Cálculo Diferencial e Integral I

Tamanho: px
Começar a partir da página:

Download "Cálculo Diferencial e Integral I"

Transcrição

1 Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas cotação

2 I - Representar sob a forma de uma união de intervalos o conjunto { ln( e } ) U = R : 4 7 < e identificar a fronteira de U. U é um conjunto fechado? E itado? Resolução : 4 7 = 4( + 4 )( ) e portanto o denominador é negativo no intervalo ] 4, [ e positivo no eterior desse intervalo. Por outro lado, ln( e ) < < e < < e < ln() < <. Como ln() >.5, concluímos que U =] ln(), [ ], [. 4 A fronteira de U é { ln(), 4,, }. Como U não contém a sua fronteira, U não é fechado; por outro lado, U é itado, uma vez que está contido num intervalo itado. - Calcular, ou mostrar que não eistem, os ites ln(e ) a) ; b) ln() cos(/) sin() Resolução : Como se trata de uma indeterminaã o, podemos usar a regra de Cauchy, ln(e ) cos(/) = e (e ) sin(/) ; Como temos os ites conhecidos e sin() =, =, conclui-se que e (e ) sin(/) = e (e )(sin(/) = 4 que também podia ser obtido por nova aplicação da regra de Cauchy: e sin(/) = e = 4. cos(/) ln() 5/ + 3 = ln() + + sin() + 3 ( + + sin() = ) 3 + = / ln() + / + + sin() 3 =,

3 3 notando que + / ln() =. 3 - Considere-se a função f : R R definida por f() = e e + +. Calcular a derivada de f(), determinar os seus etremos, locais e globais, e a imagem f(r). Resolução : f () = e (e + + ) e (e + ) (e + + ) = e ( 3 + ) (e + + ). O sinal da derivada é determinado apenas pelo binómio no numerador e portanto f () < se < < e f () > no eterior desse intervalo. Assim, é ponto de máimo e é ponto de mínimo. Para determinar se se tratam de etremos globais de f ou apenas locais, verificamos que f() =, f() = + ; portanto é ponto de mínimo local, já que obviamente f() > e f() toma valores arbitrariamente próimos de ; e do mesmo modo é apenas máimo local pois f() = e e+ <. A imagem de f é f(r) =], [. 4 - Determinar o valor da constante a R de modo a que a função a+ se g() = se = esteja definida e seja contínua para todo o R. Justificar se, para o valor de a referido na alínea anterior, g() é diferenciável em R. Sugestão: Não é necessário apresentar a epressão de g (); usar a definição de derivada. Resolução : Para que g() seja contínua em tem que estar definida na vizinhança desse ponto e temos que ter Como a + g() = g() =. ( = a + )( a + + ) ( = a + + )

4 4 a = ( a + + ) = a concluímos que tem que se ter a =. E de facto esse valor garante que g() está bem definida para todo o R, uma vez que + + > para todo o ; obviamente g() é contínua para por ser definida por composições, somas e produtos de funções contínuas. g() é sem dúvida diferenciável em R\{} por ser definida por composições, somas e produtos de funções diferenciáveis, portanto é suficiente verificar se eiste g (): ++ g g() g() () = = = = + + ( = + + )( ) ( ) 4( + + ) ( + ) = ( ) = 3 ( ) = 3 8. Concluímos que g() é diferenciável em R. = 5 - a) Determinar a forma geral das primitivas de h() = ( ). b) Determinar a epressão da função φ :], + [ R que satisfaz Resolução : φ (t) = + t ; φ(t) = ; φ() =. t + = ( ) ( ) H() = e portanto as primitivas de h() são + a ( ) se < ( ) + b se < < ( ) + c se < +t = ln + t e portanto, para >, φ (t) = ln( + t) + a e consequentemente, integrando por partes, φ(t) = ( + t) ln( + t) + at + b. φ() = implica que a+b = ln(); e, como t (+t) ln(+t) =, = φ(t) = a + b, t + e concluímos que a = ln() e b = ln(): simplificando a epressão φ(t) = ( + t)(ln( + t) ln()).

5 5 6 - Seja p() = n k= a k k um polinónio cujos coeficientes satisfazem n a k k + =. k= Justificar que p() tem pelo menos uma raiz no intervalo ], [. Resolução : a k k+ são os coeficientes da primitiva de p(), n a k P () = k + k+. k= Com a condição dada no enunciado, P () = P () = e, pelo Teorema de Lagrange, a sua derivada p() tem que se anular num ponto de ], [.

6 6 Cálculo Diferencial e Integral I Eame - Parte II - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: a) 3 valores b) 3 valores 3 valores 3 3 valores 4 valores 5 a) 3 valores 5 b).5 valores 6.5 valores páginas cotação

7 7 - Calcular os integrais a) π Em b) usar t = e ou t = e. II sin (/) d; b) ln( + e )e d. Resolução : Usando a fórmula cos(t) = cos (t) sin (t) = sin (t) que é equivalente a sin (t) = cos(t), π π [ ] sin cos() sin() π (/) d = d = = π. Este resultado podia também ser deduzido de outras maneiras (integração por partes ou com a mudança de variável = π y, por eemplo). Usando t = e = ln(t), ln( + e )e d = e ln( + t) t dt = usando uma integração por partes, [ ( = ln( + t) )] e e ln( + e) + dt = ln() + t ( + t)t e este último integral resolve-se decompondo a fracção e ( + t)t dt = e pelo que o resultado final é e ( + t)t dt; t + t dt = [ln(t) ln( + t)]e = ln(+e)+ln(), ln( + e )e d = ln() ln( + e) e + ln( + e). A outra mudança de variável evita a primeira integração por partes: t = e = = ln(t) e e ( ln(+e )e d = ln(+t )t ) dt = ln( + t ) dt = ln(+t) ln(t) dt = t e t e por integração por partes em cada parcela = [( + t) ln( + t) t ln(t)] e = ln() e ln( + e ) e - Seja A a região contida no primeiro quadrante do plano, itada pelas curvas y =, y = /, y =. Calcular o volume do sólido obtido pela revolução de A em torno do eio y =.

8 8 Resolução : usando como variável de integração, 3/ [ ] V = π π(/) d+ π( ) π(/) 3 [ 5 d = π +π ( = π (3/)5 (3/) ) 4 (3/)3 /5 + 5/4 cujo valor aproimado é (só como curiosidade).475π Seja G :], + [ R a função definida por G() = e t t+dt. Mostrar, por intermédio de uma mudança de variável, que e calcular a derivada G (). G() = e e s s ds Resolução : Fazendo a mudança de variável s = t +, obtemos e t t + dt = e s s ds = e e s s ds. Usando esta última epressão, e notando que a função integranda é contínua, G () = e e s s ds + e ( e e ) = G() + e. 4 - Nota: Devido a uma gralha que passou despercebida, este problema ficou com um grau de dificuldade superior ao pretendido. Apresentam-se abaio as soluções quer da versão que devia ter saído quer da que ficou no enunciado. Tendo em conta esta situação, o critério de clsssificação da pergunta foi o seguinte: Foi atribuído o máimo entre a cotação da resposta apresentada e valor; e a nota final do Teste II foi multiplicada por.. Determinar a natureza, convergente ou divergente, do integral impróprio + cos(t) t + sin(t) dt. Resolução : A função integranda é positiva e o integral + + t+ t + dt = dt é divergente: + cos(t) t + sin(t) > t + ; t + dt = ln( + ) ln() = +. + Portanto o integral do enunciado é igualmente divergente. ] 3/ =

9 Determinar a natureza, convergente ou divergente, do integral impróprio + cos(t) t + sin(t) dt. Resolução : A razão pela qual o raciocínio anterior não se pode aplicar aqui é que, embora a função integranda seja não negativa e o denominador possa ser majorado por t +, o numerador só pode ser minorado por e portanto não conseguimos de forma directa minorar a função por uma outra com integral impróprio divergente. Vamos estimar, em função de, o valor de cos(t) t+sin(t) dt do seguinte modo: cos(t) t + sin(t) dt = t + sin(t) + cos(t) t + sin(t) dt = dt ln(t + sin(t)) + ln( + sin()) > t + sin(t) > dt ln(+sin())+ln(+sin()) = ln(+) ln() ln(+sin())+ln(+sin()) t + e esta função tem claramente ite infinito: podemos por eemplo observar que ( ) + ln( + ) ln( + sin()) = ln( + ) + ln ; + sin() a segunda parcela tende para quando + enquanto que a primeira diverge para infinito. Concluímos portanto que este integral é igualmente divergente Seja f() = ln( + ) +. a) Determinar um polinómio p(), com grau menor ou igual a 3, que satisfaça a condição f() p() 3 = b) Sabendo que a quarta derivada de f() é dada por f (4) () = 6(3 ) (+) 5, mostrar que, para < <, se tem 4 34 < f() p() < Resolução : O polinómio pretendido é o polinómio de Taylor de terceira ordem, relativo ao ponto, da função f(): p() = f() + f () + f () + f () 3, 6 uma vez que este é o único polinómio, de grau menor ou igual a 3, que satisfaz aquela condição.

10 Podemos calcular os coeficientes de p() calculando as sucessivas derivadas ou de outro modo: f() = ln( + ) + + ; como, para <, + = k ( )k k, temos + = o( 3 ); primitivando termo a termo, temos no mesmo intervalo ln( + ) = k ( ) k k+ k+ e portanto ln( + ) = o(3 ). Assim, f() = o(3 ) o( 3 ) = o(3 ) e p() = 3 3. Sabemos que, como f() tem derivada de quarta ordem, vale a fórmula de Taylor com resto de Lagrange: sendo p() o polinómio de Taylor de terceira ordem f() p() = f (4) (y) 4 4! onde y é um ponto entre e. Portanto, temos neste caso para qualquer > 6(3 y) f() p() = 4!( + y) 5 4 onde < y <. Mas como se verifica facilmente, intervalo [, ]: derivando, 6(3 y) 4!(+y) 5 ( + y 5 (3 y)5( + y) 4 4( + y) = 3y 8 ( + y) 6. é decrescente no Portanto, como para qualquer [, ] o y respectivo na fórmula estará entre e, substituindo y por e por, obtemos respectivamente o majorante e o minorante indicados. 6 - Determinar a série de Taylor, relativa ao ponto =, da função F () = ln( + t) t e identificar o seu intervalo de convergência. Resolução série de Taylor : A função F () é diferenciável e F () = ln(+) ( ) k k k k dt que tem que converge no intervalo < (ver o cálculo no eercício anterior). A série de Taylor de F () obtém-se desta integrando termo a termo: k ( ) k k k.

11 O raio de convergência é ; resta ver que nos etremos do intervalo, ou seja para = ±, a série também converge: para = ficamos com ( ) k k e para = com k k ; para ambos os casos a série k dos módulos é convergente, por eemplo pelo critério integral.

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x).

Exercício 1. Exercício 2. Exercício 3. Considere a função f que para valores de x é de nida pela relação f(x) = x(sin /x). E Eercício 1 Considere a função f que para valores de é denida pela relação f() = (sin /). 1.1 Mostre que a função f é contínua em R\{}. 1.2 Sabendo que f é contínua no ponto = determine o valor de f().

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Resolução do Eame / Testes de Recuperação I.. (, val.)determine os ites das seguintes sucessões convergentes (i) u n n + n n e n + n, (ii) v n n + π n Resolução: i) A sucessão

Leia mais

T. Rolle, Lagrange e Cauchy

T. Rolle, Lagrange e Cauchy T. Rolle, Lagrange e Cauchy EXERCÍCIOS RESOLVIDOS. Mostre que a equação 5 + 5 = 5 tem uma única solução em R. Seja f = 5 +5 5. Então f é contínua e diferenciável em R. Temos f = 5 4 + > 0, em R, logo f

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

Curso de Verão Exemplos para o curso de

Curso de Verão Exemplos para o curso de Curso de Verão 006 Programa de Pós-Graduação em Matemática Aplicada DCCE - Departamento de Ciência da Computação e Estatística Universidade Estadual Paulista - UNESP Instituto de Biociências, Letras e

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m

Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores 1 ō Exame - 12 de Janeiro de h00m Cálculo Diferencial e Integral I Mestrado Integrado em Engenharia Electrotécnica e de Computadores ō Eame - 2 de Janeiro de 2008-3h00m Solução Problema (0,5 val.) Seja f() = log(3 2 ) + 3. (a) Determine

Leia mais

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM

ANÁLISE MATEMÁTICA IV FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV E FICHA 3 TEOREMA DOS RESÍDUOS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM ( Seja f a função definida

Leia mais

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando

CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando 5 a Ficha de eercícios de Cálculo para Informática CÁLCULO DIFERENCIAL 5-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite quando h tende

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

Acadêmico(a) Turma: Capítulo 7: Limites

Acadêmico(a) Turma: Capítulo 7: Limites Acadêmico(a) Turma: Capítulo 7: Limites 7.1. Noção Intuitiva de ite Considere a função f(), em que f() = 2 + 1. Para valores de que se aproima de 1, por valores maiores que 1 (Direita) e por valores menores

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2

Exercício- teste 1. Matemática II 2 o Semestre de 2009/2010. a) Provar que n (2i 1) = n 2 o Semestre de 009/00 Eercício- teste a) Provar que n (i ) = n i= Usamos indução em n para provar que a fórmula acima é correcta n= n = Claramente temos que (i ) = () = = Hipótese Indutiva j N, onde j n,

Leia mais

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática  Mestrado em Ensino de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Resolução do exame Cálculo Diferencial e Integral I Versão B Data: 8/ / 8 Grupo I - (a) x 3 + x x = x(x + x ) = x(x + )(x ) Cálculo auxiliar: x + x = x = ± + 8 = ou x + + x + + + + + x + + + + x(x+)(x

Leia mais

UFRJ - Instituto de Matemática

UFRJ - Instituto de Matemática UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras

Leia mais

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de.

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES DE POTÊNCIAS Definição: Séries de Potências é uma série infinita de termos variáveis. Elas podem ser usadas em várias aplicações, como por exemplo,

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

AULA 16 Esboço de curvas (gráfico da função

AULA 16 Esboço de curvas (gráfico da função Belém, 1º de junho de 015 Caro aluno, Seguindo os passos dados você ará o esboço detalhado do gráico de uma unção. Para achar o zero da unção, precisamos de teorias que você estudará na disciplina Cálculo

Leia mais

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es

1 Capítulo 4 Comp m l p e l me m ntos de d Funçõ ç es Capítulo 4 Complementos de Funções SUMÁRIO Estrutura e cardinalidade em R Topologia Limites e continuidade de unções num ponto pela deinição (vizinhanças Teorema de Bolzano e Teorema de Weierstrass Teorema

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEAmb, LEMat, LQ, MEB, MEEC, MEQ o teste / o eame - 7 de Janeiro de 8 duração: o teste: :3 / o eame: 3: Apresente todos os cálculos e justificações relevantes Para resolver

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Ano Lectivo 8-9 - º Semestre Eame Final de ª Época em 5 de Junho

Leia mais

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb)

Cálculo Diferencial e Integral I 2 o Exame - (MEMec; MEEC; MEAmb) Cálculo Diferencial e Integral I o Exame - MEMec; MEEC; MEAmb) 7 de Julho de - 9 horas I val.). i) Sendo u n n do teorema das sucessões enquadradas, dado que n, tem-se u n. Como a sucessão u n é convergente,

Leia mais

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017

Análise Complexa e Equações Diferenciais 1 ō Semestre 2016/2017 Análise Complexa e Equações Diferenciais 1 ō Semestre 016/017 ō Teste Versão A (Cursos: MEBiol, MEQ 17 de Dezembro de 016, 10h [,0 val 1 Considere a equação diferencial e t + y e t + ( 1 + ye t dy dt 0

Leia mais

Exercícios Complementares 3.4

Exercícios Complementares 3.4 Eercícios Complementares 3.4 3.4A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

1 Distância entre dois pontos do plano

1 Distância entre dois pontos do plano Noções Topológicas do Plano Americo Cunha André Zaccur Débora Mondaini Ricardo Sá Earp Departamento de Matemática Pontifícia Universidade Católica do Rio de Janeiro 1 Distância entre dois pontos do plano

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries de Potências Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries de Potências Definição A série do tipo a n (x c) n é denominado de série de potências. Dado uma série de potências,

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

3 Funções reais de variável real (Soluções)

3 Funções reais de variável real (Soluções) 3 Funções reais de variável real (Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5

Capítulo III. Limite de Funções. 3.1 Noção de Limite. Dada uma função f, o que é que significa lim f ( x) = 5 Capítulo III Limite de Funções. Noção de Limite Dada uma unção, o que é que signiica ( 5? A ideia intuitiva do que queremos dizer com isto é: quando toma valores cada vez mais próimos de, a respectiva

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Notas sobre primitivas

Notas sobre primitivas Análise Matemática I - Engenharia Topográ ca - 9/- Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Notas sobre primitivas

Notas sobre primitivas MTDI I - 007/08 - Notas sobre primitivas Notas sobre primitivas Seja f uma função real de variável real de nida num intervalo real I: Chama-se primitiva de f no intervalo I a uma função F cuja derivada

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

Instituto de Matemática - UFRJ Cálculo 1 Segunda Prova 16 de Novembro de 2017

Instituto de Matemática - UFRJ Cálculo 1 Segunda Prova 16 de Novembro de 2017 Instituto de Matemática - UFRJ Segunda Prova 6 de Novembro de 7. ( pontos) Jurema tem uma folha de cartolina retangular com dimensões cm 4 cm. Ela gostaria de fazer uma caixa sem tampa cortando quadrados

Leia mais

Primitivação de funções reais de variável real

Primitivação de funções reais de variável real Capítulo 3 Sugere-se a seguinte bibliografia adicional que completa o estudo a efectuar nas aulas teóricas e nas aulas práticas: Maria Aldina C. Silva e M. dos Anjos F. Saraiva. Primitivação. Edições Asa,

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Matemática I. 1 Propriedades dos números reais

Matemática I. 1 Propriedades dos números reais Matemática I 1 Propriedades dos números reais O conjunto R dos números reais satisfaz algumas propriedades fundamentais: dados quaisquer x, y R, estão definidos a soma x + y e produto xy e tem-se 1 x +

Leia mais

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Eercícios - 014 1. Seja f (, y) = + y + 4 e seja γ(t) = (t cos t, t sen t, t + 4), t 0. (a) Mostre que a imagem de γ está contida no

Leia mais

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M, Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f

Leia mais

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h,

Análise Complexa e Equações Diferenciais 1 o Semestre de 2011/ o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2011, 10h, Instituto Superior Técnico Departamento de Matemática (Cursos: Análise Complexa e Equações Diferenciais o Semestre de 2/22 o Teste - Versão A LEAN, LEIC-A, MEAer, MEEC, MEMec) 5 de Novembro de 2, h, Duração:

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE

FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I. Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE FFCLRP-USP LIMITES FUNDAMENTAIS - CÁL. DIF. E INT. I Professor Dr. Jair Silvério dos Santos TEOREMA DO SANDUICHE Teorema 0.. Dadas f,g, : A R funções e 0 ponto de acumulação de A. (i) Supona eiste ǫ >

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

Cálculo III-A Lista 8

Cálculo III-A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo III-A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

Cálculo Diferencial e Integral II 1 o Teste (Versão A)

Cálculo Diferencial e Integral II 1 o Teste (Versão A) Cálculo Diferencial e Integral II 1 o Teste (ersão A) LEIC-TP, LETI, LEE, LEGI 11 de Abril de 015 Justifique adequadamente todas as respostas. (5,0) 1. Seja = {(, y, z) [ 1, 1] [0, 1] R 3 : 0 z, 0 y 1}

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite

Cálculo I (2015/1) IM UFRJ Lista 2: Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Limite Eercícios de Limite. Eercícios de Fiação Cálculo I (05/) IM UFRJ Lista : Limites e Continuidade Prof. Milton Lopes e Prof. Marco Cabral Versão 30.03.05 Fi.: Considere o gráco de = f() esboçada no gráco

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 )

RESOLUÇÃO DO PRIMEIRO TESTE 31 DE OUTUBRO DE 2015 MEMEC,LEAN. f(x + iy) = x + x 3 + i(1 + y + y 2 ) ANÁLISE COMPLEXA E EQUAÇÕES DIFEENCIAIS ESOLUÇÃO DO PIMEIO TESTE 3 DE OUTUBO DE 205 MEMEC,LEAN Considere a função f : C C definida pela expressão fx + iy = x + x 3 + i + y + y 2 a Determine o domínio de

Leia mais

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL

LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL LIMITES DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 06 Universidade Federal do Rio

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t).

c + 1+t 2 (1 + t 2 ) 5/2 dt e 5 2 ln(1+t2 )dt (1 + t 2 ) 5/2 dt (c 5/2 + (1 + t 2 ) 5/2 (1 + t 2 ) 5/2 dt ϕ(t) = (1 + t 2 ) 5/2 (1 + t). Análise Complexa e Equações Diferenciais 2 o Semestre 206/207 3 de junho de 207, às 9:00 Teste 2 versão A MEFT, MEC, MEBiom, LEGM, LMAC, MEAer, MEMec, LEAN, LEMat [,0 val Resolva os seguintes problemas

Leia mais

Cálculo Diferencial e Integral II 2012/13 1 o semestre

Cálculo Diferencial e Integral II 2012/13 1 o semestre Cálculo Diferencial e Integral II 212/13 1 o semestre Modelo do 1 o Teste LEIC-TP, LEGI, LERC, LEE 6 de Novembro de 212 Justifique adequadamente todas as respostas. 1. Calcule V y dx dy dz em que V = {(x,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..

Leia mais

Apresente todos os cálculos e justificações relevantes

Apresente todos os cálculos e justificações relevantes Análise Matemática I 2 o Teste e o Exame Campus da Alameda 9 de Janeiro de 2006, 3 horas Licenciaturas em Engenharia do Ambiente, Engenharia Biológica, Engenharia Civil, Engenharia e Arquitectura Naval,

Leia mais

Licenciatura em Engenharia Electrotécnica e de Computadores. 1 a chamada Ou seja,

Licenciatura em Engenharia Electrotécnica e de Computadores. 1 a chamada Ou seja, Licenciatura em Engenharia Electrotécnica e de Computadores Análise Numérica 1 a chamada 00-01-08 Resolução da Parte Prática 1 (a) O valor aproximado de w é obtido a partir dos valores aproximados de x,

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos.

CÁLCULO I. 1 Assíntotas Oblíquas. Objetivos da Aula. Aula n o 19: Grácos. CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 9: Grácos. Objetivos da Aula Denir e determinar as assíntotas oblíquas ao gráco de uma função, Utilizar o Cálculo Diferencial

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3.

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II. Ficha de trabalho nº 3. Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema I Geometria no Plano e no Espaço II Ficha de trabalho nº 3 1. Resolver, da página 80 do seu manual, 1.1. as alíneas a), c) e e) dos

Leia mais

3 Limites e Continuidade(Soluções)

3 Limites e Continuidade(Soluções) 3 Limites e Continuidade(Soluções). a) Como e é crescente, com contradomínio ]0, + [, o contradomínio de f é ]e, + [. Para > 0 e y ] e, + [, temos Logo, a inversa de f é f () = y e = y = log y = log y

Leia mais

TÓPICOS DE CORRECÇÃO

TÓPICOS DE CORRECÇÃO Faculdade de Economia Universidade Nova de Lisboa EXAME E CÁLCULO I Ano Lectivo 007-08 - º Semestre Eame Final de ª Época em de Junho de 008 Duração: horas e 30 minutos É proibido usar máquinas de calcular

Leia mais

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8

Universidade Federal Fluminense Instituto de Matemática e Estatística Departamento de Matemática Aplicada. Cálculo 3A Lista 8 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada álculo 3A Lista 8 Eercício : Um objeto percorre uma elipse 4 +5 no sentido anti-horário e se encontra

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. Aula nº 5 do plano de trabalho nº 5 Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II Aula nº 5 do plano de trabalho nº 5 Resolver os eercícios 03, 0, 05, 0 e 6 das páginas 95 e 0.

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.3 O Teste da Integral e Estimativas de Somas Copyright Cengage Learning. Todos os direitos reservados. O Teste

Leia mais

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital.

CÁLCULO I. Apresentar e aplicar a Regra de L'Hospital. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o : Limites Innitos e no Innito. Assíntotas. Regra de L'Hospital Objetivos da Aula Denir ite no innito e ites innitos; Apresentar alguns tipos

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

ANÁLISE MATEMÁTICA IV

ANÁLISE MATEMÁTICA IV Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA IV FICHA 1 NÚMEROS E FUNÇÕES COMPLEXAS (1) Calcule i, i e i e represente estes números geometricamente.

Leia mais

Análise Matemática II TESTE/EXAME

Análise Matemática II TESTE/EXAME Instituto Superior Técnico Departamento de Matemática o Semestre 4-5 a Data Análise Matemática II TESTE/EXAME CURSOS: LEAMB, LEEC, LCI, LQ, LEQ, LEBL Obtenha uma primitiva de cada uma das funções definidas

Leia mais

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital

Regra de l Hôpital. 1.Formas e limites indeterminados 2.Regra de l Hôpital UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Regra de l Hôpital

Leia mais

Derivadas e suas Aplicações

Derivadas e suas Aplicações Capítulo 4 Derivadas e suas Aplicações Ao final deste capítulo você deverá: Compreender taa média de variação; Enunciar a definição de derivada de uma função interpretar seu significado geométrico; Calcular

Leia mais

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x +

= 6 lim. = lim. 2x + 2 sin(x) cos(x) 4 sin(4x) 2 x cos(x) = lim. x + ln(x) cos ) ] 3x. 3 ln. = lim x 1 x + UFRGS - PAG Cálculo - MAT05-0/ Lista 5-04/05/0 - Soluções.a ln + 0 + ln = + + 0 =.b sin8 0 sin4 = 0 8 cos8 4 cos4 =.c.d + sin 0 cos4 = 0 + sin cos 4 sin4 = 0 + cos sin 6 cos4 = 4 0 + sin e cos = 0 + e

Leia mais

Derivadas. Capítulo O problema da reta tangente

Derivadas. Capítulo O problema da reta tangente Capítulo 5 Derivadas Este capítulo é sobre derivada, um conceito fundamental do cálculo que é muito útil em problemas aplicados. Este conceito relaciona-se com o problema de determinar a reta tangente

Leia mais