultado além daqueles evetos dados. REVISÃO MÓDULO 7 PROBABILIDADE: ORIGEM, MÉTODOS E PRICIPAIS TEOREMAS A probabldade é uma técca estatístca utlzada para epressar a

7 chace de ocorrêca de um determado eveto. A orma clássca de calcular a probabldade é através da relação etre o úmero de casos avoráves e o úmero de casos possíves. Estem três maeras deretes de se calcular ou estmar as probabldades. São eles: os métodos clássco, empírco e subjetvo Método clássco temos evetos gualmete prováves: P = úmerodere sultadospo ssíves eveto Método clássco para epermetos que evolvam dos ou mas resultados avoráves resultados assocados: P = resultados possíves úmerodere sultadosa voráves Chace: Chace = úmerodere sultadosde savoráve s Utlzamos o método empírco ou reqüecal para estmar a probabldade em stuações ode os resultados ão são gualmete úmerodeoc orrêcasd ea A prováves: P ( A ) = ou P ( A ) = úmerotota ldeobserva ções Método subjetvo: utlzado em stuações ode os evetos ão eram em passíves de um estudo objetvo e muto meos eram gualmete prováves O método subjetvo é semelhate ao método empírco, a úca dereça é que em geral os dados ão podem ser coletados P φ = Se φ é o cojuto vazo, etão ( ) 0 Se A é complemeto de A, etão P ( A ) = P ( A ) Se, por outro lado, teho o segute cojuto B A ( A B ) e =, ode A A B são mutuamete eclusvos, P ( B ) P ( A ) P ( A B ) = P ( A ) + P ( B ) P ( A B ). A

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

CAPÍTULO 1 PROBABILIDADE

CAPÍTULO 1 PROBABILIDADE CAPÍTULO PROBABILIDADE. Coceto O coceto de probabldade está sempre presete em osso da a da: qual é a probabldade de que o meu tme seja campeão? Qual é a probabldade de que eu passe aquela dscpla? Qual

Leia mais

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini

Estatística Agosto 2009 Campus do Pontal Prof. MSc. Quintiliano Siqueira Schroden Nomelini Estatístca Agosto 009 Campus do Potal Prof. MSc. Qutlao Squera Schrode Nomel - ESTATÍSTICA DESCRITIVA. - A NATUREZA DA ESTATÍSTICA COMO SURGIU A ESTATÍSTICA????? A Matemátca surge do covívo socal, da cotagem,

Leia mais

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística

Prof. Dr. Marco Antonio Leonel Caetano Projeção de Cenários Aplicados ao Orçamento Empresarial Com revisão das Ferramentas de Estatística Projeção de Ceáros Aplcados ao Orçameto Empresaral Com revsão das Ferrametas de Estatístca Prof. Dr. Marco Atoo Leoel Caetao TÓPICO Tratameto, Quatfcação e Vsualzação de Dados Faceros. Itrodução Na dvulgação

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo

Cálculo de média a posteriori através de métodos de integração numérica e simulação monte carlo: estudo comparativo INGEPRO Iovação, Gestão e Produção Jaero de 010, vol. 0, o. 01 www.gepro.com.br Cálculo de méda a posteror através de métodos de tegração umérca e smulação mote carlo: estudo comparatvo Helto Adre Lopes

Leia mais

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO

MATERIAL DE ESTATÍSTICA II PROF. MÁRIO ROBERTO 1 VARIÁVEIS ALEATÓRIAS O que se etede por varável aleatóra? Até agora ossos estudos estavam pratcamete voltados mas para defrmos osso Espaço Amostral U, sem assocarmos suas respectvas probabldades aos

Leia mais

Monitoramento ou Inventário Florestal Contínuo

Monitoramento ou Inventário Florestal Contínuo C:\Documets ad Settgs\DISCO_F\MEUS-DOCS\LIVRO_EF_44\ef44_PDF\CAP XIV_IFCOTIUO.doc 6 Motorameto ou Ivetáro Florestal Cotíuo Agosto Lopes de Souza. ITRODUÇÃO Parcelas permaetes de vetáro florestal cotíuo

Leia mais

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental.

É o grau de associação entre duas ou mais variáveis. Pode ser: correlacional ou experimental. É o grau de assocação etre duas ou mas varáves. Pode ser: Prof. Lorí Val, Dr. val@pucrs.br http://www.pucrs.br/famat/val www.pucrs.br/famat/val/ correlacoal ou expermetal. Numa relação expermetal os valores

Leia mais

Apostla Básca de Estatístca Slvo Alves de Souza ÍNDICE Itrodução... 3 Software R... 4 Software SPSS... 5 Dstrbução ormal de probabldade... 6 Testes de Hpótese paramêtrco... Testes Não-Paramétrco...5 Dstrbução

Leia mais

Teoria da Amostragem

Teoria da Amostragem Teora da Amostragem I- oções fudametas sobre amostragem. Amostragem é todo o processo de recolha de uma parte, geralmete pequea, dos elemetos que costtuem um dado couto. Da aálse dessa parte pretede obter-se

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida

Gestão de Sistemas de Produção/Operações Profº Túlio de Almeida Gestão de Sstemas de Produção/Operações Profº Túlo de Almeda 3. AVALIAÇÃO DE DESEMPENHO E INDICADORES 3.1. INDICADORES DE DESEMPENHO Os dcadores são tes essecas para qualquer tpo de projeto, processo,

Leia mais

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES

AMOSTRAGEM EM DOIS ESTÁGIOS COM UNIDADES PRIMÁRIAS DE TAMANHOS DIFERENTES SUBSAMPLING TO TWO PROBATION WITH PRIMARY UNITS OF UNEQUAL SIZES Cêca Florestal, v.6,., p.47-55 47 ISS 003-9954 AMOSTRAGEM EM DOIS ESTÁGIOS COM UIDADES PRIMÁRIAS DE TAMAHOS DIFERETES SUBSAMPLIG TO TWO PROBATIO WITH PRIMARY UITS OF UEQUAL SIZES Sylvo Péllco etto RESUMO

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

DINÂMICA VIBRAÇÕES DE SISTEMAS COM 1 GRAU DE LIBERDADE. António Araújo Correia

DINÂMICA VIBRAÇÕES DE SISTEMAS COM 1 GRAU DE LIBERDADE. António Araújo Correia DINÂMICA VIBRAÇÕES DE SISTEMAS COM GRAU DE IBERDADE Atóo Araújo Correa Jaero de 007 VIBRAÇÕES DE SISTEMAS COM GRAU DE IBERDADE. INTRODUÇÃO Esta publcação desta-se ao apoo das aulas da dscpla seestral de

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li

O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li O QUE SÃO E QUAIS SÃO AS PRINCIPAIS MEDIDAS DE TENDÊNCIA CENTRAL EM ESTATÍSTICA PARTE li Média Aritmética Simples e Poderada Média Geométrica Média Harmôica Mediaa e Moda Fracisco Cavalcate(f_c_a@uol.com.br)

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

TEXTO SUJEITO A REVISÃO

TEXTO SUJEITO A REVISÃO Aálse Comparatva de duas Metodologas Factíves para o Cálculo de IPCs com a Utlzação de Mcrodados do IPC-FIPE Hero Carlos Esvael do Carmo TEXTO SUJEITO A REVISÃO Resumo O prcpal objetvo deste texto é aalsar,

Leia mais

Obra publicada pela Universidade Federal de Pelotas

Obra publicada pela Universidade Federal de Pelotas Obra publcada pela Uversdade Federal de Pelotas Retor: Prof. Dr. Atoo Cesar Goçalves Bores Vce-Retor: Prof. Dr. Maoel Luz Breer de Moraes Pró-Retor de Etesão e Cultura: Prof. Dr. Luz Era Goçalves Ávla

Leia mais

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil

RAI - Revista de Administração e Inovação ISSN: 1809-2039 campanario@uninove.br Universidade de São Paulo Brasil RAI - Revsta de Admstração e Iovação ISSN: 809-2039 campaaro@uove.br Uversdade de São Paulo Brasl Cotador, José Luz; Cotador, José Celso; Herques de Carvalho, Marcus Fabus; Olvera Costa Neto, Pedro Luz

Leia mais

Projeto de rede na cadeia de suprimentos

Projeto de rede na cadeia de suprimentos Projeto de rede a cadea de suprmetos Prof. Ph.D. Cláudo F. Rosso Egehara Logístca II Esboço O papel do projeto de rede a cadea de suprmetos Fatores que fluecam decsões de projeto de rede Modelo para decsões

Leia mais

ANÁLISE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONSTRUÇÃO DOS COEFICIENTES COM APLICAÇÕES

ANÁLISE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONSTRUÇÃO DOS COEFICIENTES COM APLICAÇÕES UNIVERIDADE FEDERAL DO PARANÁ ANÁLIE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONTRUÇÃO DO COEFICIENTE COM APLICAÇÕE CURITIBA 004 ACHIKO ARAKI LIRA ANÁLIE DE CORRELAÇÃO: ABORDAGEM TEÓRICA E DE CONTRUÇÃO DO

Leia mais

MODELAGEM DE DADOS POR REGRESSÃO LINEAR MÚLTIPLA PARA AVALIAÇÃO DE IMÓVEIS RURAIS DO SUBMÉDIO SÃO FRANCISCO

MODELAGEM DE DADOS POR REGRESSÃO LINEAR MÚLTIPLA PARA AVALIAÇÃO DE IMÓVEIS RURAIS DO SUBMÉDIO SÃO FRANCISCO ODEAGE DE DADOS POR REGRESSÃO INEAR ÚTIPA PARA AVAIAÇÃO DE IÓVEIS RURAIS DO SUBÉDIO SÃO FRANCISCO JOSÉ ANTONIO OURA E SIVA Isttuto Nacoal de Colozação e Reforma Agrára - INCRA UIZ RONADO NAI 3 Isttuto

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

ANÁLISE EXPLORATÓRIA DE DADOS

ANÁLISE EXPLORATÓRIA DE DADOS CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr medr@uel.br Londrna/Pr Março de 011 ÍNDICE

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Sistema Kanban para fábrica de tintas

Sistema Kanban para fábrica de tintas Sstema Kaba para ábrca de ttas José Luz Cotador Proessor do Programa de Pós-Graduação em Admstração Uove; Doutor em Egehara Aeroáutca e Mecâca - Isttuto Tecológco de Aeroáutca ITA. [Brasl] luz@eg.uesp.br

Leia mais

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula.

Para quantificar a variabilidade de um conjunto de dados ou medidas é que se usam medidas de dispersão. Vamos estudar algumas delas nesta aula. Probabldade e Etatítca I Antono Roque Aula Medda de Dperão A medda de tendênca central não ão ufcente para e caracterzar um conjunto de dado. O motvo é que ete varação na natureza, to é, dado que venham

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

DISSERTAÇÃO DE MESTRADO

DISSERTAÇÃO DE MESTRADO UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXTAS E DA TERRA-CCET PROGRAMA DE PÓS-GRADUAÇÃO EM MATEMÁTICA APLICADA E ESTATÍSTICA - PPGMAE DISSERTAÇÃO DE MESTRADO CARACTERIZAÇÃO ESTATÍSTICA

Leia mais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais

O erro da pesquisa é de 3% - o que significa isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim O erro da pesquisa é de 3% - o que sigifica isto? A Matemática das pesquisas eleitorais José Paulo Careiro & Moacyr Alvim Itrodução Sempre que se aproxima uma eleição,

Leia mais

Risco Moral na Utilização de Serviços de Saúde no Brasil

Risco Moral na Utilização de Serviços de Saúde no Brasil Rsco Moral a Utlzação de Servços de Saúde o Brasl Resumo Autora: Lus Gabrel Marques Regato, Luís duardo Afoso Neste trabalho fo vestgada a preseça de rsco moral o sstema de plaos de saúde do Brasl, por

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

ELECTROTECNIA TEÓRICA MEEC IST

ELECTROTECNIA TEÓRICA MEEC IST ELECTROTECNIA TEÓRICA MEEC IST º Semestre 05/6 3º TRABALHO LABORATORIAL CIRCUITO RLC SÉRIE em Regme Forçado Alterado Susodal Prof. V. Maló Machado Prof. M. Guerrero das Neves Prof.ª Mª Eduarda Pedro Eg.

Leia mais

ASPECTOS TÉCNICOS E GERENCIAIS DE MANUTENÇÃO EM INSTALAÇÕES ELÉTRICAS

ASPECTOS TÉCNICOS E GERENCIAIS DE MANUTENÇÃO EM INSTALAÇÕES ELÉTRICAS GMI/001 21 a 26 de Outubro de 2001 Campas - São Paulo - Brasl GRUPO XII ASPECTOS TÉCNICOS E GERENCIAIS DE MANUTENÇÃO EM INSTALAÇÕES ELÉTRICAS INDICADORES DE DESEMPENHO DA TRANSMISSÃO: METODOLOGIA DE CÁLCULO

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO;

ÍNDICE DE TERMOS: MOTOR DEDICADO, PADRONIZAÇÃO; Aplcação de Motores de Méda esão dedcados acoados por versor de frequêca e utlzação de um úco projeto em dferetes solctações de carga. Gleuber Helder Perera Rodrgues Esp. Eg. WEG Brasl gleuber@weg.et Alex

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Paulo Cabral Erros e Incertezas nas Medições Julho 2004

Paulo Cabral Erros e Incertezas nas Medições Julho 2004 Paulo Cabral Erro e Icerteza a Medçõe Julho 004 Erro e Icerteza a Medçõe IEP Ittuto Electrotécco Portuguê ISEP Ittuto Superor de Egehara do Porto Laboratóro de Metrologa e Eao Departameto de Fíca Rua de

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

Notas de Aula do Curso PGE950: Probabilidade

Notas de Aula do Curso PGE950: Probabilidade Notas de Aula do Curso PGE950: Probabilidade Leadro Chaves Rêgo, Ph.D. 2013.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográficas tedo em vista o coteúdo

Leia mais

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL

ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL ANÁLISE DA MOBILIDADE URBANA SUSTENTÁVEL UTILIZANDO ESTATÍSTICA ESPACIAL Dese de Mrada e Slva Correa Vâa Barcellos Gouvêa Campos Isttuto Mltar de Egehara Resumo Neste trabalho apreseta-se uma aálse espacal

Leia mais

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard)

Analise do Programa Bolsa Familia e o problema de assimetria de informação (Moral Hazard) Aalse do Programa Bolsa Famla e o problema de assmetra de formação (Moral Hazard) Adão Rodrgues 1 Júla Araújo 2 Resumo: O objetvo deste trabalho é aalsar os problemas exstetes o programa de trasferêca

Leia mais

Até que tamanho podemos brincar de esconde-esconde?

Até que tamanho podemos brincar de esconde-esconde? Até que tamaho podemos bricar de escode-escode? Carlos Shie Sejam K e L dois subcojutos covexos e compactos de R. Supoha que K sempre cosiga se escoder atrás de L. Em termos mais precisos, para todo vetor

Leia mais

Sérgio Leonardo Nhapulo. Vento Como Fonte Alternativa de Energia do Futuro Para a Província de Gaza. Licenciatura em Ensino de Física

Sérgio Leonardo Nhapulo. Vento Como Fonte Alternativa de Energia do Futuro Para a Província de Gaza. Licenciatura em Ensino de Física Sérgo Leoardo Nhapulo Veto Como Fote Alteratva de Eerga do Futuro Para a Províca de Gaza Lcecatura em Eso de Físca Uversdade Pedagógca Xa-Xa, Abrl de 010 Sérgo Leoardo Nhapulo Veto Como Fote Alteratva

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas.

Neste capítulo pretende-se introduzir o conceito de centróide, em especial quando aplicado para o caso de superfícies planas. Físca plcada à Egehara vl II aulo Medes ENTRÓIDES Neste capítulo pretede-se troduzr o coceto de cetróde, em especal quado aplcado para o caso de superfíces plaas. Este documeto, costtu apeas um strumeto

Leia mais

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001

Credenciada e Autorizada pelo MEC, Portaria n. o. 644 de 28 de março de 2001 Publicado no D.O.U. em 02/04/2001 Ceecaa e Autozaa pelo MEC, Potaa. o. 644 e 8 e maço e 00 Publcao o D.O.U. em 0/04/00 ESTATÍSTICA Pelo Poesso Gealo Pacheco A Estatístca é uma pate a Matemátca Aplcaa que oece métoos paa coleta, ogazação,

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini INTRODUÇÃO TT405 - ECONOMIA DE ENGENHARIA Materal Ddátco - 2008 Prof Lúca R A Motah INTRODUÇÃO 2 INDICE INTRODUÇÃO 7 2 O CONCEITO E ORIGEM DA ENGENHARIA ECONÔMICA 8 3 MATEMÁTICA FINANCEIRA 9 3 CONCEITOS

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

DEPARTAMENTO DE ESTATÍSTICA PROBABILIDADE

DEPARTAMENTO DE ESTATÍSTICA PROBABILIDADE UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA PROBABILIDADE Aa Maria Lima de Farias Luiz da Costa Laurecel Setembro de 2007 . ii Coteúdo 1

Leia mais

Apostila De Estatística

Apostila De Estatística Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada

Leia mais

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA

Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA Capítulo 5 EQUAÇÕES DE CONSERVAÇÃO DA MASSA O objetvo deste capítulo é apresetar formas da equação da coservação da massa em fução de propredades tesvas faclmete mesuráves, como a temperatura, a pressão,

Leia mais

Uma Unidade Lógica e Aritmética Reversível

Uma Unidade Lógica e Aritmética Reversível WECIQ 2006 - Artgos Uma Udade Lógca e Artmétca Reversível Amada Leoel Nascmeto 1, Lus A. Brasl Kowada 2, Wlso Rosa de Olvera 3 1 Departameto de Sstemas Computacoas, Escola Poltécca de Perambuco Uversdade

Leia mais

Investigação por Inquérito

Investigação por Inquérito UIVERSIDADE DOS AÇORES DEPARTAMETO DE MATEMÁTICA LICECIATURA EM MATEMÁTICA APLICADA Ivestgação por Iquérto Trabalho elaborado por: sa Ávla do Couto Alves Pota Delgada, ao lectvo 005/006 ÍDICE ITRODUÇÃO...

Leia mais

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária.

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária. 1 UTOR: Emeta Luz Herque M da Slva 1 Defções de razão e proporção, propredades; Graduado em Matemátca e habltado em ísca pelo UNIEB 2 Gradezas dretamete proporcoas e versamete proporcoas, Regra de três;

Leia mais

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos

Análise de Projectos ESAPL / IPVC. Critérios de Valorização e Selecção de Investimentos. Métodos Estáticos Aálise de Projectos ESAPL / IPVC Critérios de Valorização e Selecção de Ivestimetos. Métodos Estáticos Como escolher ivestimetos? Desde sempre que o homem teve ecessidade de ecotrar métodos racioais para

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA

RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO 2 REFERÊNCIAS 3 DEFINIÇÕES 4 METODOLOGIA RM 68 INCERTEZA DE MEDIÇÃO: GUIA PRÁTICO DO AVALIADOR DE LABORATÓRIOS PROCEDIMENTO DO SISTEMA DE GESTÃO DA QUALIDADE REVISÃO: 05 ABR/013 SUMÁRIO 1 OBJETIVO E CAMPO DE APLICAÇÃO REFERÊNCIAS 3 DEFINIÇÕES

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

ÁLBUNS DE FIGURINHAS, O PROBLEMA DO COLECIONADOR DE CUPONS E PROGRAMAÇÃO EM VBA?

ÁLBUNS DE FIGURINHAS, O PROBLEMA DO COLECIONADOR DE CUPONS E PROGRAMAÇÃO EM VBA? ÁLBUNS DE FIGURINHAS, O PROBLEMA DO COLECIONADOR DE CUPONS E PROGRAMAÇÃO EM VBA? Fláva Fretas Maa Rafael G Barbastefao 2 Dayse Hame Pastore 3 Resumo: Este trabalho apreseta uma proposta de estudo do Problema

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Probabilidade e Estatística. Probabilidade e Estatística

Probabilidade e Estatística. Probabilidade e Estatística Probabilidade e Estatística i Sumário 1 Estatística Descritiva 1 1.1 Coceitos Básicos.................................... 1 1.1.1 Defiições importates............................. 1 1.2 Tabelas Estatísticas...................................

Leia mais

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f.

ROGÉRIO ALVES SANTANA. AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grandis L.f. ROGÉRIO ALVES SANTANA AVALIAÇÃO DE TÉCNICAS GEOESTATÍSTICAS NO INVENTÁRIO DE POVOAMENTOS DE Tectona grands L.f. Dssertação apresentada à Unversdade Federal de Vçosa, como parte das exgêncas do Programa

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE)

GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO (SEPLAG) INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (IPECE) IPECE ota Técnca GOVERO DO ESTADO DO CEARÁ SECRETARIA DO PLAEJAMETO E GESTÃO (SEPLAG) ISTITUTO DE PESQUISA E ESTRATÉGIA ECOÔMICA DO CEARÁ (IPECE) OTA TÉCICA º 33 METODOLOGIA DE CÁLCULO DA OVA LEI DO ICMS

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Características das Empresas Inovadoras no Brasil: Uma análise empírica a partir da PINTEC

Características das Empresas Inovadoras no Brasil: Uma análise empírica a partir da PINTEC Características das Empresas Iovadoras o Brasil: Uma aálise empírica a partir da PINTEC Itrodução O objetivo deste artigo é aalisar as características das empresas iovadoras. Esta aálise é coduzida a partir

Leia mais

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing

Profa. Regina Maria Sigolo Bernardinelli. Estatística. Gestão Financeira / Gestão de Recursos Humanos / Logística / Marketing Profa. Regia Maria Sigolo Berardielli Estatística Gestão Fiaceira / Gestão de Recursos Humaos / Logística / Marketig REGINA MARIA SIGOLO BERNARDINELLI ESTATÍSTICA Esio a Distâcia E a D Revisão 09/008 LISTA

Leia mais

LEILLIMAR DOS REIS FREITAS COMPARAÇÃO DAS FUNÇÕES DE LIGAÇÃO LOGIT E PROBIT EM REGRESSÃO BINÁRIA CONSIDERANDO DIFERENTES TAMANHOS AMOSTRAIS

LEILLIMAR DOS REIS FREITAS COMPARAÇÃO DAS FUNÇÕES DE LIGAÇÃO LOGIT E PROBIT EM REGRESSÃO BINÁRIA CONSIDERANDO DIFERENTES TAMANHOS AMOSTRAIS LEILLIMAR DOS REIS FREITAS COMPARAÇÃO DAS FUNÇÕES DE LIGAÇÃO LOGIT E PROBIT EM REGRESSÃO BINÁRIA CONSIDERANDO DIFERENTES TAMANHOS AMOSTRAIS Dissertação apresetada à Uiversidade Federal de Viçosa, como

Leia mais

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS

TÉCNICAS DE AMOSTRAGEM PARA AUDITORIAS TRIBUAL DE COTAS DA UIÃO Secretaria-Geral de Cotrole Extero Secretaria-Aduta de Fiscalização TÉCICAS DE AMOSTRAGEM PARA AUDITORIAS ADFIS/SEGECEX 00 TRIBUAL DE COTAS DA UIÃO egócio Cotrole extero da admiistração

Leia mais

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO

ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO ANÁLISE DE CONFIABILIDADE DO MODELO SCS-CN EM DIFERENTES ESCALAS ESPACIAIS NO SEMIÁRIDO J. W. B. Lopes 1 ; E. A. R. Pnhero 2 ; J. R. de Araújo Neto 3 ; J. C. N. dos Santos 4 RESUMO: Esse estudo fo conduzdo

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

ESTRATÉGIAS DE REDUÇÃO DE CUSTOS SALARIAIS: EVIDÊNCIA MICROECONÓMICA COM INFORMAÇÃO QUALITATIVA *

ESTRATÉGIAS DE REDUÇÃO DE CUSTOS SALARIAIS: EVIDÊNCIA MICROECONÓMICA COM INFORMAÇÃO QUALITATIVA * ESTRATÉGIAS DE REDUÇÃO DE CUSTOS SALARIAIS: EVIDÊNCIA MICROECONÓMICA COM INFORMAÇÃO QUALITATIVA * 39 Danel A. Das ** Carlos Robalo Marques *** Fernando Martns **** Artgos Resumo Este artgo nvestga a forma

Leia mais

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS

FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMPRESARIAIS FERRAMENTAS DE ANÁLISE DE RISCOS EM ESTRATÉGIAS EMRESARIAIS or: Herbert Kmura RAE-eletrôca, Volume, Número 2, jul-dez/2002. http://www.rae.com.br/eletroca/dex.cfm?fuseacto=artgo&id=825&secao=wc&volume=&numero=2&ao=

Leia mais

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades:

CURTOSE. Teremos, portanto, no tocante às situações de Curtose de um conjunto, as seguintes possibilidades: CURTOSE O que sigifica aalisar um cojuto quato à Curtose? Sigifica apeas verificar o grau de achatameto da curva. Ou seja, saber se a Curva de Freqüêcia que represeta o cojuto é mais afilada ou mais achatada

Leia mais

IMPACTO DO FINANCIAMENTO DO BNDES SOBRE A PRODUTIVIDADE DAS EMPRESAS: UMA APLICAÇÃO DO EFEITO QUANTÍLICO DE TRATAMENTO 1

IMPACTO DO FINANCIAMENTO DO BNDES SOBRE A PRODUTIVIDADE DAS EMPRESAS: UMA APLICAÇÃO DO EFEITO QUANTÍLICO DE TRATAMENTO 1 IMPACTO DO FINANCIAMENTO DO BNDES SOBRE A PRODUTIVIDADE DAS EMPRESAS: UMA APLICAÇÃO DO EFEITO QUANTÍLICO DE TRATAMENTO 1 Danlo Coelho Insttuto de Pesqusa Econômca Aplcada João Alberto De Negr (IPEA) Insttuto

Leia mais

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002

AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA ANEEL RESOLUÇÃO Nº 488, DE 29 DE AGOSTO DE 2002 Regulamenta o estabelecdo na Resolução CNPE n 7, de 21 de agosto de 2002, aprovada pela Presdênca da Repúblca em 22

Leia mais

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência)

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência) 4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (fuções de trasferêa) 4. Trasforada de Laplae É u operador lear, que opera sobre fuções de varável otíua postva, defdo por: L f(t) = f(s) = f(t) e -st dt Nota:

Leia mais

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo CEPAL - SERIE Polítcas socales N 60 III. Consequêncas de um novo padrão de nserção das mulheres no mercado de trabalho sobre o bem-estar na regão metropoltana de São Paulo A. Introdução Rcardo Paes de

Leia mais

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente;

2.1 Dê exemplo de uma seqüência fa n g ; não constante, para ilustrar cada situação abaixo: (a) limitada e estritamente crescente; 2.1 Dê exemplo de uma seqüêcia fa g ; ão costate, para ilustrar cada situação abaixo: (a) limitada e estritamete crescete; (b) limitada e estritamete decrescete; (c) limitada e ão moótoa; (d) ão limitada

Leia mais

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010

CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010 Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon

Leia mais

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS

APOSTILA MATEMÁTICA FINANCEIRA PARA AVALIAÇÃO DE PROJETOS Miistério do Plaejameto, Orçameto e GestãoSecretaria de Plaejameto e Ivestimetos Estratégicos AJUSTE COMPLEMENTAR ENTRE O BRASIL E CEPAL/ILPES POLÍTICAS PARA GESTÃO DE INVESTIMENTOS PÚBLICOS CURSO DE AVALIAÇÃO

Leia mais

Cálculo e Instrumentos Financeiros (Parte 2) Pedro Cosme Vieira 1ª Aula

Cálculo e Instrumentos Financeiros (Parte 2) Pedro Cosme Vieira 1ª Aula Cálculo e Instrumentos Fnanceros (Parte 2) Pedro Cosme Vera 1ª Aula Faculdade de Economa da Unversdade do Porto 2013/2014 1 2 Introdução Rsco e sua dversfcação Quando alguém empresta um captal, tem como

Leia mais

Modelo Computacional Unidimensional do Transporte de solutos na Zona Não-saturada do Solo

Modelo Computacional Unidimensional do Transporte de solutos na Zona Não-saturada do Solo ISSN 984-828 Modelo Computacoal Udmesoal do Trasporte de solutos a Zoa Não-saturada do Solo Mara de ourdes Pmetel Pzarro Academa da Força Aérea 64-, Prassuuga, SP E-mal: malu@vgaova.com.br Edso Wedlad,

Leia mais