AULA 13 Aproximações Lineares e Diferenciais (página 226)

Tamanho: px
Começar a partir da página:

Download "AULA 13 Aproximações Lineares e Diferenciais (página 226)"

Transcrição

1 Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da. A epressão mais simples é quando trabalhamos com a equação da reta (unção aim). Eistem outras aproimações simples que são os polinômios, contudo aproimação é sempre em torno de um ponto erro de aproimação. integrais. a. Sendo uma aproimação cometemos Estudaremos também as dierenciais de uma unção muito útil para resolver Bons estudos. AULA Aproimações Lineares e Dierenciais (página 6) Muitas vezes, para obter o valor de unção y num certo ponto a D substituímos essa unção por uma unção mais simples para obter valor aproimada de a. A unção mais simples de se trabalhar é uma reta. Dada uma y derivável (dierenciável) no intervalo I D então ela pode ser aproimada por reta tangente à curva do gráico de em torno de a para a I D

2 cujo coeiciente angular dessa reta é m a portanto: a a a. É denominada aproimação linear ou linearização de em torno de a denotado como: Veja o gráico na igura abaio: L a a a Figura Gráico da aproimação linear L da unção em torno de a. OBSERVAÇÃO: Quando alar de ponto é preciso ter cuidado. Na reta R (uma dimensão) a é um ponto enquanto que o ponto P no plano denotado por a a,. 4 Eemplo. Encontre linearização da unção Solução: Para obter L a a a coeiciente angular da reta tangente em achar o valor de a y tem duas coordenadas em torno de a. precisamos ter o ponto onde passa a reta e o a. Como a, temos a. Para achar o ponto a, a no plano basta 4 4 Para encontrar o coeiciente angular da reta tangente, derivando a unção em elação a

3 obtemos: e substituindo por valor de a temos: m Logo substituindo na equação da reta tangente obtemos: L Resposta: L (a) Calcule valor aproimado de 0,8 usando aproimação linear. 4 Solução. Como a reta L 6 0 aproima valor Calculando diretamente temos: Erro de 0,96. L 0, ,8 6 8 em torno de a o 4 0,8 0,8 0,8 0,4096 0,64 0,4096,9, 96 (b) Quanto mais perto do valor de a melhor é a aproimação. Calcular 0,9. Resposta: 0, ,9 6 9 L enquanto que 4 0,9 0,9 0,9 0,656 0,8 0,656,4, 086 Erro de 0,086. (c) Calcular 0,5 Solução. Usando aproimação linear Calculando diretamente temos: L 0, , ,5 0,5 0,5 0,065 0,5 0,065 0,75 0, 85

4 Erro de,85, a aproimação linear é péssima porque 0, 5 está longe de a. As aproimações são calculadas conhecida a para determinar para saber dy a. Geralmente os valores de são da ordem de 0, 0 no máimo na ordem de 0. Eemplo. Encontre a aproimação linear da unção g em torno de a 0 e use-a para aproimar os números 0, 95 e,. Ilustre, azendo os gráicos de g e da reta tangente. Solução. Para escrever a equação da reta que passanum ponto conhecendo asua direção, precisamos conhecer o valor de 0 0 g. Para determinar o coeiciente angular da reta tangente devemos encontrar a derivada da unção g. Como é uma radiciação, escrevemos na orma de potência. g Derivando em relação a e usando a regra da potência e a regra da cadeia obtemos: g Para calcular o coeiciente angular da reta tangente, basta substituir por 0. Logo m g 0 0 Logo a aproimação linear é: L g0 g0 0 De modo que (a) 0,95 0,05 L 0,05 0,05 0, 98 (b), 0, L 0, 0,, 0 4

5 (c) Graicamente: Eemplo. Seja aproimado de,0., encontre linearização de em 0 e calcule valor Resposta: Como 0 0 e derivando: e ou na orma de potência 0 6 Temos em 0 aproimação linear:

6 L,0 0,0 0 L. 0,0 0,0 0,, 88 Resposta: L 6 e, 88,0 Dierenciais Seja y uma unção derivável (dierenciável) então deinimos dierencial de y como sendo dy d. Dierencial de uma unção é a derivada dessa unção vezes a dierencial da variável. Signiicado geométrico da dierencial. A notação é usada para indicar uma distância entre dois pontos distintos na reta. Quando tomamos o limite em a quando aproima de a, a distância ica tão pequena que usamos a notação d, isto é lim a d 0 Também dizemos que d é uma ininitesimal da distância. Eemplo 4. Seja e, calcule dierencial de y. Resposta: Como dy d basta derivar a unção em relação a e substituir na epressão da dierencial. Temos e e 6

7 De modo que Eemplo 5. Seja cos Resposta: Como epressão da dierencial. Temos De modo que dy e d, calcule dierencial de y. dy d basta derivar a unção em relação a e substituir na cos cos Eemplo 6. Seja u ln dy cos sen d, calcule dierencial de u. sen cos sen Resposta: Como du ud, derivando u u em relação a temos: u 6 e substituir na epressão da dierencial resulta: du 6 d Eemplo 7. Seja sen Resposta: Como: temos:, calcule dierencial de. Eemplo 8. Seja t ln t sen cos cos d sen, calcule dierencial de. d 7

8 Resposta: Como: t t t t temos: d t t dt Eemplo 9. Sejam, g e e h ln (a) Encontre a linearização de, g e h em a 0. O que você percebe? Como eplicar o que aconteceu? Solução: (i) Linearização da Em 0 em a 0. Derivando em temos: a obtemos 0 0 e 0 0 linear de é: (ii) Linearização da g Em 0 é: 0 L e em a 0. Derivando em temos: g e a obtemos g 0 e e g 0 e 0 (iii)linearização da h ln 0 0 L g. Assim a aproimação. Assim a aproimação linear de g em a 0. Derivando em temos: h 8

9 a obtemos h 0 e h 0 ln 00 Em 0 aproimação linear de h é: 0 0 L h As três unções tem a mesma aproimação linear em a 0.. Assim a (b) Faça os gráicos de e de suas aproimações lineares. Para qual unção a aproimação é melhor? Para qual é pior? Eplique. Resposta: Em torno de a 0 as três unções tem aproimações iguais. Distante de a 0 a aproimação é melhor para ln h e pior para g e e. Porque as unções eponenciais e logarítmicas tem variações maiores que a unção quadrática de modo que cada vez que aasta do ponto a 0, as imagens de aasta muito da a. Aproimação linear do Erro nas aproimações Lineares. Deinição do erro absoluto Seja r o valor real e r o valor aproimado. Então o erro 9

10 absoluto é deinido por: Erro absoluto r r. Deinição do erro relativo Seja r o valor real e r o valor aproimado. Então o erro absoluto é deinido por: r r Erro relativo. r Deinição do erro relativo percentual Seja r o valor real e r o valor aproimado. Então o erro absoluto é deinido por: r r Erro relativo percentual 00%. r Podemos observar nas deinições do erro que devemos conhecer tanto os valores tanto de r como de r. Geralmente não conhecemos o valor de r, pois se tivermos o valor de r não há necessidade de calcular r. Cota superior do erro. Um valor 0 é dita cota superior do erro quando satisaz Erro r r Veja nos eemplos 0 a, problemas de erro com cota superior do erro. Eemplo 0: Sejam r 00 o valor real e r 99 o valor aproimado. Então : Erro absoluto r r r r Erro relativo 0,00. r Erro relativo percentual r r r % 00% 00%,0% Eemplo. Sejam r 0 o valor real e r 9 o valor aproimado. Então : Erro absoluto r r 0 9 r r 0 9 Erro relativo 0,. r 9 9 0

11 Erro relativo percentual r r r % 0,00% % 9 Observamos nos eemplos 0 e que o erro absoluto são iguais porém os erros relativos e percentuais dão ideia melhor da dierença eistente entre dois valores. Eemplo : Aresta de um cubo tem 0 cm, com possível erro de medida de 0,. Use dierencial para estimar o erro máimo possível no cálculo do volume do cubo. Solução. Sabemos que volume de um cubo é calculado pela órmula Seja V aresta. r valor da aresta real desconheci da e r valor da aresta medida 0cm. Como o possível erro de medida é e 0,cm (este é a cota superior do erro). Sabemos que: Erro absoluto da aresta Erro r r então temos r r dr 0, V VrV dv V r dr Como V r r r, temos V r r r 0. de modo que dv V r dr r dr Quando r r 0 dv Desta orma obtemos: Erro absoluto do volume: 0 V0dr 0cm 0, cm 00cm 0, cm 0cm dv 0cm Erro relativo do volume: dv 0cm V 0 0cm ,0 Erro relativo percentual do volume: dv 00% 0,000% % V 0 Eemplo : Para mesmo dados do eemplo, usando dierencial estime o erro máimo possível no cálculo da área da superície do cubo.

12 . Sabemos que um cubo tem 6 superícies planas de modo que Erro Como Ar 6r, temos A r r A área docubo 6r. e A Ar A0 da Ar dr e pelo visto no eemplo temos r r dr 0, Portanto, quando r r 0cm obtemos Desta orma temos: da Erro absoluto da área: 0 A0dr 0cm0, cm 00, cm da cm Erro relativo da área: da 6cm A 0 60cm 600 0,0 Erro relativo percentual da área: da 00% 0,000% % A 0 Apendice: Polinômio de Taylor. A aproimação pela reta tangente é a melhor aproimação de polinômio de primeiro grau (linear) próimo de a porque tanto como L L têm a mesma taa de variação (derivada) em a. Para uma aproimação melhor que a linear podemos usar aproimação por polinômio de segundo grau cujo gráico é uma parábola. Para isso a unção derivada em a, isto é devemos ter: P (unção quadrática) em torno de a deve possuir primeira e segunda a a ; P a a e P a a P Isto é, se polinômio de º grau tem a epressão geral Para satisazer as três condições acima. P

13 Eercício : Mostre que P que satisaz P a a ; P a a P a a é escrita por: P a a a a a Eemplo 4. Encontre aproimação quadrática para unção sen 0. Solução: Derivando temos cos e sen! e em torno de. Substituindo 0 e modo que obtemos 0 sen0 0, 0 cos0 e 0 sen0 0 aproimação quadrática de sen P é 0! sen Resposta: sen próimo da origem. Eercício: Mostre que: (I) cos (II) em torno de 0 e em torno de 0 é aproimada por P é aproimada por P.. Eemplo 5. Encontre aproimação quadrática para unção ln Solução: Derivando temos e obtemos ln 0, 0 e 0 quadrática de ln P é 0 em torno de.. Substituindo de modo que aproimação! 4

14 Resposta: ln 4 Polinômio de Taylor de grau n Se possui derivadas n,,, em a polinômio de grau n chamada polinômio de Taylor que aproima a dada por. P sendo n então eiste P P n próimo de a a a a a a a a a n a a P n, P! n n n a a, a a, a a P n P n!,..., n a n! n n n a Pn. Eercício : Encontre o polinômio de Taylor de 5º grau das unções sen e i e i i cos, e, ln e e, onde i. Mostre que cos isen chamado Fórmula de Euler e calcule i cos i sen e e. i e. Resposta: Série de Taylor Para uma unção dierenciável) em torno de própria que possui derivadas de ordem ininita (unção ininitamente. Dessa orma a, a soma ininita abaio é chamada Série de Taylor é a a a a a a a a n! n! P n n n n a a n! Quando a unção é aproimada por polinômio de Taylor de grau n, cometemos um erro cuja epressão é dada por: E n a n para próimo de a. n! 4

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x,

Na aula anterior vimos a noção de derivada de uma função. Suponha que uma variável y seja dada como uma função f de uma outra variável x, Elementos de Cálculo Dierencial Na aula anterior vimos a noção de derivada de uma unção. Supona que uma variável y seja dada como uma unção de uma outra variável, y ( ). Por eemplo, a variável y pode ser

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

s: damasceno.

s:  damasceno. Matemática II 6. Pro.: Luiz Gonzaga Damasceno E-mails: damasceno@yahoo.com.br damasceno@interjato.com.br damasceno@hotmail.com http://www.damasceno.ino www.damasceno.ino damasceno.ino - Derivadas Considere

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

5.1 Noção de derivada. Interpretação geométrica de derivada.

5.1 Noção de derivada. Interpretação geométrica de derivada. Capítulo V Derivação 5 Noção de derivada Interpretação geométrica de derivada Seja uma unção real de variável real Deinição: Chama-se taa de variação média de uma unção entre os pontos a e b ao quociente:

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho

CÁLCULO DIFERENCIAL E INTEGRAL. Prof. Rodrigo Carvalho CÁLCULO DIFERENCIAL E INTEGRAL LIMITES Uma noção intuitiva de Limite Considere a unção () = 2 + 3. Quando assume uma ininidade de valores, aproimando cada vez mais de zero, 2 + 3 assume uma ininidade de

Leia mais

Atividades Práticas Supervisionadas (APS)

Atividades Práticas Supervisionadas (APS) Universidade Tecnológica Federal do Paraná Pro: Lauro Cesar Galvão Campus Curitiba Departamento Acadêmico de Matemática Cálculo Numérico Entrega: unto com a a parcial DATA DE ENTREGA: dia da a PROVA (em

Leia mais

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à

Para ilustrar o conceito de limite, vamos supor que estejamos interessados em saber o que acontece à Limite I) Noção intuitiva de Limite Os limites aparecem em um grande número de situações da vida real: - O zero absoluto, por eemplo, a temperatura T C na qual toda a agitação molecular cessa, é a temperatura

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Disciplina Análi Matemática II Curso Engenharia do Ambiente º Semestre º Ficha nº : Funções de várias variáveis: derivadas parciais, dierenciais e regra da cadeia DERIVADAS PARCIAIS

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

Unidade 3. Funções de uma variável

Unidade 3. Funções de uma variável Unidade 3 Funções de uma variável Funções Um dos conceitos mais importantes da matemática é o conceito de unção. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda.

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016

1 Roteiro Atividades Mat146 Semana4: 22/08/16 a 26/08/2016 1 Roteiro Atividades Mat146 Semana4: /08/16 a 6/08/016 1. Matéria dessa semana de acordo com o Plano de ensino oicial: Assíntotas Horizontais e Verticais. Continuidade. Material para estudar: Assíntotas

Leia mais

Aula 4 Derivadas _ 1ª Parte

Aula 4 Derivadas _ 1ª Parte 1 CÁLCULO DIFERENCIAL E INTEGRAL I Aula 4 Derivadas _ 1ª Parte Professor Luciano Nóbrega UNIDADE 1 DERIVADA CONHECIMENTOS PRÉVIOS 2 y y 0 INCLINAÇÃO DA RETA A inclinação de uma reta ou, em outras palavras,

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 2: Aproximações Lineares e Diferenciais Objetivos da Aula Definir e calcular a aproximação linear de uma função derivável; Conhecer e determinar

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

Funções de varias variáveis

Funções de varias variáveis F : R n R (1,,..., n ) w Funções de varias variáveis F( 1,,.., 3 ) Dom n ( F) S R S é um subconjunto de R n Eemplo 1: Seja F tal que F : R R (, ) w 1 Identiique o domínio e a imagem de F Eemplos Eemplos

Leia mais

Integração Numérica. Cálculo Numérico

Integração Numérica. Cálculo Numérico Cálculo Numérico Integração Numérica Pro. Jorge Cavalcanti jorge.cavalcanti@univas.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - www.dsc.ucg.edu.br/~cnum/ Integração Numérica

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

CÁLCULO DIFERENCIAL EM CAMPOS ESCALARES E VECTORIAIS

CÁLCULO DIFERENCIAL EM CAMPOS ESCALARES E VECTORIAIS Capítulo II CÁLCULO DIFERENCIAL EM CAMPOS ESCALARES E VECTORIAIS Capítulo II Até agora trabalhamos sempre com unções de uma única variável real mas eistem muitas situações nas quais a unção depende de

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

DERIVADA DE UMA FUNÇÃO

DERIVADA DE UMA FUNÇÃO CÁLCULO I o Semestre de Pro. Maurício Fabbri 4- a Série de Eercícios DERIVADA DE UMA FUNÇÃO INCREMENTOS, TAXAS DE VARIAÇÃO, TANGENTES E A DERIVADA análise ráica O incremento de entre e é β A taa média

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo

1ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS DE MÉTODOS NUMÉRICOS Pro.: Magnus Melo Eercício. Sejam os polinômios dados abaio. Use a regra de sinais de descartes e o teorema da cota de Augustin Cauchy para pesquisar a eistência

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

CÁLCULO II Prof. Jerônimo Monteiro

CÁLCULO II Prof. Jerônimo Monteiro CÁLCULO II Pro. Jerônimo Monteiro Gabarito - Lista Semanal 08 Questão 1. Calcule 2 para (x, y, onde x = r cos θ e y = r sen θ. 2 Solução: Primeiro, calculamos pela regra da cadeia, como segue: = + = (

Leia mais

Estudar tendências no comportamento de funções.

Estudar tendências no comportamento de funções. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 2007-2 Proessor:

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

Integrais indefinidas

Integrais indefinidas Integrais indefinidas que: Sendo f() e F() definidas em um intervalo I R, para todo I, dizemos F é uma antiderivada ou uma primitiva de f, em I, se F () = f() F() = é uma antiderivada (primitiv de f()

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

5.7 Aplicações da derivada ao estudo das funções.

5.7 Aplicações da derivada ao estudo das funções. Capítulo V: Derivação 0.. 4. 7. tg( ) 0 tg( π ( + + ) sen( ) + ) sen( ) Resolução: cos( ) Repare que não eiste sen( ). + 5. ( e + ) 6. 0 π ( + cos( )) cos( ) sen( ) sen( ) Mas, e como 0, então 0 + + +

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

CAPÍTULO 1 - REVISÃO DE TÓPICOS DE CÁLCULO - DERIVADAS

CAPÍTULO 1 - REVISÃO DE TÓPICOS DE CÁLCULO - DERIVADAS CAPÍTULO - REVISÃO DE TÓPICOS DE CÁLCULO - DERIVADAS. Os problemas básicos do cálculo Quase todas as ideias e aplicações do cálculo giram em torno de dois problemas geométricos áceis de serem entendidos.

Leia mais

Interpolação Polinomial

Interpolação Polinomial Cálculo Numérico Interpolação Polinomial Parte I Pro. Jorge Cavalcanti jorge.cavalcanti@univas.edu.br MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG www.dsc.ucg.edu.br/~cnum/ Interpolação

Leia mais

TÓPICOS DE CORRECÇÃO

TÓPICOS DE CORRECÇÃO Faculdade de Economia Universidade Nova de Lisboa EXAME E CÁLCULO I Ano Lectivo 007-08 - º Semestre Eame Final de ª Época em de Junho de 008 Duração: horas e 30 minutos É proibido usar máquinas de calcular

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo

Exercícios orientados para a Prova Escrita de Fundamentos de Matemática Aplicada C Prof. Germán Suazo Ministério da Educação Universidade Federal de Pelotas Centro de Educação a Distância Curso de Licenciatura em Matemática a Distância Eercícios orientados para a Prova Escrita de Fundamentos de Matemática

Leia mais

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

Nos pontos (x, y), x 0 ou y 0, f(x, y) não está definida, logo nestes pontos f não é diferenciável. Seja, então, (x, y), com x 0 e y 0.

Nos pontos (x, y), x 0 ou y 0, f(x, y) não está definida, logo nestes pontos f não é diferenciável. Seja, então, (x, y), com x 0 e y 0. CAPÍTULO Eercícios d) (, y) y Nos pontos (, y), ou y, (, y) não está deinida, logo nestes pontos não é dierenciável Seja, então, (, y), com e y Ï Ôa) admite derivadas parciais em (, y) Ô é dierenciável

Leia mais

Plano tangente a uma superficie: G(f).

Plano tangente a uma superficie: G(f). Plano tangente a uma supericie: G. O plano tangente ao gráico de uma unção num ponto é o plano que contem todas as retas tangentes ao gráico de que passam pelo ponto. Se todas as retas tangente a esse

Leia mais

Funções polinomiais, racionais e trigonométricas

Funções polinomiais, racionais e trigonométricas Aula 04 FUNÇÕES (continuação) UFPA, 5 de março de 05 Funções polinomiais, racionais e trigonométricas No inal desta aula, você seja capaz de: Dizer o domínio das unções polinomiais, racionais e trigonométricas;

Leia mais

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior

CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Objetivos da Aula CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 4: Aproximações Lineares e Diferenciais. Regra de L Hôspital. Definir e calcular a aproximação linear

Leia mais

CÁLCULO LIMITE S ENGENHARIA

CÁLCULO LIMITE S ENGENHARIA CÁLCULO LIMITE S ENGENHARIA Confira as aulas em vídeo e eercícios 1 DEFINIÇÃO DE Imagine o seguinte eemplo: uma formiga está tentando chegar no ponto em = 3 andando pela curva definida pela função f()=²,

Leia mais

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS

FUNÇÕES DE DUAS OU MAIS VARIÁVEIS FUNÇÕES DE DUAS OU MAIS VARIÁVEIS Uma unção de duas ou mais variáveis é simbolizada por uma epressão do tipo w z... que siniica que w é uma unção de z... Como ocorre nas unções de uma variável nas unções

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Exercícios Complementares 3.4

Exercícios Complementares 3.4 Eercícios Complementares 3.4 3.4A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

10. Funções de várias Variáveis: Derivadas Parciais

10. Funções de várias Variáveis: Derivadas Parciais 10.1. Derivadas Parciais 10.. Diferencial de Funções 10.. Derivação de Funções Compostas 10.4. Derivação de Integrais em Ordem a um Parâmetro 10.5. Derivação de Funções Implícitas 10.6. Máimos e Mínimos

Leia mais

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2

y (x 0 ) = f (x 0 ) 2a = f (x 0 ) a = f (x 0 ) 2 Cálculo - Capítulo 3. - Aproimação quadrática 1 Capítulo 3. - Aproimação quadrática 3..1 - Aproimação quadrática para funções de uma variável 3.. - Aproimação quadrática para funções de duas variáveis

Leia mais

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D

A Prática. Perfeição. Cálculo. William D. Clark, Ph.D e Sandra Luna McCune, Ph.D A Prática Leva à Perfeição Cálculo William D. Clark, P.D e Sandra Luna McCune, P.D Rio de Janeiro, 01 Para Sirley e Donice. Vocês estão sempre em nossos corações. Sumário Prefácio i I Limites 1 1 O conceito

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática II DERIVADAS PARCIAIS7. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques DERIVADAS PARCIAIS7 Gil da Costa Marques 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação: Funções de mais do que duas Variáveis

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Exercícios de Revisão de Conceitos Fundamentais

Exercícios de Revisão de Conceitos Fundamentais Eercícios de Revisão de Conceitos Fundamentais. Números.. Números inteiros e números raccionários. Operações com números raccionários. Percentagens. ) Escreva as seguintes racções impróprias na orma de

Leia mais

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

TÓPICO. Fundamentos da Matemática II DERIVADAS PARCIAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques 7 DERIVADAS PARCIAIS TÓPICO Gil da Costa Marques Fundamentos da Matemática II 7.1 Introdução 7. Taas de Variação: Funções de uma Variável 7.3 Taas de variação: Funções de duas Variáveis 7.4 Taas de Variação:

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1

1. Calcule a derivada da função dada usando a definição. (c) f(x) = 2x + 1. (a) f(x) = 2. (b) f(x) = 5x. (d) f(x) = 2x 2 + x 1 Lista de Eercícios de Cálculo I para os cursos de Engenharia - Derivadas 1. Calcule a derivada da função dada usando a definição. (a) f() = (b) f() = 5 (c) f() = + 1 (d) f() = + 1. O limite abaio representa

Leia mais

1- O valor do limite. lim. a) 1/3 b) 1 c) 0 d) 1/2 e) 1/8 GABARITO: E. lim. 2- O valor do limite. a) b) d) 2 e) 2 GABARITO: D. sen.

1- O valor do limite. lim. a) 1/3 b) 1 c) 0 d) 1/2 e) 1/8 GABARITO: E. lim. 2- O valor do limite. a) b) d) 2 e) 2 GABARITO: D. sen. UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº - O valor do ite a) / b) c) 0 d) / e) /8 - O valor do ite a) b) c) 0 d) e) 5 5 50 - Calculando sen 0 a) b) c) d) e) 0 - Marque a alternativa

Leia mais

Capítulo Derivadas parciais

Capítulo Derivadas parciais Cálculo 2 - Capítulo 24 - Derivadas parciais 1 Capítulo 24 - Derivadas parciais 241 - Introdução 243 - Significado geométrico das derivadas parciais 242 - Derivadas parciais Veremos agora como aplicar

Leia mais

DERIVADAS DE FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL

DERIVADAS DE FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL Universidade Federal Tecnológica do Paraná Francisco Beltrão Tereza Rachel Mafioleti CÁLCULO DIFERENCIAL INTEGRAL DERIVADAS DE FUNÇÕES DE MAIS DE UMA VARIÁVEL REAL Primeiramente vamos relembrar o conceito

Leia mais

Capítulo Aproximação linear e diferenciais

Capítulo Aproximação linear e diferenciais Cálculo 2 - Capítulo 3.1 - Aproimação linear e diferenciais 1 Capítulo 3.1 - Aproimação linear e diferenciais 3.1.1 - Aproimação linear 3.1.2 - Diferenciais Vamos, neste capítulo, generaliar os conceitos

Leia mais

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *.

FUNÇÃO EXPONENCIAL. e) f(x) = 10 x. 1) Se a > 1 2) Se 0 < a < 1. Observamos que nos dois casos, a imagem da função exponencial é: Im = R + *. FUNÇÃO EXPONENCIAL Definição: Dado um número real a, com a > 0 e a, chamamos função eponencial de base a a função f de R R que associa a cada real o número a. Podemos escrever, também: f: R R a Eemplos

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4.

Aproximações Lineares e Diferenciais. Aproximações Lineares e Diferenciais. 1.Aproximações Lineares 2.Exemplos 3.Diferenciais 4. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Aproximações Lineares

Leia mais

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o

y ds, onde ds é uma quantidade infinitesimal (muito pequena) da curva C. A curva C é chamada o Integral de Linha As integrais de linha podem ser encontradas em inúmeras aplicações nas iências Eatas, como por eemplo, no cálculo do trabalho realizado por uma força variável sobre uma partícula, movendo-a

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:

Leia mais

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)

DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x) Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011-1 a Fase Proposta de resolução GRUPO I 1. A igualdade da opção A é válida para acontecimentos contrários, a igualdade da opção B é válida para acontecimentos

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..

Leia mais

Polinômios e Funções Racionais

Polinômios e Funções Racionais Capítulo 7 Polinômios e Funções Racionais 7. Polinômios Ao iniciarmos nosso estudo sobre funções, consideramos o problema de construir uma caia sem tampa a partir de um pedaço quadrado de plástico maleável

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

PROFESSOR: JARBAS 4 2 5

PROFESSOR: JARBAS 4 2 5 PROFESSOR: JARBAS Função do 2.º grau Chama-se função quadrática ou função polinomial do 2.º grau, qualquer função f de R em R dada por uma lei da forma f() = a 2 + b + c onde a, b e c são números reais

Leia mais

RCB104 Módulo Exatas: Cálculo I

RCB104 Módulo Exatas: Cálculo I Avaliação e Estudo Dirigido RCB104 Módulo Eatas: Cálculo I Avaliação: 6 de julho todo conteúdo Roteiro de aulas: estudo dirigido Profa Dra Silvana Giuliatti Departamento de Genética FMRP silvana@fmrp.usp.br

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso

Universidade Federal Fluminense. Matemática I. Professora Maria Emilia Neves Cardoso Universidade Federal Fluminense Matemática I Professora Maria Emilia Neves Cardoso Notas de Aula / º semestre de Capítulo : Limite de uma função real O conceito de ite é o ponto de partida para definir

Leia mais

Lista de Exercícios Aproximações Lineares e Diferenciais

Lista de Exercícios Aproximações Lineares e Diferenciais Lista de Eercícios Aproimações Lineares e Diferenciais ) Encontre a linearização L( ) da função em a. a) f a ( ) =, = f f f ( ) = () = () = f f f ( ) = () = () () = L( ) = f ( a) + f ( a)( a) L( ) = f

Leia mais

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada.

ANEXO A: Critérios para determinar o comportamento de uma função através do estudo da derivada. ANEXO A: Critérios para determinar o comportamento de uma unção através do estudo da derivada. Vamos relembrar critérios que permitem determinar o comportamento de uma unção nas proimidades de um ponto

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Dierencial e Integral I RESUMO DA AULA TEÓRICA 1 Livro do Stewart: Seções 4.1 a 4.. MÁXIMOS E MÍNIMOS ABSOLUTOS: revisão da aula teórica 6 Deinição: O máximo absoluto de uma unção em um

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia)

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia) 8. Derivada da Função Composta (Regra da Cadeia) Regra da Cadeia (primeira notação): Se e são funções diferenciáveis e = é a função composta definida por )=), então é diferenciável e é dada por )=) = ).

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais