de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x

Tamanho: px
Começar a partir da página:

Download "de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x"

Transcrição

1 .3. Derivadas.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma recta, esta taa é a mesma em todos os seus pontos. Para outros gráficos que não rectas, a taa à qual o gráfico sobe ou desce pode variar de ponto para ponto. Por eemplo, consideremos o seguinte gráfico: y ( 3, y 3 ) (, y ) ( 4, y 4 ) ( 1, y 1 ) Podemos observar que a parábola sobe mais rapidamente no ponto ( 1, y 1 ) do que no ponto (, y ). No vértice ( 3, y 3 ) o gráfico deia de subir ou descer, e no ponto ( 4, y 4 ), o gráfico está a descer. Para determinar a taa à qual um gráfico sobe ou desce num determinado ponto, podemos calcular o coeficiente angular da tangente no ponto. Em termos simples, a tangente ao gráfico duma função f num ponto P (, y) é a recta que melhor aproima o gráfico naquele ponto conforme podemos ver pelo gráfico anterior. 1

2 Assim, o problema da determinação da inclinação de um gráfico num ponto reduz-se ao de achar o coeficiente angular da tangente naquele ponto. Um método para obtermos aproimações de tangentes consiste em fazer uso da recta secante pelo ponto de tangência e por um segundo ponto do gráfico conforme se mostra na figura seguinte: y ( +, f( + )) f( + ) f() (, f()) Se (, f()) é ponto de tangência e (+, f(+ )) é um segundo ponto do gráfico de f, então o coeficiente angular da secante que passa por estes pontos é m sec = f( + ) f() = y onde é a variação de e y é a variação de y. Se aproimarmos cada vez mais o segundo ponto do ponto de tangência, obtemos melhores aproimações do coeficiente angular da tangente como podemos verificar pelos gráficos seguintes: (1)

3 y y y ( +, f( + )) ( +, f( + )) (, f()) y (, f()) y (, f()) Utilizando o processo do limite, podemos determinar o coeficiente angular eacto da tangente em (, f()). Definição 1 A derivada de f no ponto é dada por f f( + ) f() () = lim 0 = lim h 0 f( + h) f() h desde que o limite eista. Uma função é diferenciável em se a sua derivada eiste em. O processo de cálculo de derivadas é chamado diferenciação. () Nota: Eistem várias notações para representar a derivada de uma função. As mais frequentes são: f () = dy d () = y () = d d [f()] f linha de derivada de y y linha de derivada de f() em ordem a em ordem a 3

4 Eemplo 1. Calcule a derivada de f() = 3. Temos f () = lim h 0 f( + h) f() h [ 3 ( + h) ( + h) ] (3 ) = lim h 0 h = lim h 0 3 ( + h + h ) h 3 + h = lim h h + 3h h 3 + h = lim h 0 6h + 3h h h = lim h 0 h (6 + 3h ) h = lim h 0 (6 + 3h ) = 6 Pelo que a derivada de f() é f () = 6. Eercício 1. Determine a derivada de y em ordem a t para a função y = t. Nota: Não se esqueça que a derivada de uma função dá uma fórmula para determinar o coeficiente angular da tangente em qualquer ponto do gráfico da função. 4

5 .3.. Continuidade e Derivabilidade Nem toda a função é diferenciável. os gráficos seguintes mostram algumas situações usuais em que uma função não é diferenciável nalgum ponto - tangentes verticais, descontinuidades e alterações bruscas. Os gráficos seguintes mostram funções que são diferenciáveis para todos os valores de ecepto em = 0. y y y = 1/3 y = y y y = y = / Os gráficos anteriores mostram que a continuidade não é uma condição suficientemente forte para garantir a diferenciabilidade. Todas as funções representadas são contínuas em (0, 0) ecepto uma, mas nenhuma é diferenciável na origem. Por outro lado, se uma função é diferenciável num ponto então ela é contínua nesse ponto. 5

6 Teorema 1 Se uma função é diferenciável em = c, então é contínua nesse ponto. Corolário: Se uma função não é contínua em = c, então não é diferenciável nesse ponto Regras de Derivação Até agora calculámos derivadas utilizando a noção de limite. Um outro processo para calcularmos derivadas é usar regras que nos permitem calcular derivadas sem usar limites directamente: Regras de Derivação Sejam u, v f.r.v.r, c IR e n Z (c) = 0 (c u) = c u (u ± v) = u ± v (u v) = u v + v u ( u v ) = u v v u v ( n u ) = u n n u n 1 (u n ) = n u n 1 u (u v ) = v u v 1 u + (ln v) u v v (ln u) = u u (log a u) = u (ln a) u (e u ) = e u u (a u ) = (ln a) a u u 6

7 Eemplo. Aplicando as regras da derivação temos: a)(7) = 0 b)( 3 ) = 3 c)(3 ) = 3 ( ) = 3 = 6 d) [ (3) ] = (3) 3 = 18 e) ( 1 ) = ( ) = 3 1 = 3 f) ( ) 1 = = ( ) = 4 3 g) [ ( + 1) 3 ] = ( + 1 ) 3 + ( + 1) ( 3 ) = = 1 3 ( ) + ( + 1) 3 3 = 3 + ( + 1) = = = = Eercício. Calcule o valor das seguintes derivadas: a) ( ) 6 5 b) c) log 10 ( + 6) d) ln 1 + e 1 e 7

8 Derivadas de Ordem Superior A derivada de f, segunda derivada de f, representa-se por f d d [f ()] = f () A derivada de f, terceira derivada de f, representa-se por f d d [f ()] = f () Continuando este processo, obtemos as derivadas de ordem superior, a derivada f costuma designar-se primeira derivada de f. Eemplo 3. Função Original f() = 4 3 f () = 48 3 a Derivada 1 a Derivada f () = f iv () = 48 4 a Derivada a Derivada f () = 4 6 f v () = 0 5 a Derivada Notação para Derivadas de Ordem Superior 1 a Derivada y f dy d d d [f()] D (y) a Derivada y f d y d n. a Derivada y (n) f (n) d n y d n d d [f()] d n d n[f()] D (y) D n(y) Eercício 3. Calcule f (vi) () sendo f (iv) () = ln 9 8

9 .3.4. Teoremas da Derivada da Função Composta e da Função Inversa Teorema Se y = f(u) é uma função derivável na variável u, e u = g() é uma função derivável na variável, então y = f(g()) é uma função derivável na variável e tem-se ou equivalentemente dy d = dy du du d (3) d d [f(g()] = f (g()) g () (4) Eemplo 4. y = f(g()) u = g() y = f(u) a) y = u = + 1 y = 1 u b) y = u = y = u Eemplo 5. Para a função y = u 3 com u = + 1 temos dy d = [3u ] u= +1 ( + 1) = 3( + 1) () = 6( + 1) 9

10 Eercício 4. Uma indústria está a aumentar a sua produção de um artigo à razão de 00 unidades por semana. A função procura semanal admite como modelo a equação p = onde p é o preço unitário e é o número de unidades produzidas numa semana. Calcule a taa de variação da receita relativamente ao tempo, quando a produção semanal é de 000 unidades. Teorema 3 Seja f uma função diferenciável num intervalo I. Se f tem inversa f 1, então f 1 é diferenciável em qualquer para o qual f (f 1 ()) 0 e nesse caso (f 1 ) () = 1 f (f 1 ()), f ((f 1 )()) 0 (5) Eemplo 6. Calcule a derivada da função f() = 3 utilizando o teorema da derivada da função inversa. Determine (f 1 ) (a) sendo f() = 3 4 e a = 6. Resolução: y = 3 = log 3 y Então f () = 1 (f 1 ) (f()) = 1 (f 1 ) (y) = 1 1 y ln 3 = y ln3 = 3 ln 3 = 10

11 Eemplo 7. Seja f() = a) Qual é o valor de f 1 () quando = 3? b) Qual é o valor de (f 1 ) () quando = 3? Resolução: Atendendo a que f é injectiva, tem inversa a) Como f() = 3 quando =, então f 1 (3) = b) Atendendo ao teorema anterior vem: (f 1 ) 1 (3) = f (f 1 (3)) = 1 f () Então f () = (f 1 ) (3) = 1 3/4 + 1 = Equação da Recta Tangente e da Recta Normal Como sabemos a equação da recta que passa pelo ponto de coordenas ( 0, y 0 ) e tem declive m é y y 0 = m( 0 ) (6) Vimos anteriormente que o declive da recta tangente ao gráfico de uma função f no ponto de coordenadas ( 0, y 0 ). m = f ( 0 )) (7) Então de (6) e (7) vem que a equação da recta tangente ao gráfico de f no ponto de coordenadas ( 0, y 0 ) é y y 0 = f ( 0 )( 0 ) (8) 11

12 Dado que: a recta normal ao gráfico de f no ponto de coordenadas ( 0, y 0 ) é perpendicular à recta tangente ao gráfico de f nesse ponto rectas perpendiculares têm declives inversos simétricos vem que a equação da recta normal ao gráfico de f no ponto de coordenadas ( 0, y 0 ) é y y 0 = 1 f ( 0 ) ( 0) (9) Eemplo 8. Escreva a equação da recta tangente e da recta normal ao gráfico da função f() = ln (3 + 1) no ponto de abcissa = 1. Resolução: ( 0, y 0 ) = (1, f(1)) = (1, ln 4) f () = f (1) = 6 4 = 3 equação da recta tangente: y ln 4 = 3 ( 1) equação da recta normal: y ln 4 = ( 1) 3 1

13 .3.6. Aplicações da Derivada Etremos e a Primeira Derivada Nesta secção vamos estudar os pontos em que uma função passa de crescente a decrescente, ou vice-versa. Podemos utilizar a derivada de primeira ordem de uma função para determinar se a função é crescente ou decrescente num intervalo. Teorema 4 Seja f uma função que admite primeira derivada num intervalo aberto I. 1. f () > 0, I f é crescente em I.. f () < 0, I f é decrescente em I. 3. f () = 0, I f é constante em I. Nos pontos onde, uma função passa de crescente a decrescente, ou vice-versa, a função tem um etremo relativo. Os etremos relativos de uma função incluem os mínimos relativos e os máimos relativos da função. Observando o gráfico que se apresenta abaio podemos constatar este resultado, a função tem dois etremos relativos - o ponto à esquerda é um máimo e o ponto à direita é um mínimo relativo. Estes pontos são pontos onde há alteração de monotonia da função. 13

14 y máimo relativo f. decrescente f. crescente f. crescente mínimo relativo Se observarmos os gráficos seguintes podemos verificar que em ambos os casos temos um máimo relativo. Esse máimo é obtido em pontos onde f () = 0 ou f () não está definida - pontos críticos. y máimo relativo f (c) = 0 tangente horizontal y máimo relativo f (c) não é definida c c Teorema 5 Se f tem um mínimo relativo ou máimo relativo quando = c, então ou f (c) = 0 ou f (c) não está definida. Desta forma, para sabermos quais os etremos relativos de uma função basta testar os pontos críticos da função. Encontrados estes, o seguinte resultado permite-nos identificar os máimos e mínimos relativos e/ou pontos sela. 14

15 Teorema 6 Seja = c um ponto crítico da função f contínua no intervalo (a, b) que contém c. Se f é diferenciável no intervalo (a, b), com a possível ecepção de = c, então: 1. f () muda de positivo para negativo em = c, então f tem um máimo relativo em (c, f(c)).. f () muda de negativo para positivo em = c, então f tem um mínimo relativo em (c, f(c)). 3. f () é positivo em ambos os lados de = c, ou negativo em ambos os lados de = c, então f(c) não é máimo relativo nem mínimo relativo, é um ponto sela. Eemplo 9. Para calcularmos os etremos, se eistirem, da função f() = começamos por determinar os pontos críticos: f () = = 15 (1 ) = 0 = 0 = 1 = 1 Valor de f () f() min pt má rel sela rel Então f( 1) = é mínimo relativo, f(1) = é máimo relativo e = 0 é ponto sela. 15

16 Concavidade e a Segunda Derivada Analisando o gráfico de uma função facilmente constatamos os intervalos onde a sua concavidade é voltada para cima ou para baio. No entanto, se não estivermos a visualizar o gráfico da função para sabermos as concavidades dos gráficos temos de fazer um teste analítico. Acontece que podemos utilizar a segunda derivada da função para determinar esses intervalos, precisamente como utilizamos a primeira derivada da função para determinar os intervalos onde a função é crescente e decrescente. Teorema 7 Seja f uma função que admite segunda derivada num intervalo aberto I. 1. f () > 0, I f tem concavidade voltada para cima em I.. f () < 0, I f tem concavidade voltada para baio em I. Para uma função f contínua, podemos calcular os intervalos em que f tem concavidade é voltada para cima ou para baio.( Para uma função descontínua, os intervalos de teste devem ser formados utilizando-se os pontos de descontinuidade juntamente com os pontos em que f () é zero ou não é definida). 16

17 Eemplo 10. Para estudarmos a concavidade da função f() = começamos por determinar os pontos onde a segunda derivada se anula: f () = 0 30(1 ) + 15 ( ) = = 0 30( + 1) = 0 = 0 = = Valor de 0 f () f() pt pt pt + inf inf inf Então, podemos afirmar que a função tem concavidade voltada para baio no intervalo (, 0) (, + ) e concavidade voltada para cima no intervalo (, ) (0, ) Teoremas de Rolle, Lagrange e Cauchy O Teorema de Weierstrass afirma que uma função contínua num intervalo fechado [a, b] tanto máimo como mínimo nesse intervalo. Entretanto ambos os valores podem ocorrer nas etremidades. O Teorema 17

18 de Rolle dá condições que garantem a eistência de valores etremos no interior de um intervalo fechado. y y f(b) f(a) f(a) 3 f(b) 1 1 Teorema 8 Teorema de Rolle Seja f uma função contínua num intervalo fechado [a, b] e diferenciável no intervalo aberto (a, b). Se f(a) = f(b) então eiste pelo menos um número c (a, b) tal que f (c) = 0. Simbolicamente f() contínua em [a, b] Então f() diferenciável em (a, b) c (a, b) : f (c) = 0 Eemplo 11. A despesa C de compra e transporte dos componentes usados num processo de manufactura é aproimadamente ( 1 C() = 10 + ), onde C é medido em milhares de euros + 3 e é o número de unidades compradas em centenas. Sabendo que a despesa para 300 e 600 unidades compradas é idêntica, 18

19 prove eiste, e calcule, um número de unidades compradas para o qual a taa de variação da despesa é nula. Resolução: Atendendo a que C(3) = C(6), e a função C() é contínua em [3, 6] e diferenciável em (3, 6), podemos aplicar o Teorema de Rolle que garante (3, 6) : dc = 0. Então d ( dc d = 0 = ) = 0 ( + 3) 10 ( + 3) + 3 ( + 3) = ( + 3) = 0 10 ( 6 9) = 0 = 30 Logo a taa de variação da despesa é nula quando se adquirem unidades. Consideremos o gráfico seguinte y f(c) f(b) f(a) Geometricamente podemos constatar a eistência de uma recta tangente paralela à secante pelos pontos (a, f(a)) e (b, f(b)). Em termos 19

20 de taa de variação concluímos que deve eistir um ponto no intervalo aberto (a, b) no qual a taa de variação instantânea é igual à taa de variação média sobre o intervalo [a, b]. Este resultado é enunciado pelo seguinte teorema: Teorema 9 Teorema de Lagrange Seja f uma função contínua num intervalo fechado [a, b] e diferenciável no intervalo aberto (a, b), então eiste um número c (a, b) tal que f f(b) f(a) (c) =. b a Simbolicamente f() contínua em [a, b] f() diferenciável em (a, b) Então c (a, b) : f (c) = f(b) f(a) b a Eemplo 1. Uma companhia introduz um produto novo para o ( qual o número S de unidades vendidas é S(t) = ) + t onde t é o número de meses. Indique qual é a taa da variação média de S(t) durante o primeiro ano e qual o mês em que a taa de variação é igual à taa de variação média durante o primeiro ano. 0

21 Resolução: Ora a taa de variação média durante o primeiro ano é dada por: T V M = S(1) S(1) 1 1 = Então podemos concluir que o número de unidades vendidas, em média, durante o primeiro ano, aumentou em 41 unidades por mês. Atendendo a que a função S(t) é contínua em [1, 1] e diferenciável em (1, 1), podemos aplicar o Teorema de Lagrange para sabermos o mês em que a taa de variação é igual à taa de variação média durante o primeiro ano: ds dt = S(1) S(1) = t 4.5 ( + t) Logo a taa de variação média durante o primeiro ano é igual à taa de variação no mês de Abril. Como caso particular do Teorema de Lagrange temos: Teorema 10 Teorema de Cauchy Sejam f e g funções contínuas num intervalo fechado [a, b] e diferenciáveis no intervalo aberto (a, b). Suponhamos que g() 0, [a, b], então eiste um número c (a, b) tal que f (c) g (c) = f(b) f(a) g(b) g(a). 1

22 Simbolicamente f(), g() contínuas em [a, b] f(), g() diferenciáveis em (a, b) g() 0, [a, b] Então c (a, b) : f (c) g (c) = f(b) f(a) g(b) g(a).3.8. Indeterminações: Regra de Cauchy Em secções anteriores estudámos limites como 1 lim 1 1 e lim e um processo para calcular esses limites. Vamos agora aprender um novo processo analítico para o cálculo de limites. Regra de Cauchy: Seja (a, b) um intervalo que contém c. Sejam f e g funções dife- renciáveis em (a, b), ecepto possivelmente em c. Se o limite de f() quando tende para c resulta na forma indeterminada g() 0 0 ou, então f() lim c g() = lim f () c g () desde que o limite da direita eista ou seja infinito.

23 A forma indeterminada pode apresentar-se de quatro formas: + +, +, + e. A Regra de Cauchy pode aplicar-se sucessivamente. Eemplo 13. a) lim + e e + 1 = lim + e e = lim + 1 e = 0 b) lim e = lim e = lim e = 0.4. Acréscimos e Diferenciais Quando definimos derivada, vimos que esta era o limite da razão y. Representámos a derivada de y em ordem a por dy d = lim y 0 dy mesmo que não interpretássemos como o quociente de duas d grandezas separadas. Vamos ver que é possível atribuir significado a dy e d, de forma que o seu quociente, quando d 0, seja igual à derivada de y em ordem a. 3

24 Definição Seja y = f() uma função diferenciável. O diferencial de, que se representa por d, é qualquer número real diferente de zero. O diferencial de y, que se representa por dy, é dy = f () d. Nota: Nesta definição, d pode tomar qualquer valor diferente de zero. Na maioria das aplicações, entretanto, escolhe-se d pequeno, e esta escolha é representada por d =. Uma das aplicações do diferencial consiste em aproimar a variação em f() correspondente a uma variação em, conforme mostra a figura seguinte. Indica-se esta variação por y = f( + ) f() Variação de y y ( +, f( + )) (, f()) dy y d = + Note-se que, quanto mais pequeno se torna, os valores de dy e y ficam cada vez mais próimos um do outro; ou seja, quando é pequeno, dy y. Esta aproimação é a base da maioria das aplicações do diferencial. 4

25 Os diferenciais são usados em economia para aproimar variações na receita, no custo e no lucro. Seja R = f() a receita total da venda de unidades de um produto. Quando o número de unidades aumenta em 1, a variação de é = 1, e a variação da receita R é R = f( + ) f() dr = R () d. Por outras palavras, podemos utilizar o diferencial dr para aproimar a variação na receita, que resulta da venda de mais uma unidade. Da mesma forma, os diferenciais dc e dp podem servir para aproimar a variação no custo e no lucro, decorrente da venda (ou da produção) de mais uma unidade. Eemplo 14. A função de procura para um produto admite como modelo p = 400 Com o auílio de diferenciais, aproime a variação na receita quando as vendas aumentam de 56 unidades para 57 unidades. Compare com a variação efectiva da receita. Solução: Determinemos a receita marginal dr d. 5

26 R = p = 400 Então dr d = ( ) 1 (400 ) 1/ + (400 ) 1/ 1 = Quando = 56 vem d = = 1 e podemos aproimar a variação na receita por dr = = dr d d ε Quando aumenta de 56 para 57, a variação efectiva da receita é R = = ε 6

27 ..9. Eercícios 1. Considere a função real de variável real definida por f() =. f( + h) f() (a) Mostre que lim = 1 h 0 h f(). (b) Interprete o significado matemático do limite calculado na alínea anterior.. Na figura estão representadas três funções, a função f, f e f. Faça corresponder a cada uma das funções o respectivo gráfico. 3. De uma função f sabe-se que f () = 5. (a) Qual é o significado geométrico do valor 5, indicado como derivada da função no ponto de abcissa =. (b) Determine o valor de lim f() f() 4 4. Determine as derivadas das seguintes funções: (a) f(t) = t 7 + 8t 4 t + 1 (b) f() = ( 1) + (c) f() = ln()e + 1 (d) f(s) = (s 3s + 1)(9s 1) 4 (e) f() = ln( + ) + e + (f) f(y) = y 1 y + 3 (g) f() = 3 + ln ( ) e u (h) f() = log 3 ( + e ) + e (i) f(u) = ln u 7

28 a + 3b se 5. Seja g() = + 4 se >, (a, b IR) uma função de domínio IR. (a) Determine os valores de a e b de modo que a função f seja contínua em IR. (b) Comente a seguinte afirmação : Eistem valores a e b diferentes dos obtidos na alínea anterior onde a função f é diferenciável em =. 6. Determine, caso eistam, os pontos em que o gráfico da função f() = tem recta tangente horizontal. 7. Considere a função f definida por f() = e/ (a) Estude os intervalos de monotonia e eistência de etremos para a função f. (b) Estude a concavidade e a eistência de pontos de infleão para a função f. (c) Mostre que a recta tangente ao gráfico de f na origem é perpendicular à recta dos quadrantes pares e coincide com a recta dos quadrantes ímpares. 8. Considere a função f definida por ln( + 1) se > 0 g() = + se 0 (a) Determine caso eista g (0). (b) Comente a seguinte afirmação: A função g tem concavidade voltada para cima para < 0 e é monótona crescente para > 0. (c) Determine a equação da recta tangente e da recta normal ao gráfico de g em = As funções preço de venda e custo de um produto admite respectivamente como modelos: P v () = 75 e C() = onde é o número de unidades produzidas. (a) Estabeleça a função lucro para este produto. (b) Determine o lucro marginal para a produção de 80 unidades. (c) Que nível de produção proporcionará lucro máimo? 8

29 10. O custo anual (em milhões de euros) para um departamento do governo apreender p% de uma droga ilegal é C(p) = 58p 100 p, 0 p < 100. Determine a taa de variação do custo quando p = 30%. 11. Um contabilista estimou que o custo de aquisição e armazenagem de unidades de um produto é dado por C() = , 0 < < 00. Determine o numero de unidades de modo que o custo seja mínimo. 1. Numa fábrica, o custo total da produção mensal de q centenas de peças, epresso em milhares de euros, é dada por: C(q) = q 3 1q + 1q (a) Determine o custo marginal, e calcule o seu valor para seis centenas de peças. (b) Estude a variação do custo total no intervalo ]0, 8[. Qual o número de peças que aconselha ao fabricante para que o custo total seja mínimo? 13. O custo com máquinas registadoras de um supermercado é função do número de máquinas que estão a operar num dado momento. Sendo o número de máquinas, o custo estimado C, em euros, é dado por C() = Quantas máquinas deveriam estar a operar de modo que o custo fosse mínimo? 14. O custo de inventário depende dos custos de eecução da encomenda e da armazenagem, e é dado por C() = ( ) Q ( ) s + r, onde Q é o número de unidades vendidas por ano, r é o custo da armazenagem de uma unidade durante 1 ano, s é o custo da colocação de um pedido, e é o número de unidades no pedido. Determine o tamanho do pedido que minimize o custo quando Q = 10000, s = 4, 5 e r = 5, 76. 9

30 15. A venda anual S de um novo produto é dada por: onde t é o tempo em anos. S(t) = 5t 8 + t, 0 t 3, Determine o instante eacto em que a venda anual estará a crescer com taa máima. 16. Um comerciante vende 000 unidades por mês ao preço de 10 ε cada. Ele pode vender mais 50 unidades por mês para cada 0.5 ε de redução no preço. que preço unitário maimizará a receita? 17. Considere as funções f() = e g() = + 4. Mostre que a função f satisfaz as condições do teorema de Rolle no intervalo [0, 4] e que a função g satisfaz o teorema de Lagrange no intervalo [1, 4]. 18. Seja f uma função diferenciável em IR tal que f() = 1 e f(4) = 1. Considere a função g() = f(), IR. (a) Prove que a função g() = 0 tem pelo menos uma raiz positiva. (b) Prove que eiste um β ]0, [ tal que a tangente ao gráfico de g no ponto de abcissa β é paralela à recta y =. 19. Calcule, caso eista, cada um dos seguintes limites: (a) 4 3 lim 0 (b) e e 1 lim (c) lim + 1 ( 1) (d) lim 0 e 1 (e) 4 lim ln() (f) lim Considere a função f() = e + ln() (a) Determine o diferencial de f. (b) Determine a variação da função f se varia de 1 para 1,0. (c) Calcule o valor aproimado de e ln(1.1). 1. O lucro auferido com a venda de unidades de um produto admite como modelo P =

31 Utilize o diferencial dp para aproimar a variação no lucro quando o nível de produção aumenta de 50 para 51 unidades. Compare com o lucro efectivo decorrente do aumento do nível de produção de 50 para 51 unidades.. Considere as funções f() = ln() e g() = 1 1 (a) Calcule o diferencial de fog. (b) Mostre, utilizando diferenciais que (f og)(0.1) A venda mensal de cotas de um clube recem-inaugurado tem por modelo M(t) = 300t t , onde t é o número de meses decorridos desde a abertura do Clube. Sabendo que o Clube abriu no inicio de Janeiro de 005, determine: (a) o mês do ano onde se venderam mais cotas. (b) a variação das vendas de cotas na primeira semana de Junho. 4. O custo anual do controle de stock para um fabricante é C = , 3Q, onde Q é Q o vulto do pedido quando se repõe o stock. Determine a variação anual do custo quando Q é aumentado de 350 para O custo (em euros) da produção de unidades de um artigo é dado por C() = Determine, utilizando diferenciais o valor aproimado do custo da produção de 15 unidades do artigo. 6. Na figura seguinte está representado o gráfico de uma função r.v.r., y = f(): y 6 y = f() (a) Sem efectuar cálculos, justifique que f() não é diferenciável no ponto de abcissa = 1. 31

32 (b) Seja h() = e 1, IR. Determine a epressão que define f(), IR, sabendo que f() = h 1 (),. (c) Com base no gráfico de f(), indique a solução da inequação f() < 0. (d) i. Enuncie o teorema de Lagrange. ii. Quantos pontos do intervalo ] 3, [ verificam a tese do teorema de Lagrange? (e) i. Sem efectuar cálculos, indique, justificando, qual o valor do declive da recta tangente ao gráfico de f quando = 0. ii. Prove que o ponto de abcissa = 0 é o único ponto do domínio de f onde o declive da recta tangente ao gráfico tem o valor apurado na alínea anterior. (f) Mostre, não efectuando cálculos, que a função f() se < 1 g() = f() se 1 < f() se é contínua em = 1. 3

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim

Comecemos por relembrar as propriedades dos limites das sucessões: b n = K e c IR então: lim. lim .. Limites e Continuidade... Limites em IN Comecemos por relembrar as propriedades dos ites das sucessões: Propriedades dos Limites das Sucessões: Sejam n a n = L e n b n = K e c IR então: n [a n ± b n

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

Capítulo Diferenciabilidade e continuidade das derivadas parciais

Capítulo Diferenciabilidade e continuidade das derivadas parciais Cálculo 2 - Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais 27 - Teorema do Valor Médio 272 - Diferenciabilidade

Leia mais

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas:

M23 FICHA DE TRABALHO DERIVADAS I PARTE. 3. Na figura estão representadas: M FICHA DE TRABALHO DERIVADAS I PARTE. Na figura estão representadas: Parte do gráfico de uma função f diferenciável em ; Uma recta r tangente ao gráfico de f no ponto de abcissa. O valor de f (), derivada

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

Derivadas. Derivadas. ( e )

Derivadas. Derivadas. ( e ) Derivadas (24-03-2009 e 31-03-2009) Recta Tangente Seja C uma curva de equação y = f(x). Para determinar a recta tangente a C no ponto P de coordenadas (a,f(a)), i.e, P(a, f(a)), começamos por considerar

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL

DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL DERIVAÇÃO de FUNÇÕES REAIS de VARIÁVEL REAL Derivada de uma função num ponto. Sejam f uma função denida num intervalo A R e a um ponto de acumulação de A. Cama-se derivada de f no ponto a ao ite, caso

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

Extremos e o Teste da Derivada Primeira. Extremos e o Teste da Derivada Primeira

Extremos e o Teste da Derivada Primeira. Extremos e o Teste da Derivada Primeira UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I 1. Etremos relativos

Leia mais

Exercícios para as aulas TP

Exercícios para as aulas TP Generalidades sobre funções reais de variável real. FichaTP0. Considere os gráficos correspondentes a duas funções reais de variável real: y y 5-0 4-5 4 3-3 - - 0 3 4 - Indique para cada uma delas: (a)

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico

A Derivada e a Inclinação de um Gráfico. A Derivada e a Inclinação de um Gráfico UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I A Derivada e a Inclinação

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Exercícios de Matemática. Maiores de 23. Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu

Exercícios de Matemática. Maiores de 23. Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu Departamento de Matemática Escola Superior de Tecnologia de Viseu Instituto Politécnico de Viseu Eercícios de Matemática Maiores de 3 Cursos do Departamento de Gestão Ano Lectivo 008/009 Noções básicas

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.

Leia mais

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2 Eame Nacional de 0 (. a fase) Prova Escrita de Matemática A. O Ano de Escolaridade Prova /Versões e GRUPO I. Versão : (B); Versão : (A) Se apenas são distinguíveis pela cor, os discos brancos entre si

Leia mais

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450

A) 45 B) 22,5 C) 43 D) 21, A soma das áreas dos 20 primeiros trapézios é igual a: [A] 260 [B] 130 [C] 70 [D] 450 6. Observe a sequência de trapézios rectângulos construídos como é sugerido na figura. Seja (a n ) a sucessão das áreas dos trapézios, em que o trapézio de ordem tem dois vértices nos pontos (, 0) e (,

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra

Noções de Cálculo Diferencial e Integral para Tecnólogos. João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra Noções de Cálculo Diferencial e Integral para Tecnólogos João Carlos Vieira Sampaio Guillermo Antonio Lobos Villagra 9 de dezembro de 20 Sumário APRESENTAÇÃO 9 Funções e suas derivadas. Velocidade média

Leia mais

Cálculo Diferencial em R. Departamento de Matemática

Cálculo Diferencial em R. Departamento de Matemática Cálculo Diferencial em R Mariana Dias Júlia Justino Departamento de Matemática Conteúdo Cálculo Diferencial em R. Definiçãodederivadanumponto.... Interpretação geométrica.... Derivadas laterais... 4.4

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e mata O gráfico de uma função é, na maioria das vezes bastante útil para visualizar propriedades da função. Assim, de forma a podermos representar com rigor uma função, devemos fazer um estudo pormenorizado

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHS DE TRLHO 1º NO COMPILÇÃO TEM FUNÇÕES Site: http://wwwmathsuccesspt Facebook: https://wwwfacebookcom/mathsuccess TEM FUNÇÕES Matemática 1º no Fichas de Trabalho Compilação Tema Funções 1 1 (Eercício

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Capítulo Derivadas parciais

Capítulo Derivadas parciais Cálculo 2 - Capítulo 24 - Derivadas parciais 1 Capítulo 24 - Derivadas parciais 241 - Introdução 243 - Significado geométrico das derivadas parciais 242 - Derivadas parciais Veremos agora como aplicar

Leia mais

Capítulo Diferenciabilidade de uma função

Capítulo Diferenciabilidade de uma função Cálculo - Capítulo.6 - Diferenciabilidade de uma função 1 Capítulo.6 - Diferenciabilidade de uma função.6.1 - Introdução.6.4 - Diferenciabilidade e continuidade.6. - Diferenciabilidade.6.5 - Generalização

Leia mais

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica.

FUNÇÃO QUADRÁTICA. Vamos fazer agora o estudo da função, tendo em conta a sua representação geométrica. FUNÇÃO QUADRÁTICA Definição: Uma função quadrática é uma função f definida por f () a b c, a 0 a, b e c são números reais. - O domínio de uma função quadrática é o conjunto dos números reais. - O gráfico

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE TIPO EXAME Nº 3

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE TIPO EXAME Nº 3 Utilize apenas caneta ou esferográfica de tinta indelével azul ou preta, ecepto nas respostas que impliquem a elaboração de construções, desenhos ou outras representações, que podem ser primeiramente elaboradas

Leia mais

Exercícios para as aulas PL

Exercícios para as aulas PL Eercícios para as aulas PL Generalidades sobre funções reais de variável real. FichaPL0. Considere os seguintes gráficos de funções reais de variável real: A y B y 5 4 4 3 3-3 - - 3-3 4 5 - C D y y 4 3

Leia mais

9 Integrais e Primitivas.

9 Integrais e Primitivas. Eercícios de Cálculo p. Informática, 006-07 9 Integrais e Primitivas. E 9- Determine a primitiva F da função f que satisfaz a condição indicada, em cada um dos casos seguintes: a) f() = sin, F (π) = 3.

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

Exercícios sobre Polinômios

Exercícios sobre Polinômios uff Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Eercícios sobre Polinômios Prof Saponga Rua Mário Santos Braga

Leia mais

Capítulo 9. A Derivada de uma Função. 9.2 Calculando derivadas: alguns exemplos

Capítulo 9. A Derivada de uma Função. 9.2 Calculando derivadas: alguns exemplos Capítulo 9 A Derivada de uma Função 9. Definição No Cap. 5, motivados pela geometria, vimos que o coeficiente angular da reta tangente ao gráfico de uma função f, em um ponto ( 0, f( 0 )), é obtido tomando-se

Leia mais

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por =

LIMITE. Para uma melhor compreensão de limite, vamos considerar a função f dada por = LIMITE Aparentemente, a idéia de se aproimar o máimo possível de um ponto ou valor, sem nunca alcançá-lo, é algo estranho. Mas, conceitos do tipo ite são usados com bastante freqüência. A produtividade

Leia mais

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II

Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Universidade dos Açores Departamento de Matemática Curso de Informática Redes e Multimédia Cálculo II Tema : Cálculo diferencial de funções de duas variáveis Este teto foi retirado do manual de apoio à

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 4 Zeros reais de funções Parte 1 Objetivo Determinar valores aproimados para as soluções (raízes) de equações da forma: f

Leia mais

1.2. Generalidade Sobre Funções O Plano Cartesiano

1.2. Generalidade Sobre Funções O Plano Cartesiano 1.. Generalidade Sobre Funções 1..1. O Plano Cartesiano Assim como podemos representar números reais por pontos numa recta de números reais, podemos também representar pares ordenados de números reais

Leia mais

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE

CE065 - ELEMENTOS BÁSICOS DE ESTATÍSTICA 2ª. PARTE CE65 - ELEMENTOS BÁSICOS DE ESTATÍSTICA ª. PARTE. FUNÇÕES.- Sistema de Coordenadas Cartesianas ou Plano Cartesiano A localização de pontos num plano é bastante antiga na Matemática e data aproimadamente

Leia mais

MAT096. Tutoria de Cálculo Diferencial e Integral

MAT096. Tutoria de Cálculo Diferencial e Integral UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Eatas e Tecnológicas - CCE Departamento de Matemática MAT096 Tutoria de Cálculo Diferencial e Integral Apostila DMA - UFV 010 Sumário 1 Função 4 1.1 Noções

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f (

Leia mais

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1

MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 MATEMÁTICA I FUNÇÕES REAIS DE UMA VARIÁVEL REAL MATEMÁTICA I - PROF. EDÉZIO 1 EMENTA Funções Reais de uma Variável Real Principais Funções Elementares e suas Aplicações Matrizes Livro Teto: Leithold, Louis.

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS

O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS 14 O TEOREMA DO VALOR MÉDIO E APLICAÇÕES DAS DERIVADAS Gil da Costa Marques 14.1 Introdução 14. O crescimento/decrescimento de uma função num intervalo e os pontos de etremo 14.3 A concavidade do gráfico

Leia mais

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A

TESTE DE AVALIAÇÃO MATEMÁTICA A. Versão A E S C O L A S E C U N D Á R I A A F O N S O L O P E S V I E I R A Escola Secundária Afonso Lopes Vieira TESTE DE AVALIAÇÃO MATEMÁTICA A Nome:... Data: //9 Duração da prova 9 min Nº:... º Ano Turma A Versão

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:

Leia mais

cotg ( α ) corresponde ao valor da abcissa do

cotg ( α ) corresponde ao valor da abcissa do Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado

Leia mais

Preparação para o Cálculo

Preparação para o Cálculo Preparação para o Cálculo Referencial cartesiano Representação gráfica Um referencial cartesiano é constituído por duas rectas perpendiculares (fias), com ponto de intersecção O: O diz-se a origem do referencial;

Leia mais

Concavidade e o Teste da Derivada Segunda

Concavidade e o Teste da Derivada Segunda UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Concavidade e o Teste

Leia mais

Taxas de Variação: Velocidade e Funções Marginais

Taxas de Variação: Velocidade e Funções Marginais UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Taxas de Variação:

Leia mais

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata

CAPITULO I PRIMITIVAS. 1. Generalidades. Primitivação imediata e quase imediata CAPITULO I PRIMITIVAS. Generalidades. Primitivação imediata e quase imediata Sendo f () uma função real de variável real definida no intervalo não degenerado I, chama-se primitiva de f () em I a qualquer

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

Aula 3 Propriedades de limites. Limites laterais.

Aula 3 Propriedades de limites. Limites laterais. Propriedades de ites. Limites laterais. MÓDULO - AULA 3 Aula 3 Propriedades de ites. Limites laterais. Objetivos Estudar propriedades elementares de ites, tais como: soma, produto, quociente e confronto.

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2

; a = 5 (d) f (x) = 2x 4 x 3 + 2x 2 ; a = 2 x ; a = 1 (f) f (x) = 3 x. 9 x ; a = 9. x 2 x 2 ; a = 2 2. Em cada caso abaio calcule o ite de f ), quando a. a) f ) = 2 + 5; a = 7 b) f ) = c) f ) = 2 + 3 0 + 5 e) f ) = 3 3 + + ; a = 0 ; a = 5 d) f ) = 2 4 3 + 2 2 ; a = 2 2 + 8 3 ; a = + 3 h) f ) = 9 ; a

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

NOVA School of Business & Economics CÁLCULO I 2ºSEM 2011/2012

NOVA School of Business & Economics CÁLCULO I 2ºSEM 2011/2012 NOVA School of Business & Economics CÁLCULO I ºSEM / Equipa Docente Responsável: Maria Helena Almeida.... (mhalmeida@novasbe.pt) Assistentes: Cláudia Alves.... (claudia.alves@novasbe.pt) Cláudia Andrade....

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios não lineares; Equações transcendentais equações que envolvem funções

Leia mais

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO

FUNÇÃO. D: domínio da função f D R R: contradomínio da função f f y = f(x): imagem de x. x. y. Está contido REPRESENTAÇÃO GRÁFICA DE UMA FUNÇÃO FUNÇÃO Introdução ao Cálculo Diferencial I /Mário DEFINIÇÃO Seja D um subconjunto dos reais, não vazio. Definir em D uma função f é eplicitar uma regra que a CADA elemento D associa-se a UM ÚNICO R. Notação

Leia mais

Capítulo 3 Limite de uma função

Capítulo 3 Limite de uma função Departamento de Matemática - ICE - UFJF Disciplina MAT54 - Cálculo Capítulo 3 Limite de uma função Podemos afirmar que o conceito de ite é uma das ideias fundamentais do Cálculo Diferencial. Seu processo

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

Matemática Exercícios

Matemática Exercícios 03/0 DIFERENCIAÇÃO EM R Matemática Eercícios A. Regras de Derivação Calcular a derivada de f( considerando que toma unicamente os valores para os quais a fórmula que define f( tem significado:. f ( 3 5

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

Polinômios e Funções Racionais

Polinômios e Funções Racionais Capítulo 7 Polinômios e Funções Racionais 7. Polinômios Ao iniciarmos nosso estudo sobre funções, consideramos o problema de construir uma caia sem tampa a partir de um pedaço quadrado de plástico maleável

Leia mais

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

NOTAS DE AULA. Cláudio Martins Mendes

NOTAS DE AULA. Cláudio Martins Mendes NOTAS DE AULA FUNÇÕES DE VÁRIAS VARIÁVEIS - DIFERENCIAÇÃO Cláudio Martins Mendes Segundo Semestre de 2005 Sumário 1 Funções de Várias Variáveis - Diferenciação 2 1.1 Noções Topológicas no R n.............................

Leia mais

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com:

1. Matrizes. 1. Dê um exemplo, em cada alínea, de uma matriz A = [a ij ] m n com: Matemática Licenciatura em Biologia 4 / 5. Matrizes.. Dê um eemplo, em cada alínea, de uma matriz A = [a ij ] m n com: m =, n = cuja soma das entradas principais seja. (b) m = n = 4 com a a e a 4 = a 4.

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais