NÚMEROS COMPLEXOS. z = a + bi,

Tamanho: px
Começar a partir da página:

Download "NÚMEROS COMPLEXOS. z = a + bi,"

Transcrição

1 NÚMEROS COMPLEXOS. DEFINIÇÃO No cojuto dos úmeros reas R, temos que a = a. a é sempre um úmero ão egatvo para todo a. Ou seja, ão é possível extrar a ra quadrada de um úmero egatvo em R. Dessa mpossbldade surge o cojuto dos úmeros complexos C. Para defrmos tal cojuto calmete, assummos a exstêca de um úmero complexo tal que = -. Assummos também que as operações de adção (+) e multplcação estão defdas em C, e que essas operações satsfaem as mesmas propredades fudametas o cojuto dos úmeros reas (falaremos sobre essas operações mas adate). Podemos agora defr o cojuto dos úmeros complexos como sedo o cojuto dos úmeros escrtos a forma: = a + b, ode a e b são reas, sedo a chamado de parte real e b de parte magára. Smbolamos as partes real e a magára com a segute otação: a = () e b = (). Desta forma: = ( ) + ( ) Defmos ada que dos úmeros complexos = a + b e = c + d, serão guas quado a = c e b = d.. OPERAÇÕES ELEMENTARES As operações de adção, subtração e multplcação são fetas de maera atural, cosderado-se o úmero complexo como um bômo. Exemplo. Sejam = + e = + 5. Etão, + = ( + ) + ( + 5) = = ( + ) - ( + 5) =. = ( + ). ( + 5) = = = Chamamos de cojugado de um úmero complexo = a + b ao úmero = a b. Desta forma, para efetuar a dvsão basta multplcarmos os membros da fração pelo cojugado do deomador. Por exemplo, usado e dados acma, temos: + ( 5) = = = + 5 ( 5) 6. PLANO DE ARGAND-GAUSS Gauss assocou a cada úmero complexo a+b um par ordeado (a,b) com a,b R e represetou cada úmero como um poto o plao. Essa represetação recebe o ome de Plao de Argad- Gauss ou Plao Complexo : b P(a,b) a

2 Exercíco. Utlado as déas de Gauss represete os segutes úmeros o plao: a) P = + b) P = 4- c) P = --4 P 4 = -+ e) P 5 = - Obs.: Smbolamos por o exo dos reas, por o exo dos magáros e chamamos de afxo o poto que represeta o úmero. Chamamos de módulo do complexo a dstâca do afxo de até a orgem e o represetamos por ou ρ. Chamamos de argumeto do úmero complexo = a + b, com 0, ao âgulo θ, 0 θ < π, que o exo real forma uma sem-reta de orgem O e que cotém P. O ρ θ P Exercíco. Determe o módulo e o argumeto dos segutes complexos: a) 4+ b) - c) + e) f) a+b 4. POTENCIAÇÃO cordemos as fórmulas de adção e subtração de arcos trgoométrcos: cos( a ± b) = cosa cosb se a seb se( a ± b) = se a cosb ± seb cosa Tedo em mãos estas fórmulas, as operações de multplcação, dvsão, potecação e radcação de úmeros complexos a forma trgoométrca são faclmete efetuadas. Em prmero lugar, cosderemos os úmeros complexos = r (cos a + se a) e = r (cos b + se b) Calcule., colocado r.r em evdêca e agrupado os termos semelhates (lembre-se que = ). Agora, utlado as fórmulas de soma e subtração de arcos dadas acma, observe que podemos escrever. de uma forma mas sucta:

3 . = r r [cos(a+b) + se(a+b)] Note que o módulo do produto é o produto dos módulos dos fatores e o argumeto é a soma dos argumetos dos fatores. Utlado um processo chamado Idução Matemátca podemos provar que, se = r(cosθ + se θ ), etão, para todo Ν, [ cos ( θ ) +. se( θ )] = ρ, ode 0 θ < π Esta fórmula é cohecda como Fórmula de Movre. 5. RADICIAÇÃO Chamamos de ra -ésma de um úmero complexo o úmero complexo k Por exemplo, é ra quadrada de pos =. é ra cúbca de pos =. é ra quarta de 6 pos ( ) 4 = 6. tal que ( ) k =. A operação de radcação é uma forma de potecação, ode os expoetes são úmeros racoas ão teros. Desta forma, podemos utlar a fórmula de Movre para calcular também as raíes eésmas de um úmero complexo: = r θ + kπ θ + kπ θ + kπ cos +. se, ode 0 < π e 0 k < Exemplo. Ecotre as raíes quadradas de = º. Passo: calcular o módulo de : 4 ( 4 ) 8 = + = 4 seθ = = π º. Passo: determar o argumeto de : 8 θ = + kπ 4 cosθ = = 8 º. Passo: usar a Fórmula de Movre: π π + kπ + kπ = 8 cos +. se π π = 8 cos + kπ +. se + kπ 6 6 π π Ou seja, para k = 0, = cos + se = π π e para k =, = cos + se = 6 6 6

4 6. EXERCÍCIOS. Obteha o produto w =.. ode a) = (cos45 + se 45 ) = (cos5 + se 5 ) c) = 6(cos60 + se 60 ) = 5(cos5 + se 5 ) = cos08 + se 08 b) = (cos4 = 4(cos + se ) = 6(cos 4 + se4 + se 4 ) ) R. a) w= (cos60 + se 60 ) b) w = 7(cos88 + se88 ) c) w = 80(cos7º + se7º) π π. Sedo = (cos + se ) e utlado a multplcação defda acma, deteme, e Determe o módulo e o argumeto do úmero 4 para os complexos a) = (cos5 +se5 ) b) = (cos00º + se00º) R. a) ρ = 8 e θ = 40 b) ρ = 6 e θ = 0 4. Calcule as potêcas, dado a resposta a forma algébrca a) ( ) 8 6 b) ( + ) R. a) -8-8 b) Dado o úmero complexo = cos 45 + se 45, calcule w = R. w = (- - ) + 6. Escreva as expressões abaxo a forma a + b : a) ( 4 ) + (6 + ) b) ( ) c) ( 4 ).( 4) ( + ) R. a) 7 6 b) c) Calcule,,, e observe que as potêcas começam a se repetr depos de 4. Comprove 4+ r r este fato, mostrado que = e aplque este resultado para calcular: 0 a) 0 b) ( + ) + 99 c) R. a) b) -64 c) - 8. Sedo um tero, que valores podem ter +? R. 0, ou - 9. Determe a real para que R. ± a + + a seja real. 4

5 + a 0. Determe a real para que seja um magáro puro. R.. solva em C as segutes equações: a) = b) = + c) = = + + ± R. a) { +, } b) {, } c). presetar a forma trgoométrca: a) + b) + c) 5 seθ cosθ ± 7 R.a) π π cos + s b) π π cos + s 4 4 c) ( cos0 s 0). Para que valores de tero postvo ( + ) é real? R. múltplo de 4. + π π cos θ + + s θ + 4. Qual é a forma algébrca do úmero complexo represetado a fgura abaxo? R A fgura abaxo represeta um octógoo regular scrto uma crcuferêca. Sabedo-se que BF = 8, determe as formas algébrca e trgooétrca dos úmeros complexos cujos afxos são os potos B e D. R. B : + ; D : + 6. Calcule, dado a resposta a forma algébrca: a) ( + ) 6 b) ( + ) c) + R. a) 8 b) 56 c) Ecotre as raíes sextas de 8. presete seus afxos o plao. Qual a medda de cada um dos arcos determados pelos afxos? Qual é a coclusão? 5

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( )

RESUMO E EXERCÍCIOS NÚMEROS COMPLEXOS ( ) NÚMEROS COMPLEXOS Forma algébrca e geométrca Um úmero complexo é um úmero da forma a + b, com a e b reas e = 1 (ou, = -1), chamaremos: a parte real; b parte magára; e udade magára. Fxado um sstema de coordeadas

Leia mais

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS

PLANO PROBABILIDADES Professora Rosana Relva DOS. Números Inteiros e Racionais COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS Professor Luz Atoo de Carvalho PLANO PROBABILIDADES Professora Rosaa Relva DOS Números Iteros e Racoas COMPLEXOS rrelva@globo.com Número s 6 O Número Por volta de 00 d.c a mpressão que se tha é que, com

Leia mais

Números Complexos Sumário

Números Complexos Sumário Números Complexos Sumáro. FORMA ALGÉBRICA DOS NÚMEROS COMPLEXOS.. Adção de úmeros complexos... Propredades da operação de adção.. Multplcação de úmeros complexos... Propredades da operação de multplcação..

Leia mais

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo.

Números Complexos. 2. (IME) Seja z um número complexo de módulo unitário que satisfaz a condição z 2n 1, onde n é um número inteiro positivo. Números Complexos. (IME) Cosdere os úmeros complexos Z se α cos α e Z cos α se α ode α é um úmero real. Mostre que se Z Z Z etão R e (Z) e I m (Z) ode R e (Z) e I m (Z) dcam respectvamete as partes real

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

NÚMEROS COMPLEXOS (C)

NÚMEROS COMPLEXOS (C) Professor: Casso Kechalosk Mello Dscplna: Matemátca Aluno: N Turma: Data: NÚMEROS COMPLEXOS (C) Quando resolvemos a equação de º grau x² - 6x + = 0 procedemos da segunte forma: b b ± 4ac 6 ± 6 4 6 ± 6

Leia mais

Matemática C Extensivo V. 4

Matemática C Extensivo V. 4 Matemátca C Extesvo V. Resolva Aula.0) a) 8 0 resto.0) b) 78 0 resto.. 6 + c) 89679 resto Oberve que 896796 é dvsível por, pos terma em 6. Assm, 89679 apreseta resto quado dvddo por..0) x + x + 0 6.. x

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Proposta de teste de avalação [mao 09] Nome: Ao / Turma: N.º: Data: - - Não é permtdo o uso de corretor. Deves rscar aqulo que pretedes que ão seja classfcado. A prova clu um formuláro. As cotações dos

Leia mais

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro?

{ } Matemática Prof.: Joaquim Rodrigues 1 NÚMEROS COMPLEXOS. Questão 06 Para que valor de x o número complexo + 8i é imaginário puro? Matemátca Prof.: Joaqum Rodrgues NÚMEROS COMPLEXOS INTRODUÇÃO Questão 0 Resolver as equações: a x = 0 + S = {, } + 6 S = {, } x + S = { +, } 6x + 0 S = { +, } b x = 0 c x = 0 d x = 0 e x x + = 0 f x 8x

Leia mais

PROPOSTAS DE RESOLUÇÃO. Capítulo 8

PROPOSTAS DE RESOLUÇÃO. Capítulo 8 MATEMÁTICA,.ª CLASSE Actvdades de vestgação PROPOSTAS DE RESOLUÇÃO Pág. Não, porque a descoberta do tesouro ão depede do poto ode se ca a marcha. Localação: da palmera: P = a + b do sâdalo: S = c + d do

Leia mais

e represente as no plano Argand-Gauss.

e represente as no plano Argand-Gauss. PROFESSOR: Cládo Das BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================== - Determe o módlo dos segtes úmeros

Leia mais

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i

06) (PUC-MG) O número complexo z tal que 5z + z = i é igual a: a) 2 + 2i b) 2 3i c) 1 + 2i d) 2 + 4i e) 3 + i concetos báscos, adção, subtração, multplcação, gualdade e conjugado 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja soma é:. b). c) 0.. e). 0) (Mack) O conjunto solução da equação + 3 =

Leia mais

EXERCÍCIOS DE MATEMÁTICA Prof. Mário

EXERCÍCIOS DE MATEMÁTICA Prof. Mário EXERCÍCIOS DE MATEMÁTICA Prof. Máro e-mal: maroffer@yahoo.com.br 0 Conjuntos dos Números Complexos 0. Undade magnára º) Determne as raíes magnáras da equação x + 75 = 0 º) Encontre as raíes magnáras da

Leia mais

Oitava Lista de Exercícios

Oitava Lista de Exercícios Uversdade Federal Rural de Perambuco Dscpla: Matemátca Dscreta I Professor: Pablo Azevedo Sampao Semestre: 07 Otava Lsta de Exercícos Lsta sobre defções dutvas (recursvas) e prova por dução Esta lsta fo

Leia mais

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares

Exercícios - Sequências de Números Reais (Solução) Prof Carlos Alberto S Soares Exercícos - Sequêcas de Números Reas (Solução Prof Carlos Alberto S Soares 1 Dscuta a covergêca da sequẽca se(2. Calcule, se exstr, lm se(2. Solução 1 Observe que se( 2 é lmtada e 1/ 0, portato lm se(2

Leia mais

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS

MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS MATEMÁTICA LISTA DE EXERCÍCIOS NÚMEROS COMPLEXOS PROF: Claudo Saldan CONTATO: saldan.mat@gmal.com PARTE 0 -(MACK SP/00/Janero) Se y = x, sendo x= e =, o valor de (xy) é a) 9 9 9 9 e) 9 0 -(FGV/00/Janero)

Leia mais

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2.

01) (Insper) A equação x 5 = 8x 2 possui duas raízes imaginárias, cuja soma é: a) 2. b) 1. c) 0. d) 1. e) 2. Lsta 8 Números complexos Resoluções Prof Ewerton Números Complexos (concetos báscos, adção, subtração, multplcação, gualdade e conjugado) 0) (Insper) A equação x 5 = 8x possu duas raíes magnáras, cuja

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

tica Professor Renato Tião

tica Professor Renato Tião Números complexos Algumas equações do segudo grau como x + 1 = 0 ão possuem solução o uverso real e o estudo destas soluções ão pareca ecessáro até o século XVI quado o matemátco aphael Bombell publcou

Leia mais

Números Complexos. Conceito, formas algébrica e trigonométrica e operações.

Números Complexos. Conceito, formas algébrica e trigonométrica e operações. Números Complexos Conceto, formas algébrca e trgonométrca e operações. Conceto (parte I) Os números complexos surgram para sanar uma das maores dúvdas que atormentavam os matemátcos: Qual o resultado da

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1.

Interpolação. Exemplo de Interpolação Linear. Exemplo de Interpolação Polinomial de grau superior a 1. Iterpolação Iterpolação é um método que permte costrur um ovo cojuto de dados a partr de um cojuto dscreto de dados potuas cohecdos. Em egehara e cêcas, dspõese habtualmete de dados potuas, obtdos a partr

Leia mais

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø.

Professor Mauricio Lutz REGRESSÃO LINEAR SIMPLES. Vamos, então, calcular os valores dos parâmetros a e b com a ajuda das formulas: ö ; ø. Professor Maurco Lutz 1 EGESSÃO LINEA SIMPLES A correlação lear é uma correlação etre duas varáves, cujo gráfco aproma-se de uma lha. O gráfco cartesao que represeta essa lha é deomado dagrama de dspersão.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Nome: Ao / Trma: N.º: Data: - - Não é permtdo o so de corretor. Deves rscar aqlo qe pretedes qe ão seja classfcado. A prova cl m formláro. As cotações dos tes ecotram-se o fal do ecado da prova. CADERNO

Leia mais

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares

Introdução à Teoria dos Números Notas 1 Os Princípios da Boa Ordem e de Indução Finita Prof Carlos Alberto S Soares Itrodução à Teora dos Números 018 - Notas 1 Os Prcípos da Boa Ordem e de Idução Fta Prof Carlos Alberto S Soares 1 Prelmares Neste curso, prortaramete, estaremos trabalhado com úmeros teros mas, quado

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Uversdade Tecológca Federal do Paraá Prof: Lauro Cesar Galvão Campus Curtba Departameto Acadêmco de Matemátca Cálculo Numérco Etrega: juto com a a parcal DATA DE ENTREGA: da da a PROVA (em sala de aula

Leia mais

Álgebra ( ) ( ) Números complexos.

Álgebra ( ) ( ) Números complexos. Números complexos Resolva as equações no campo dos a) x² 49 = 0 x² - x = 0 x² - x = 0 d) x² - x = 0 Dado = (4a ) - (a - ) determne o número real a tal que seja: a) magnáro puro real Sendo = (4m -) (n -),

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Em um paralelepípedo retâgulo,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potêncas e raízes Propostas de resolução Exercícos de exames e testes ntermédos 1. Smplfcando a expressão de z na f.a., como 5+ ) 5 1 5, temos: z 1 + 1 ) + 1 1 1

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, o

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, ABCD

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 O poliômio p( ) 5 04 +

Leia mais

CPV O cursinho que mais aprova na FGV

CPV O cursinho que mais aprova na FGV O cursiho que mais aprova a FGV FGV ecoomia a Fase 0/dezembro/00 MATEMÁTICA 0. Se P é 0% de Q, Q é 0% de R e S é 0% de R, etão P S é igual a: 0 c 0. Dado um petágoo regular ABCDE, costrói-se uma circuferêcia

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Como CD = DC CD + DC = 0

Como CD = DC CD + DC = 0 (9-0 www.eltecampas.com.br O ELITE RESOLVE IME 008 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO Determe o cojuto-solução da equação se +cos = -se.cos se + cos = se cos ( se cos ( se se.cos cos + + = = (

Leia mais

Elementos de Matemática

Elementos de Matemática Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 6 Equlíbro e o Potecal de Nerst Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância.

AULA Produto interno em espaços vectoriais reais ou complexos Produto Interno. Norma. Distância. Note bem: a letura destes apotametos ão dspesa de modo algum a letura ateta da bblografa prcpal da cadera Chama-se a ateção para a mportâca do trabalho pessoal a realzar pelo aluo resoledo os problemas

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I FUNÇÕES POLINOMIAIS4. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques FUNÇÕES POLINOMIAIS4 Gl da Costa Marques Fudametos de Matemátca I 4.1 Potecação de epoete atural 4. Fuções polomas de grau 4. Fução polomal do segudo grau ou fução quadrátca 4.4 Aálse do gráfco de uma

Leia mais

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa

SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Diego Veloso Uchôa Nível Avaçado SUBSTITUIÇÕES ENVOLVENDO NÚMEROS COMPLEXOS Dego Veloso Uchôa É bastate útl e probleas de olpíada ode teos gualdades ou quereos ecotrar u valor de u soatóro fazeros substtuções por úeros coplexos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática. O NO DE ESOLRIDDE Duração: 90 miutos Data: adero (é permitido o uso de calculadora) Na resposta aos ites de escolha múltipla, selecioe a opção correta. Escreva,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JULHO 016 GRUPO I 1. Sabe-se que: P ( A B ) 0, 6 P A B P A Logo, 0, + 0, P A B Como P P 0, 6 P A B 1 0,

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Establdade o Domío da Freqüêca Itrodução; apeameto de Cotoros o Plao s; Crtéro de Nyqust; Establdade Relatva; Crtéro de Desempeho o Domío do Tempo Especfcado o Domío da Freqüêca; Bada Passate de Sstema;

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

Matemática C Semiextensivo V. 2

Matemática C Semiextensivo V. 2 Matemátca C Semetesvo V. Eercícos 0) Através da observação dreta do gráfco, podemos coclur que: a) País. b) País. c) 00 habtates. d) 00 habtates. e) 00 0 0 habtates. 0) C Através do gráfco, podemos costrur

Leia mais

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados

CAPÍTULO 3 MEDIDAS DE TENDÊNCIA CENTRAL E VARIABILIDADE PPGEP Medidas de Tendência Central Média Aritmética para Dados Agrupados 3.1. Meddas de Tedêca Cetral CAPÍTULO 3 MEDIDA DE TENDÊNCIA CENTRAL E VARIABILIDADE UFRG 1 Há váras meddas de tedêca cetral. Etre elas ctamos a méda artmétca, a medaa, a méda harmôca, etc. Cada uma dessas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola

Centro de Ciências Agrárias e Ambientais da UFBA Departamento de Engenharia Agrícola Cetro de Cêcas Agráras e Ambetas da UFBA Departameto de Egehara Agrícola Dscpla: AGR Boestatístca Professor: Celso Luz Borges de Olvera Assuto: Estatístca TEMA: Somatóro RESUMO E NOTAS DA AULA Nº 0 Seja

Leia mais

Aplicações Diferentes Para Números Complexos

Aplicações Diferentes Para Números Complexos Material by: Caio Guimarães (Equipe Rumoaoita.com) Aplicações Diferetes Para Números Complexos Capítulo I Cometário Iicial O artigo que aqui apresetamos ão tem como objetivo itroduzir ao leitor o assuto

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2016 GRUPO I Associação de Professores de Matemática Cotactos: Rua Dr. João Couto,.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

ELETROTÉCNICA (ENE078)

ELETROTÉCNICA (ENE078) UNIVERSIDADE FEDERAL DE JUIZ DE FORA Graduação em Engenhara Cvl ELETROTÉCNICA (ENE078) PROF. RICARDO MOTA HENRIQUES E-mal: rcardo.henrques@ufjf.edu.br Aula Número: 19 Importante... Crcutos com a corrente

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

Tabela 1 Números de acidentes /mês no Cruzamento X em CG/07. N de acidentes / mês fi f

Tabela 1 Números de acidentes /mês no Cruzamento X em CG/07. N de acidentes / mês fi f Lsta de exercícos Gabarto e chave de respostas Estatístca Prof.: Nelse 1) Calcule 1, e para o segute cojuto de valores. A,1,8,0,11,,7,8,6,,9, 1 O úmero que correspode a 5% do rol é o valor. O úmero que

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Val, Dr. val@pucrs.r http://www.pucrs.r/famat/val/ Em mutas stuações duas ou mas varáves estão relacoadas e surge etão a ecessdade de determar a atureza deste relacoameto. A aálse de regressão

Leia mais

TRANSFORMAÇÕES LINEARES

TRANSFORMAÇÕES LINEARES rasformação Liear NSFOMÇÕES LINEES Sejam e espaços vetoriais reais Dizemos que uma fução : é uma trasformação liear se a fução preserva as operações de adição e de multiplicação por escalar isto é se os

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecologa de Cataduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 5. Meddas de Posção cetral ou Meddas de Tedêca Cetral Meddas de posção cetral preocupam-se com a caracterzação e a

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Distribuições de Probabilidades

Distribuições de Probabilidades Estatístca - aulasestdstrnormal.doc 0/05/06 Dstrbuções de Probabldades Estudamos aterormete as dstrbuções de freqüêcas de amostras. Estudaremos, agora, as dstrbuções de probabldades de populações. A dstrbução

Leia mais

a) 3 c) 5 d) 6 b) i d) i

a) 3 c) 5 d) 6 b) i d) i Colégo Marsta Docesano de Uberaba ª Lsta de eercícos de Compleos Prof. Maluf Se é a undade magnára, para que a b seja um número real, a relação c d entre a, b, c e d deve satsfaer: 0 - (UNESP SP/00) a)

Leia mais

Construção e Análise de Gráficos

Construção e Análise de Gráficos Costrução e Aálse de Gráfcos Por que fazer gráfcos? Facldade de vsualzação de cojutos de dados Faclta a terpretação de dados Exemplos: Egehara Físca Ecooma Bologa Estatístca Y(udade y) 5 15 1 5 Tabela

Leia mais

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida...

Í N D I C E. Séries de Pagamentos ou Rendas Renda Imediata ou Postecipada Renda Antecipada Renda Diferida... Curso: Pós-graduação / MBA Campus Vrtual Cruzero do Sul - 2009 Professor Resposável: Carlos Herque de Jesus Costa Professores Coteudstas: Carlos Herque e Douglas Madaj UNIVERSIDADE CRUZEIRO DO SUL Cohecedo

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercíco Cosdere a dstrbução expoecal com fução de desdade de probabldade dada por f (y; λ) = λe λy, em que y, λ > 0 e E(Y) = /λ Supor que o parâmetro λ pode ser expresso proporcoalmete aos valores de

Leia mais

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo.

n. A densidade de corrente associada a esta espécie iônica é J n. O modelo está ilustrado na figura abaixo. Equlíbro e o Potecal de Nerst 5910187 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 11 Nesta aula, vamos utlzar a equação para o modelo de eletrodfusão o equlíbro obtda a aula passada para estudar o trasporte

Leia mais

MEDIDAS DE TENDÊNCIA CENTRAL I

MEDIDAS DE TENDÊNCIA CENTRAL I Núcleo das Cêcas Bológcas e da Saúde Cursos de Bomedca, Ed. Físca, Efermagem, Farmáca, Fsoterapa, Fooaudologa, edca Veterára, uscoterapa, Odotologa, Pscologa EDIDAS DE TENDÊNCIA CENTRAL I 7 7. EDIDAS DE

Leia mais

MEDIDAS DE DISPERSÃO:

MEDIDAS DE DISPERSÃO: MEDID DE DIPERÃO: fução dessas meddas é avalar o quato estão dspersos os valores observados uma dstrbução de freqüêca ou de probabldades, ou seja, o grau de afastameto ou de cocetração etre os valores.

Leia mais

Difusão entre Dois Compartimentos

Difusão entre Dois Compartimentos 59087 Bofísca II FFCLRP USP Prof. Atôo Roque Aula 4 Dfusão etre Dos Compartmetos A le de Fck para membraas (equação 4 da aula passada) mplca que a permeabldade de uma membraa a um soluto é dada pela razão

Leia mais

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii)

Aplicações lineares. Capítulo Seja T: a) Quais dos seguintes vectores estão em Im( T )? 1 i) 4. 3 iii) ii) Capítulo Aplicações lieares Seja T: R R a multiplicação por 8 a) Quais dos seguites vectores estão em Im( T )? i) ii) 5 iii) b) Quais dos seguites vectores estão em Ker( T)? i) ii) iii) c) Qual a dimesão

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ao 08 - a Fase Proposta de resolução Cadero... Como P µ σ < X < µ + σ 0,94, logo como P X < µ σ P X > µ + σ, temos que: P X < µ σ 0,94 E assim, vem que: P X > µ σ P X

Leia mais

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES

Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES Cemátca da Posção de Robôs Mapuladores Capítulo 5 CINEMÁTICA DIRETA DE ROBÔS MANIPULADORES A cemátca de um robô mapulador é o estudo da posção e da velocdade do seu efetuador e dos seus lgametos. Quado

Leia mais

Prof. Janete Pereira Amador 1

Prof. Janete Pereira Amador 1 Prof. Jaete Perera Amador 1 1 Itrodução Mutas stuações cotdaas podem ser usadas como expermeto que dão resultados correspodetes a algum valor, e tas stuações podem ser descrtas por uma varável aleatóra.

Leia mais

Capítulo V - Interpolação Polinomial

Capítulo V - Interpolação Polinomial Métodos Numércos C Balsa & A Satos Capítulo V - Iterpolação Polomal Iterpolação Cosdere o segute couto de dados: x : x0 x x y : y y y 0 m m Estes podem resultar de uma sequêca de meddas expermetas, ode

Leia mais

Lista de Matemática ITA 2012 Números Complexos

Lista de Matemática ITA 2012 Números Complexos Prof Alex Perera Beerra Lsta de Matemátca ITA 0 Números Complexos 0 - (UFPE/0) A representação geométrca dos números complexos que satsfaem a gualdade = formam uma crcunferênca com rao r e centro no ponto

Leia mais

Questão 02. Resolução: Sejam r e s as retas suportes de AB e BC, respectivamente. Equações de r e s. Da figura 1, temos: b + = + = + + = 4 ) 2.

Questão 02. Resolução: Sejam r e s as retas suportes de AB e BC, respectivamente. Equações de r e s. Da figura 1, temos: b + = + = + + = 4 ) 2. 009 IME Questão 0 Sae-se que: a [ a ] + {a}, a \, ode [a] é a parte iteira de a x + [ y ] + {z}, y + [ z ] + {x}, 6, z + [ x ] + { y} com x, y e z \ Determie o valor de x y + z Para o sistema dado, podemos

Leia mais

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12

MEDIDAS DE POSIÇÃO: X = soma dos valores observados. Onde: i 72 X = 12 MEDIDAS DE POSIÇÃO: São meddas que possbltam represetar resumdamete um cojuto de dados relatvos à observação de um determado feômeo, pos oretam quato à posção da dstrbução o exo dos, permtdo a comparação

Leia mais

d s F = m dt Trabalho Trabalho

d s F = m dt Trabalho Trabalho UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Trabalho 1. Itrodução

Leia mais

Exame Nacional de Matemática A 1 a Fase 2017

Exame Nacional de Matemática A 1 a Fase 2017 Exame Nacioal de Matemática A a Fase 07 Proposta de Resolução Versão Nuo Miguel Guerreiro I Chave da Escolha Múltipla ABDABCDC. Pretedem-se formar úmeros aturais de quatro algarismos com os algarismos

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 1 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Um úmero atural é primo quado ele

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [março ] Proposta de Teste [março - 08] Nome: Ao / Turma: N.º: Data: / / Não é permitido o uso de corretor. Deves riscar aquilo que pretedes que ão seja classificado. A prova iclui um formulário. As cotações dos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 3 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Cosidere as retas perpediculares

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 miutos Data: CADERNO I (60 miutos com calculadora). Cosidere um plao em que está fixado um referecial ortoormado xoy, os vetores

Leia mais

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que:

1 Números Complexos. Seja R o conjunto dos Reais. Consideremos o produto cartesiano R R = R 2 tal que: Números Complexos e Polinômios Prof. Gustavo Sarturi [!] Esse documento está sob constantes atualizações, qualquer erro de ortografia, cálculo, favor comunicar. Última atualização: 01/11/2018. 1 Números

Leia mais

Sumário. Mecânica. Sistemas de partículas

Sumário. Mecânica. Sistemas de partículas Sumáro Udade I MECÂNICA 2- Cetro de massa e mometo lear de um sstema de partículas - Sstemas de partículas e corpo rígdo. - Cetro de massa. - Como determar o cetro de massa dum sstema de partículas. -

Leia mais

4/10/2015. Física Geral III

4/10/2015. Física Geral III Físca Geal III Aula Teóca 8 (Cap. 6 pate /3: Potecal cado po: Uma caga putome Gupo de cagas putomes 3 Dpolo elétco Dstbução cotíua de cagas Po. Maco. Loos mos ue uma caga putome gea um campo elétco dado

Leia mais

Aula 5 Forma polar dos números complexos

Aula 5 Forma polar dos números complexos MÓDULO 3 - AULA 5 Aula 5 Forma polar dos úmeros complexos Objetivos Represetar os úmeros complexos ão-ulos a forma polar. Multiplicar úmeros complexos a forma polar e iterpretar geometricamete a multiplicação.

Leia mais

Números Complexos na Forma Algébrica

Números Complexos na Forma Algébrica Colégo Adventsta Portão EIEFM MATEMÁTICA Números Complexos º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardm Dscplna: Matemátca Lsta º Bmestre/0 Aluno(a): Número: Turma: Números Complexos na Forma Algébrca

Leia mais

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS

TE210 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS TE0 FUNDAMENTOS PARA ANÁLISE DE CIRCUITOS ELÉTRICOS Números Complexos Introdução hstórca. Os números naturas, nteros, raconas, rraconas e reas. A necessdade dos números complexos. Sua relação com o mundo

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5 Escola ecudária com 3º ciclo D. Diis º Ao de Matemática A Tema I Probabilidades e Combiatória Tarefa º do plao de trabalho º 5. Um saco cotém bolas do mesmo tamaho e do mesmo material, mas de três cores

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler UNEMAT Uversdade do Estado de Mato Grosso Matemátca Facera http://www2.uemat.br/eugeo SÉRIE DE PAGAMENTOS 1. NOÇÕES SOBRE FLUXO DE CAIXA Prof. Eugêo Carlos Steler Estudar sem racocar é trabalho perddo

Leia mais