4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

Tamanho: px
Começar a partir da página:

Download "4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais."

Transcrição

1 MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS - Métoo e Dfereçs Fts Aplco às Eqções Dferecs Prcs..- Apromção e Fções...- Apromção por Polômos...- Ajste e Dos: M ímos Qros..- Dervs e Iters Nmércs...- Apromção e Dervs por Df ereçs Fts...- Apromção e Iters por Rers e Iterção Nmérc..- Solção e Eqções Dferecs Orárs...- Prolem e Vl or Icl...- Prolem e Vl or e Cotoro..- Solção e Eqções Dferecs Prcs.

2 .- Solção e Eqções Dferecs Orárs. Se estcm os tpos e prolems pr s EDO: f f f F f EDO mplct f f f f F f EDO eplct A solção erl est eqção poss costtes rtr árs qe poem ser eterms se são mposts restrções: -Prolem e Vlor Icl : Qo s restr ções são mposts m poto cl Coções Ics. O sej qo são coecs o poto cl f f Esto Al teror f - Prolem e Vlor e Cotoro : Qo s restr ções são mposts os etremos o tervlo [ ] Coções e Cotoro.

3 Cosere qe vr ável epeete é posção e ão o tempo. Nosso Prolem e Vlor e Cotoro cosste em ecotrr qe stsf z: Prolems este tpo moelm feômeos mesos qe ão vrm com o tempo o sej. Estremos ls métoos e Dfereçs Fts qe promm sol ção este PVC. Fremos sto plco prolems qe precem v prátc...- Prolem e Vlor e Cotoro PVC. ] [ t < ' ' pr eemplo Por ecotoro. Coções EDO [ ] t

4 ..- Prolem e Vlor e Cotoro PVC. Pr eemplfcr o Métoo e Apromção por Dfereçs Fts MDF cosere m PVC escrto por m EDO er e Se Orem e s setes coções e cotoro ] [ { Coçõese Cotoro EDO m form e scretzr o prolem é costrr m ml sete form. Dvmos o tervlo [ ] em prtes s e tmo e ef mos o cojto e ós ml como: Os vlores correspoetes e os potos est ml são. Resolver este PVC pelo MDF cosste em promr tos s ervs qe precem EDO e s coções e cotoro por formls e fereçs. Dfereçs Cetrs são ms ss porqe possem mor precsão.

5 Destcmos três formls e fereçs cetrs: Etão prom ção pelo MDF pr o PVC teror cosste em ecotrr qe stsf z Est eqção poe ser reescrt como:..- Prolem e Vlor e Cotoro PVC. D D 6 6 D { Cotoro e Coções EDO < <

6 Note qe sto é m sstem ler e - eqções com - cóts qe poe ser resolvo pelos m étoos já estos...- Prolem e Vlor e Cotoro PVC. { oe C.C. EDO < < { C. C.

7 O em form mtrcl temos:..- Prolem e Vlor e Cotoro PVC. F oe F A M M A

8 ..- Prolem e Vlor e Cotoro PVC. Note qe mtrz A o sstem ler e eq ções lércs oto pel plc ção o métoo e fereçs fts é trol mtrz esprs. O sej pes os elemetos ol prcpl e ol speror e feror à ol prcpl são feretes e zero. Isto é m crcterístc s mtrzes ers pelo m étoo e fereçs fts. Est crcterístc eve ser eplor or e resolver o sstem e eqções ler lércs porqe rez o so e mem ór pr rmzer mtrz o sstem. Note qe mtrz é trol porqe smos formls e fereçs fts com o mámo e três potos. Se tvéssemos so formls e fereçs fts com m úmero mor e potos terímos ms os feretes e zero. Etretto mtrz cot seo esprs.

9 ..- Prolem e Vlor e Cotoro PVC. Prolem Eqção o Clor: Cosere m rr fet e m mterl cotor e clor sjet lm f ote eter e clor e coções e cotoro os etremos rr. Spo qe s proprees o mterl str ção e tempertr cl e fote eter epeem pes e ão s re ções seção trsversl e em o tempo. e O feômeo e co ção o clor est rr poe ser moelo pel sete eq ção: { ] [ EDO Fote Eter Dfsão oe é o coefcete e co ção o clor e é fote eter e clor Eqção Dfsão Estcoár mesol.

10 ..- Prolem e Vlor e Cotoro PVC. Se o mterl é omoêeo etão ão epee e e EDO se trsform e: { ] [ EDO Fote Eter Dfsão Coções e Cotoro : Destcmos três tpos e co ções e cotoro - A tempertr é coec os etremos o tervlo Coção e Drclet { - O flo e clor é coeco em lm etremo o tervlo q o q { Coção e Nem - Se coece em lm etremo o tervl o m com ção s s co ções terores α r o α r { Coção e Ro

11 ..- Prolem e Vlor e Cotoro PVC. Eemplo : Resolv o sete PVC { ] [ EDO Fote Eter Dfsão Coção e Drclet { Este prolem é tão smples qe poe ser resolvo e form et: o C { Prmer Iterção G Prmtv G C o G C C { Se Iterção { { G Prmtv G C C Prmer Coção e Cotoro G C C Se Coção e Cotoro [ ] [ G G ] [ ] [ G G ] C e C G

12 Se prommos erv se pel forml e fereç cetr: Etão prom ção pelo MDF pr o PVC teror cosste em ecotrr qe stsf z oe ml s pr scretzr o prolem é: Est eqção poe ser reescrt f orm:..- Prolem e Vlor e Cotoro PVC. D { Cotoro e Coções EDO < <

13 Note qe sto é m sstem ler e - eqções com - cóts qe poe ser resolvo pelos m étoos já estos...- Prolem e Vlor e Cotoro PVC. { oe C.C. EDO ] [ < < { C. C. ] [ ] [ ] [ ] [ F M M oe A F A O O O

14 ..- Prolem e Vlor e Cotoro PVC. A mtrz A é ão slr e o sstem teror poe ser resolvo pelos métoos já estos. Erro Sol ção Aprom? - Erro em c poto : - Erro lol: E G ] [ já qe e - Note qe em erl ão stsf z e sto ef e o cmo erro locl A F A F E A compoete o erro locl l é oe [ D Aplco o MDF A F E [ ] < EDO E < T T ] e [ ]

15 ..- Prolem e Vlor e Cotoro PVC. Se solção et o prolem é sve epo el em sere e Tylor etoro o poto pr e e sstto eqção teror otemos: O < < E Sstto EDO see qe: E O < EDO < O sej o erro locl é e orem EDO E < EDO C < Poemos estelecer m rel ção etre o erro locl E e o erro lol. Pr sto fç fereç etre - e otemos: E G A E o A EG E G Note qe este é o mesmo sstem e eq ções em fereçs oto pr eceto qe em lr e Ftemos E. Este sstem poe ser terpreto como seo scretzção E

16 EDO correspoete o erro em c poto: Já qe etão o erro lol poe ser oto tero s vezes EDO teror: O sej oo pr este prolem o erro lol tmém é e orem o l qe o erro locl...- Prolem e Vlor e Cotoro PVC. E E A Aplcoo MDF [ ] E G e e e E e e C [ ] [ ] G e e C C T T E

17 ..- Prolem e Vlor e Cotoro PVC. Estle: Cosere o sstem qe estelece rel ção etre o erro locl e o erro lol: AEG E o A EG E oe Escrto est form os lemr qe o sstem epee o tmo ml. Note qe qo mesão mtrz A met. Sej vers mtrz A loo sol ção o sstem é A E A E e E A E A E G G Fo vsto qe E O e espermos mesm orem e precsão pr E G como fo vsto tm ém. Pr qe sto se verfqe relção é ecessáro qe A sej lmto por m costte epeete e qo. A < C pr sfcetemete peqeo EG C E C O

18 ..- Prolem e Vlor e Cotoro PVC. Isto motv sete efção e estle pr PVC. ESTABIIDADE: Spo qe m métoo e fereçs fts pr o PVC ler forece m seq üêc e eq ções mtrcs form A F oe é o prâmetro ml. Se z qe este Métoo e Dfereçs Fts é Estável se A este pr too sfcetemete peqeo < e se este m costte C qe epee e tl qe A < C < Note qe se est co ção e estle se verf c etão pr sfcetemete peqeo E C E C O G CONSISTÊNCIA: Se z qe o MDF é cosstete se o Erro ocl tee pr zero qo o prâmetro ml tee pr zero: E qo A E E G G

19 ..- Prolem e Vlor e Cotoro PVC. CONVERGÊNCIA : Se z qe o MDF é coverete se orm o Erro Glol tee pr zero qo o prâmetro ml tee pr zero : E qo G Como os três cocetos terores cemos o reslto Cosstêc Estle Coverêc O sej se E qo e < C < etão A E E qo EG C A Em erl Cosstêc é ms fácl e verfcr qe Estle. Provr Estle e m MDF é m os mores esf os qe ecotrmos qo qeremos mostrr Coverêc os MDF pr ovos prolems sejm eles prolems leres o ão leres.

20 ..- Prolem e Vlor e Cotoro PVC. Eemplo : Resolv o sete PVC { ] [ EDO Fote Eter Dfsão { Coção e Drclet Este prolem é tão smples qe poe ser resolvo e form et: C C oe C e C o Costrímos ml form e E ] [ e e e C C { e E e e como E 5 e

21 ..- Prolem e Vlor e Cotoro PVC E t D F C E t D F C

22 Frse o D Alto to peetrte to te tmte mysteres of tre tece to l er te tre cses of peome s ot llowe to s everteless t c ppe tt cert fctve ypotess my sffce for epl my peome. eor Eler A mesm s Al 9... te sty of Elers wors wll rem te est for fferet fels of mtemtcs ot else c replce t. Frerc Gss

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS 4- Método de Dfereçs Fts Aplcdo às Eqções Dferecs Prcs. 4.- Apromção de Fções. 4..- Apromção por Polômos. 4..- Ajste de Ddos: M ímos Qdrdos. 4.- Dervds

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Métoo e Dereçs Fts Aplco às Equções Derecs Prcs. 4.- Aproção e Fuções. 4..- Aproção por Polôos. 4..- Ajuste e Dos: Míos Quros. 4.- Dervs e Itegrs

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS - Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas..- Apromação de Fções...- Apromação por Polômos...- Aste de Dados: M ímos Qadrados..-

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS 4- Método de Dfereças Ftas Aplcado às Eqações Dferecas Parcas. 4.- Apromação de Fções. 4..- Apromação por Polômos. 4..- Aste de Dados: M ímos Qadrados.

Leia mais

Sequências Teoria e exercícios

Sequências Teoria e exercícios Sequêcs Teor e exercícos Notção forml Defmos um dd sequêc de úmeros complexos por { } ( ) Normlmete temos teresse em descobrr um fórmul fechd que sej cpz de expressr o -ésmo termo d sequêc como fução de

Leia mais

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista

AJUSTE DE CURVAS. Métodos Numéricos Computacionais Prof a. Adriana Cherri Prof a. Andréa Vianna Prof. Antonio Balbo Prof a Edméa Baptista AJUST D CURVAS Até or o polômo de promção o dedo de tl mer cocdr com o vlor d ução dd em potos dedos terpolção m certos tpos de prolems sto pode ão ser desejável em prtculr se os vlores orm otdos epermetlmete

Leia mais

L triangular inferior U triangular superior

L triangular inferior U triangular superior 69 Forção Ax A rgr feror rgr speror Vmos oserr o exempo roóro m Po () m po 8 Osere qe mrz () poe ser o e pré-mpco- por m mrz coeee o cso: mesm form mrz é o pré-mpco- por: 7 eror é m mrz râgr Assm sp A

Leia mais

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt

Equações diferenciais ordinárias Euler e etc. Equações diferenciais ordinárias. c v m. dv dt Euções derecs ordárs Euler e etc. Aul 7/05/07 Métodos Numércos Aplcdos à Eger Escol Superor Agrár de Combr Lcectur em Eger Almetr 006/007 7/05/07 João Noro/ESAC Euções derecs ordárs São euções composts

Leia mais

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Professor Volmr Eugêo Wlhelm Professor Mr Kle Método dos Qudrdos Mímos Ajuste Ler Professor Volmr Eugêo Wlhelm Professor Mr Kle Método

Leia mais

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j

Clustering Hierárquico Aglomerativo. Matriz de proximidade: NxN D(i,j): medida de proximidade ou similaridade entre os padrões i e j lustermg lusterg Herárquco Aglomertvo Mtrz e roxme: NxN D: me e roxme ou smlre etre os rões e. Atrbur um rão or cluster N clusters. Ecotrr o r e clusters e ms semelhtes mtrz e smlre e utálos um úco cluster.

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM

TP062-Métodos Numéricos para Engenharia de Produção Ajuste de Curva pelo Método dos Quadrados Mínimos-MQM TP06-Métodos Numércos pr Egehr de Produção Ajuste de Curv pelo Método dos Qudrdos Mímos-MQM Prof. Volmr Wlhelm Curtb, 05 Método dos Qudrdos Mímos Ajuste Ler Prof. Volmr - UFPR - TP06 Método dos Qudrdos

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos

TP062-Métodos Numéricos para Engenharia de Produção Sistemas Lineares Métodos Iterativos TP6-Métodos Numércos pr Egehr de Produção Sstems Leres Métodos Itertvos Prof. Volmr Wlhelm Curt, 5 Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Iterativos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numércos Sstems Leres Métodos Itertvos Professor Volmr Eugêo Wlhelm Professor Mr Kle Resolução de Sstems Leres Métodos Itertvos Itrodução É stte comum ecotrr sstems leres que evolvem um grde porcetgem

Leia mais

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS

1.6- MÉTODOS ITERATIVOS DE SOLUÇÃO DE SISTEMAS LINEARES PRÉ-REQUISITOS PARA MÉTODOS ITERATIVOS .6- MÉTODOS ITRATIVOS D SOLUÇÃO D SISTMAS LINARS PRÉ-RQUISITOS PARA MÉTODOS ITRATIVOS.6.- NORMAS D VTORS Defção.6.- Chm-se orm de um vetor,, qulquer fução defd um espço vetorl, com vlores em R, stsfzedo

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

Método de Gauss- Seidel

Método de Gauss- Seidel .7.- Método de Guss- Sedel Supohmos D = I, como fo feto pr o método de Jco-Rchrdso. Trsformmos o sstem ler A = como se segue: (L + I + R) = (L + I) = - R + O processo tertvo defdo por: é chmdo de Guss-Sedel.

Leia mais

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento.

Em muitas situações duas ou mais variáveis estão relacionadas e surge então a necessidade de determinar a natureza deste relacionamento. Prof. Lorí Vl, Dr. vll@mt.ufrgs.r http://www.mt.ufrgs.r/~vll/ Em muts stuções dus ou ms vráves estão relcods e surge etão ecessdde de determr turez deste relcometo. A álse de regressão é um técc esttístc

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts uções são cohecds pes um cojuto to e dscreto de potos de um tervlo [,b]. Eemplo: A tbel segute relco clor especíco d águ e tempertur: tempertur (ºC 5 5 clor

Leia mais

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD)

EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) EQUAÇÕES LINEARES E DECOMPOSIÇÃO DOS VALORES SINGULARES (SVD) 1 Equções Leres Em otção mtrcl um sstem de equções leres pode ser represetdo como 11 21 1 12 22 2 1 x1 b1 2 x2 b2. x b ou A.X = b (1) Pr solução,

Leia mais

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema

3.1 Introdução Forma Algébrica de S n Forma Matricial de Sn Matriz Aumentada ou Matriz Completa do Sistema Cálculo Numérco Resolução de sstems de equções leres - Resolução de sstems de equções leres. Itrodução Város prolems, como cálculo de estruturs de redes elétrcs e solução de equções dferecs, recorrem resolução

Leia mais

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES

SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES SOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES Ojetvo: Forms e resolver os sstems e equções leres resulttes o proesso e sretzção Rever os segutes métoos: Guss Seel Jo e SOR Apresetr o métoo: TDMA MATRIZES ESPECIAIS

Leia mais

CAPÍTULO 3. O Método das Diferenças Finitas

CAPÍTULO 3. O Método das Diferenças Finitas CAÍULO O Método ds Dfereçs Fts Nesse cpítlo é presetdo o Método de Dfereçs Fts e s plcção problems de egehr prcplmete em de dfsão de clor em regme trstóro.. rocesso de dscretzção A solção lítc ds eqções

Leia mais

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares

... Capítulo III - Resolução de Sistemas. Vamos estudar métodos numéricos para: - resolver sistemas lineares Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............ b b b usdo

Leia mais

INTERPOLAÇÃO. Introdução

INTERPOLAÇÃO. Introdução INTERPOLAÇÃO Itrodução A terolção cosste em determr rtr de um cojuto de ddos dscretos um ução ou um cojuto de uções lítcs que ossm servr r determção de qulquer vlor o domío de deção. Pode-se ver terolção

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Máximos, Mínimos e Pontos de Sela de funções f ( x,

Máximos, Mínimos e Pontos de Sela de funções f ( x, Vsco Smões ISIG 3 Mámos Mímos e otos de Sel de uções ( w). Forms Qudrátcs Chm-se orm qudrátc em Q ) se: ( Q ) ( T ode.. é um vector colu e um mtr qudrd dt mtr d orm qudrátc sto é: Q( ) T [ ] s orms qudrátcs

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais

Aula 11. Regressão Linear Múltipla.

Aula 11. Regressão Linear Múltipla. Aul. Regressão Ler Múltpl.. C.Doughert Itroducto to Ecoometrcs. Cpítulo 6. Buss&Morett Esttístc Básc 7ª Edção Regressão ler smples - Resumo Modelo N E[ ] E[ ] E[ N. Ser como oter fórmuls pr coefcetes de

Leia mais

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis.

Capítulo III - Resolução de Sistemas. Como sabemos os sistemas podem ser classificados em possíveis. (determinados ou indeterminados) e impossíveis. Cpítulo III - Resolução de Sstems Vmos estudr métodos umércos pr: - resolver sstems de equções leres ão leres (; - Resolução de Sstems de Equções eres Cosdere-se o sstem ler de equções cógts:............

Leia mais

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU)

1.3 O método da Decomposição LU A Decomposição LU. Teorema ( Teorema da Decomposição LU) . O método d Decomposção U.. A Decomposção U Teorem.. ( Teorem d Decomposção U) Sej A m mtrz qdrd de ordem n, e A k o menor prncp, consttído ds prmers nhs e cons. Assmmos qe det(a k ) pr k,,..., n. Então

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

5 Modelos de funções de transferência: Conversão de modelo de variáveis de estado para função de transferência usando o Scilab.

5 Modelos de funções de transferência: Conversão de modelo de variáveis de estado para função de transferência usando o Scilab. 5 Moelo e fçõe e trferêc: overão e oelo e vráve e eto pr fção e trferêc o o Scl. 5. Moelo e fçõe e trferêc Moelo eo e eqçõe ferec, eo qo lere co coefcete cotte, e tor trlhoo e ere plo, qo teo te copleo

Leia mais

CAP. IV INTERPOLAÇÃO POLINOMIAL

CAP. IV INTERPOLAÇÃO POLINOMIAL CAP. IV INTERPOLAÇÃO POLINOMIAL INTRODUÇÃO Muts fuções são cohecds es um cojuto fto e dscreto de otos de um tervlo [,b]. Eemlo: A tbel segute relco clor esecífco d águ e temertur: temertur (ºC 5 3 35 clor

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica

Otimização Linear curso 1. Maristela Santos (algumas aulas: Marcos Arenales) Solução Gráfica Otmzção Ler curso Mrstel Stos (lgums uls: Mrcos Areles) Solução Gráfc Otmzção Ler Modelo mtemátco c c c ) ( f Mmzr L fução obetvo sueto : m m m m b b b L M L L restrções ( ) 0 0 0. codção de ão-egtvdde

Leia mais

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto

Espaços Vectoriais. Sérgio Reis Cunha. Outubro de Faculdade de Engenharia da Universidade do Porto APONTAMENTOS DE ÁLGEBRA Espços Vectors Sérgo Res Ch Otbro de Fcldde de Egehr d Uersdde do Porto Lcectr em Egehr Electrotécc e de Comptdores Espços Vectors Defção de Espço Vectorl / Defção de Espço Vectorl

Leia mais

Método de Eliminação de Gauss

Método de Eliminação de Gauss étodo de Elmção de Guss A de ásc deste método é trsformr o sstem A um sstem equvlete A () (), ode A () é um mtrz trgulr superor, efectudo trsformções elemetres sore s lhs do sstem ddo. Cosdere-se o sstem

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sstes Leres..- Mtrzes e Vetores..2- Resolução de Sstes Leres de Equções Algébrcs por Métodos Extos (Dretos)..3- Resolução de Sstes Leres

Leia mais

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais.

5- Método de Elementos Finitos Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 5- Método de Elemetos Fiitos Aplicdo às Equções Difereciis Prciis. 5.1- Breve Itrodução Históric. 5.2- Solução de Equções Difereciis Ordiáris: Prolem

Leia mais

integração são difíceis de serem realizadas. Por exemplo, como calcular

integração são difíceis de serem realizadas. Por exemplo, como calcular 89. INTERPOAÇÃO Objetvo: Ddo um cojuto de + otos G; o lo e um cojuto de uções Ecotrr um ução gg que melhor reresete esse cojuto de ddos de cordo com lgum crtéro. Deção : Sejm os + otos. Dzemos que ução

Leia mais

2 SISTEMAS DE EQUAÇÕES LINEARES

2 SISTEMAS DE EQUAÇÕES LINEARES SISEMAS E EQAÇÕES INEARES. Iroção A soção e ssems eres é m ferrme memác mo mpore egehr. Normmee os proems ão-eres são socoos por ferrmes eres. As foes ms coms e proems e eqções eres gércs pcos à egehr

Leia mais

Fernando Nogueira Dualidade 1

Fernando Nogueira Dualidade 1 Dldde Fernndo Noger Dldde Fernndo Noger Dldde 8 6.5 M ( ) ( ) ( ).5.5.5.5.5.5.5.5.5 é m lmtnte speror é m lmtnte speror melhor Pr encontrr o lmtnte speror mltplc-se s restrções por constntes postvs e som-se

Leia mais

Obtendo uma solução básica factível inicial. Método Simplex duas fases

Obtendo uma solução básica factível inicial. Método Simplex duas fases Obtendo um solução básc fctível ncl Método Smple dus fses Bse ncl FASE I Como determnr um prtção básc fctível ncl (A(B, N)). Algums clsses de problems de otmzção lner oferecem nturlmente solução básc fctível

Leia mais

Análise de Regressão e Correlação

Análise de Regressão e Correlação Aálse e Regressão e Correlação Fo já estuao a forma e escrever um cojuto e oservações e uma só varável. Quao se coseram oservações e uas ou mas varáves surge um ovo poto. O estuo as relações porvetura

Leia mais

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2

6.2 Sabendo que as matrizes do exercício precedente representam transformações lineares 2 2 Cpítulo Vlores própros e vectores própros. Encontrr os vlores e vectores própros ds seguntes mtrzes ) e) f). Sendo que s mtrzes do exercíco precedente representm trnsformções lneres R R, represente s rects

Leia mais

Conceitos fundamentais. Prof. Emerson Passos

Conceitos fundamentais. Prof. Emerson Passos Cocetos fudmets Prof. Emerso Pssos 1. Espço dos vetores de estdo. Operdores leres. Represetção de vetores de estdo e operdores. 2. Observáves. Autovlores e utovetores de um observável. Medd Mecâc Quâtc.

Leia mais

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados

Gabarito da Lista de Interpolação e Método dos Mínimos Quadrados Gabarto a sta e Iterpolação e Métoo os Mímos Quaraos ercíco : a cos Prmera orma: Iterpolação e agrage 8 5 P cos5 P - 89765 6 5 85 5 5 5 P 5 : : rro Portato 6 cos9 9 ; -5 6 9-9 - 6 5 5 5 85 cos6 6 ; 5 9

Leia mais

Laboratório de Dinâmica

Laboratório de Dinâmica UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório e Diâmica SEM 54 DINÂMICA ESTRUTURAL Ala # Resp.: Moelo Matemático Moelo e GDL com amortecimeto

Leia mais

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA

Econometria ANÁLISE DE REGRESSÃO MÚLTIPLA Ecoometr ANÁLISE DE REGRESSÃO MÚLTIPLA Tópcos osderr otudde do Progrm Mstrdo pelo Prof Alceu Jom Modelo de Regressão Múltpl Aordgem Mtrcl ) Pressupostos; ) Iferêc versão Mtrcl; c) Iferêc o Método de rmmer;

Leia mais

ANÁLISE DE ESTRUTURAS I

ANÁLISE DE ESTRUTURAS I IST - DECvl Deprtmento de Engenhr Cvl NÁISE DE ESTRUTURS I Tels de nálse de Estruturs Grupo de nálse de Estruturs IST, 0 Formuláro de es IST - DECvl Rotções: w w θ θ θ θ n θ n n Relção curvtur-deslocmento:

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio.

Neste capítulo usaremos polinômios interpoladores de primeiro e segundo grau, que substituirão uma função de difícil solução por um polinômio. CAPÍULO INEGRAÇÃO NUMÉRICA. INRODUÇÃO Neste cpítulo usremos polômos terpoldores de prmero e segudo gru, que substturão um ução de dícl solução por um polômo. Sej :, b um ução cotíu em, b. A tegrl ded I

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 3

Métodos Computacionais em Engenharia DCA0304 Capítulo 3 Métodos Comutcos em Egehr DCA4 Cítulo. Iterolção.. Itrodução Qudo se trblh com sstems ode ão é cohecd um fução que descrev seu comortmeto odemos utlzr o coceto de terolção. Há csos tmbém em que form lítc

Leia mais

Aula 1 Conceituação das equações diferenciais parciais

Aula 1 Conceituação das equações diferenciais parciais Uiersidde Federl do AC Al Coceitção ds eqções diereciis prciis EN34 Diâmic de Flidos Comptciol EN34 Diâmic de Flidos Comptciol Porqê? Eqções de Nier-Stokes pr m lido compressíel e iscoso t t E t p g Coserção

Leia mais

Técnicas de Linearização de Sistemas

Técnicas de Linearização de Sistemas EA66 Pro. Vo Ze DCA/FEEC/Uc éccs e Lerzção e Sses Iroção ese óco vos recorrer reqüeeee éccs e lerzção e sse ão-ler e oro e oo e oerção. Iso ere qe o sse ler resle se lso co se s oeross erres e álse váls

Leia mais

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1.

Geometricamente, um esboço da interpolante g(x) sobre a função f(x) é visto na figura 3.1. 4 APROXIMAÇÃO DE FUNÇÕES 4- INTERPOAÇÃO POINOMIA Itroução: A iterpolção Iterpolr um ução () cosiste em proimr ess ução por um outr ução g() escolhi etre um clsse e uções eii priori e que stisç lgums propriees

Leia mais

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) :

Espaço de Estados. Modelo de Estado: y(t) = saída u(t) = entrada. função de transferência em cadeia fechada (f.t.c.f) : Epço Eo Eqo or corolo covcol - rlção r í-r, o fção rfrêc, o corolo moro - crção qçõ o m m rmo qçõ frc ªorm q pom r com m qção frcl ª orm form mrcl. O o oção mrcl mplfc m mo rprção mmác m qçõ. O mo úmro

Leia mais

Disciplina: Análise Multivariada I Prof. Dr. Admir Antonio Betarelli Junior AULA 6.1

Disciplina: Análise Multivariada I Prof. Dr. Admir Antonio Betarelli Junior AULA 6.1 Dscpla: álse Multvaraa I Prof. Dr. mr too Betarell Juor UL 6. MÉTODO DE ESCLONMENTO MULTIDIMENSIONL (MDS) Proposto por Youg (987) esse métoo poe ser utlzao para agrupameto. É uma técca para represetar

Leia mais

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u.

Gabarito da 2 a lista de MAT )u.v = Este produto interno representa o valor do estoque representado pelo vetor u. Grio lis e MAT A forç resle em iesie N ireção o prir o semi-eio posiio os A eloie resle é m/h m âglo e -6 o sese O ião ee segir ireção -6 o soese Ese proo iero represe o lor o esoqe represeo pelo eor m

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

Aula 1b Problemas de Valores Característicos I

Aula 1b Problemas de Valores Característicos I Unversdde Federl do ABC Aul b Problems de Vlores Crcterístcos I EN4 Dnâmc de Fludos Computconl EN4 Dnâmc de Fludos Computconl . U CASO CO DOIS GRAUS DE LIBERDADE EN4 Dnâmc de Fludos Computconl Vbrção em

Leia mais

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation).

A formulação representada pelas equações (4.1)-(4.3) no método de elementos finitos é denominada de formulação forte (strong formulation). 4. Fomlção Mcl o Méoo Elmos Fos s cpílo sá ps fomlção mcl o méoo lmos fos pos plcção o méoo lv ssms lgécos q pom s ogzos fom mcl p poso solção po éccs mécs pops p c po qção fcl: lípc pólc o hpólc. O poo

Leia mais

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos

INTEGRAÇÃO NUMÉRICA. Profa. Luciana Montera Faculdade de Computação Facom/UFMS. Métodos Numéricos NTEGRAÇÃO NUMÉRCA Pro. Luc Moter moter@com.ums.r Fculdde de Computção Fcom/UFMS Métodos Numércos tegrção Numérc tegrl ded Aplcções Métodos tegrção Numérc Fórmul ude Newto Cotes oes Método dos Trpézos Método

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO. Notas de Aula Aplicações Exercícios

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO. Notas de Aula Aplicações Exercícios PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁLCULO NUMÉRICO Nots de Al Aplcções Eercícos Elete Bsotto Hser Ídce Sstem de Poto Fltte Normlzdo Teor dos Erros... Resolção

Leia mais

CLASSIFICAÇÃO AUTOMÁTICA (Taxonomia Numérica)

CLASSIFICAÇÃO AUTOMÁTICA (Taxonomia Numérica) Toomi Numéric OBJECTIVO Costrução utomátic e gruos e mostrs iivíuos oectos ou vriáveis roriees o iterior os quis eiste elev roimie e coro com um critério efiio riori. A roimie etre os elemetos e c gruo

Leia mais

Exemplo: As funções seno e cosseno são funções de período 2π.

Exemplo: As funções seno e cosseno são funções de período 2π. 4. Séries de Fourier 38 As séries de Fourier têm váris plicções, como por eemplo resolução de prolems de vlor de cotoro. 4.. Fuções periódics Defiição: Um fução f() é periódic se eistir um costte T> tl

Leia mais

Método de Gauss-Seidel

Método de Gauss-Seidel Método de Guss-Sedel É o ms usdo pr resolver sstems de equções lneres. Suponhmos que temos um sstem A=b e que n= Vmos resolver cd equção em ordem um ds vráves e escrevemos 0/0/9 MN em que Método de Guss-Sedel

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica. Prova Substitutiva de Mecânica B PME /07/2012 Po Substtut Mcâc B PME 3/7/ po po: utos (ão é pto o uso spostos ltôcos) º Qustão (3,5 potos) O sco o R, ss cto, g too hst O u s o o plo fgu o à ção o po o poto O. Et hst o cl O, st u ol tocol costt u otco

Leia mais

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados

CAPÍTULO 5. Ajuste de curvas pelo Método dos Mínimos Quadrados CAPÍTULO Ajuste de curvas pelo Método dos Mímos Quadrados Ajuste Lear Smples (ou Regressão Lear); Ajuste Lear Múltplo (ou Regressão Lear Múltpla); Ajuste Polomal; Regressão Não Lear Iterpolação polomal

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas

CCI-22 CCI-22. Ajuste de Curvas. Matemática Computacional. Regressão Linear. Ajuste de Curvas CCI- CCI- eá Copuol Ause e Curvs Crlos Herque Q. Forser Nos opleeres Ause e Curvs Apl-se os seues sos: Erpolção: vlores or o ervlo elo Vlores o erros proveees e oservções Cosse e: Deerr prâeros que ee

Leia mais

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados

Capítulo 5: Ajuste de curvas pelo método dos mínimos quadrados Capítulo : Ajuste de curvas pelo método dos mímos quadrados. agrama de dspersão No capítulo ateror estudamos uma forma de ldar com fuções matemátcas defdas por uma taela de valores. Frequetemete o etato

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

Angela Nieckele PUC-Rio DIFUSÃO

Angela Nieckele PUC-Rio DIFUSÃO Angel ecele UC-Ro IFUSÃO Angel ecele UC-Ro q e qw q w e S w d qe W w e E dw de Angel ecele UC-Ro ossíves ers pr vlr o luo erl em egru: erl ms smples possível porém nclnção de d/d ns ces do volume de controle

Leia mais

3 SISTEMAS DE EQUAÇÕES LINEARES

3 SISTEMAS DE EQUAÇÕES LINEARES . Itrodução SISTEAS DE EQUAÇÕES INEARES A solução de sistems lieres é um ferrmet mtemátic muito importte egehri. Normlmete os prolems ão-lieres são soluciodos por ferrmets lieres. As fotes mis comus de

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS 4- Método de Dereças Ftas Alcado às Equações Derecas Parcas. 4.- Aromação de Fuções. 4..- Aromação or Polômos: Iterolação. 4..- Ajuste de Dados: Mímos

Leia mais

e represente as no plano Argand-Gauss.

e represente as no plano Argand-Gauss. PROFESSOR: Cládo Das BANCO DE QUESTÕES MATEMÁTICA ª SÉRIE ENSINO MÉDIO ============================================================================================== - Determe o módlo dos segtes úmeros

Leia mais

EXEMPLO 3 - CONTINUAÇÃO

EXEMPLO 3 - CONTINUAÇÃO AJUSTE A U POLINÔIO Se curv f for jusd um polômo de gru, eremos f * () 0 Segudo o mesmo procedmeo eror, chegremos o segue ssem ler: m L O L L 0 EXEPLO Os ddos bo correspodem o volume do álcool ídrco em

Leia mais

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População

x n = n ESTATÍSTICA STICA DESCRITIVA Conjunto de dados: Organização; Amostra ou Resumo; Apresentação. População ESTATÍSTICA STICA DESCRITIVA Prof. Lorí Val, Dr. val@mat.ufrgs.br http://.ufrgs.br/~val/ Orgazação; Resumo; Apresetação. Cojuto de dados: Amostra ou População Um cojuto de dados é resumdo de acordo com

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

Capítulo V INTEGRAIS DE SUPERFÍCIE

Capítulo V INTEGRAIS DE SUPERFÍCIE Cpítulo V INTEAIS DE SUPEFÍCIE Cpítulo V Iters de Superfíce Cpítulo V Vmos flr sobre ters sobre superfíces o espço tr-dmesol Estes ters ocorrem em problems evolvedo fluídos e clor electrcdde metsmo mss

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região

2. Utilização de retângulos para aproximar a área de uma região. 2. Utilização de retângulos para aproximar a área de uma região UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Áre e Teorem Fudmetl

Leia mais

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada:

6/16/2011. Relações de Girard Relações entre raizes e coeficientes. a x. a 1. Considere-se as raízes i, i=1,2,...n, e P(x) na forma fatorada: 66 Numero de Rizes Reis Teorem de Bolzo Sej = um equção lgébric com coeficietes reis,b. Se b , etão eiste um úmero pr de rízes reis, ou ão eistem

Leia mais

DESENVOLVIMENTO DO MÉTODO SONAR PARA GERENCIAMENTO DA INCERTEZA EM PLMO

DESENVOLVIMENTO DO MÉTODO SONAR PARA GERENCIAMENTO DA INCERTEZA EM PLMO DESENVOLVIMENTO DO MÉTODO SONAR PARA GERENCIAMENTO DA INCERTEA EM PLMO Sole Mr Fortu Lucs Fcules IBMEC/RJ INESC Comr e IBGE Isttuto Brslero e Georf e Esttístc slucs@mecr.r Crlos Heeler Atues Depto. e E.

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( k) ( k ) ( ) ( ) Questões tipo exame Questões tpo eame Pá O poto U tem coordeadas (6, 6, 6) e o poto S pertece ao eo Oz, pelo que as suas coordeadas são (,, 6) Um vetor dretor da reta US é, por eemplo, US Determemos as suas coordeadas: US

Leia mais

AUTOVALORES E AUTOVETORES

AUTOVALORES E AUTOVETORES UTOLOES E UTOETOES Defnção Sej T : um operdor lner Um vetor v, v, é dto utovetor, vetor própro ou vetor crcterístco do operdor T, se exstr λ tl que T v) = λ v O esclr λ é denomndo utovlor, vlor própro

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Uversdde Federl de Alfes Projeto e Aálse de Algortmos Aul 03 Fudmetos Mtemátos pr PAA humerto@.ufl-mg.edu.r Aul Pssd... Cotexto hstóro: Dedldde; O Teorem de Kurt Gödel; Máqu de Turg; Prolems Trtáves e

Leia mais

Capítulo V ESPAÇOS EUCLIDIANOS

Capítulo V ESPAÇOS EUCLIDIANOS Cpítlo V EPAÇO EUCLIDIANO Cpítlo V Espços Eclidios Cpítlo V Prodto Esclr em Espços Vectoriis Chm-se prodto esclr o espço ectoril E m plicção E E R qe todo o pr rel ( ) de ectores de E ssoci m úmero rel

Leia mais

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ).

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Fatorial [ ] = A. Exercícios Resolvidos. Exercícios Resolvidos ( ) ( ) ( ) ( )! ( ). OSG: / ENSINO PRÉ-UNIVERSITÁRIO T MATEMÁTIA TURNO DATA ALUNO( TURMA Nº SÉRIE PROFESSOR( JUDSON SANTOS ITA-IME SEDE / / Ftorl Defção h-se ftorl de e dc-se or o úero turl defdo or: > se ou se A A A A Eercícos

Leia mais

EE625-Integraisederivadas

EE625-Integraisederivadas A. Forms Básics. v=v v. =,. =l 4. e =e 5. = l 6. si=cos 7. cos=si. sec =t 9. csc =cot 0. t=l sec. cot=l si. sec=l sect. csc=l csccot 4. =si 5. = t 6. = sec 7. = l. = l EE65-Itegriseerivs B. Trigoométrics.

Leia mais

EAE Modelo de Insumo-Produto

EAE Modelo de Insumo-Produto EAE 598 Modelo de sumo-produto Modelo de sumo-produto Costruído prtr de ddos observáves fluxos terdustrs (us, $) Estrutur mtemátc equções cógts j f j EAE 598 Modelo de sumo-produto Setor Setor (Demd Fl)

Leia mais

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc ÁLGEBRA MATRICIAL. Dra. Heloísa Lajas Sanches

CURSO DE NIVELAMENTO PEQ/COPPE/UFRJ M.Sc ÁLGEBRA MATRICIAL. Dra. Heloísa Lajas Sanches CURSO DE NIVELAMENO PEQ/COPPE/UFRJ M.Sc. 9 ÁLGEBRA MARICIAL Dra. Heloísa Laas Saches Arthr Cayley Nascmeto: 6 de Agosto de 8 em Rchmod, Srrey, Iglaterra Falecmeto: 6 de Jaero de 895 em Cambrdge, Cambrdgeshre,

Leia mais

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva

ANÁLISE NUMÉRICA. Sistemas Lineares (1) 5º P. ENG. DE Biomédica FUNORTE / Prof. Rodrigo Baleeiro Silva NÁLISE NUMÉRIC Sistems Lieres () º P. ENG. DE Biomédic FUNORTE / Prof. Rodrigo Beeiro Siv Sistems Lieres Coceitos Fdmetis Mtriz (m ) Eemetos: ij ode i =...m e j =... m m m m Sistems Lieres Coceitos Fdmetis

Leia mais

! "#! "#$% %! &'(! &!! ) * %+,-. ) '(! *///0 1! 0!2! ///,-!3///4.

! #! #$% %! &'(! &!! ) * %+,-. ) '(! *///0 1! 0!2! ///,-!3///4. Itrodução ao R 960 988 996 Atualmete Lguagem S (Joh Chambers et al; Lucet Techologes) S-Plus. Software propretáro de aálse de dados que cotém a lguagem S Lguagem oretada a objetos R (Ross Ihaka e Robert

Leia mais

A Integral Definida. A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais

A Integral Definida.  A definição da integral definida utiliza a soma de muitos termos. Assim, para expressar tais A Itegrl Defd wwwcttmtr/log Itegrl Defd ou de Rem Notção Sgm A defção d tegrl defd utlz som de mutos termos Assm, pr epressr ts soms, troduzmos otção greg, cujo símolo é que correspode à letr S pr sgfcr

Leia mais

4º Teste de Avaliação de MATEMÁTICA A 12º ano

4º Teste de Avaliação de MATEMÁTICA A 12º ano º (0 / 4) Nº Nome 4º Teste de Avlição de MATEMÁTICA A º o 4 Fevereiro 04 durção 90 mi. Pro. Josué Bptist Clssiicção:, O Pro.:, Grupo I Os sete ites deste rupo são de escolh múltipl. Em cd um deles, são

Leia mais