UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática

Tamanho: px
Começar a partir da página:

Download "UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática"

Transcrição

1 UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática Seleção 0 Etapa Questão. Considere f : [, ] R a função cujo gráfico é apresentado ao lado. Para cada um dos itens a seguir, indique um domínio D R adequado em que uma função com a lei de formação dada possa ser definida e esboce o gráfico desta função. (a) f () = (f()) (b) f () = f( ) (c) f () = f() (d) f () = f( ) Questão. Encontre uma transformação de coordenadas de modo que as assíntotas da curva = 0 coincidam com os novos eios coordenados. Questão. Considere um cubo ABCDEF GH, de aresta a. Considere o triângulo ABG, cujos lados são: AB, aresta do cubo; BG, diagonal da face do cubo; AG, diagonal do cubo. (a) Determine os cossenos dos três ângulos internos de ABG. (b) Determine a área de ABG, em função de a. Questão. Considere h : R R a função definida por: h() = Faça um esboço do gráfico de h e determine (caso eistam): (a) todas as soluções reais da equação h() = 0; { 5 se se > (b) todos os pontos fios de h (isto é, os pontos R tais que h() = ); (c) os pontos R em que h é descontínua; (d) os pontos R em que h não é derivável; (e) os pontos R em que h () = 0; (f) os máimos e mínimos locais de h ; (g) as equações das retas tangentes ao gráfico de h nos pontos =, = 5 e =.

2 Questão 5. Considere a função g : R \ {} R definida por g() = ln. Faça um esboço do gráfico de g e determine (caso eistam): (a) os limites lim g() e lim g() ; + (b) os limites lim g() e lim g() ; + (c) as assíntotas horizontais e verticais de g ; (d) os máimos e mínimos locais e absolutos de g ; (e) os intervalos em que g é crescente e os intervalos em que g é decrescente; (f) os pontos de infleão de g ; (g) os intervalos em que a concavidade de g é voltada para cima e os intervalos em que a concavidade de g é voltada para baio. Questão 6. Considere a região plana limitada R, determinada no primeiro quadrante entre a curva = e e sua reta tangente em =. (a) Faça um esboço da região R. (b) Determine a área de R. (c) Determine o volume do sólido determinado pela rotação de R em torno da reta = e. Questão 7. O Teorema de Weierstrass afirma que: Seja f : I R R uma função contínua, em que I é um intervalo fechado e limitado. Então, eiste 0 I tal que f( 0 ) f() I. Responda as questões a seguir, justificando rigorosamente suas respostas. (a) O Teorema de Weierstrass continua valendo sem a hipótese de que f é contínua? (b) O Teorema de Weierstrass continua valendo sem a hipótese de que o domínio I é fechado? (c) O Teorema de Weierstrass continua valendo sem a hipótese de que o domínio I é limitado? (d) Podemos afirmar que o ponto 0 no enunciado do Teorema de Weierstrass é único? Questão 8. Use o Teorema de Weierstrass para demonstrar o seguinte resultado: Seja f : R R uma função contínua tal que f() > 0 R e lim f() = 0. Então 0 R tal que f( 0 ) f(), R. lim f() = +

3 UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática Mestrado em Ensino de Matemática Seleção 0 Etapa Gabarito Questão. (a) Faz sentido definir f nos mesmos elementos em que f está definida. Assim, podemos definir f : [, ] R. O gráfico de f tem o aspecto mostrado abaio. (b) Como f é definida como f () = f( ), para que seja possível calcular f em um elemento, é preciso que pertença ao domínio de f, isto é que [, ]. Isto ocorre se e só se [, ]. Assim, podemos definir f : [, ] R. O gráfico de f tem o aspecto mostrado abaio. (c) Faz sentido definir f nos mesmos elementos em que f está definida. Assim, podemos definir f : [, ] R. O gráfico de f tem o aspecto mostrado abaio. (d) Como f é definida como f () = f( ), para que seja possível calcular f em um elemento, é preciso que pertença ao domínio de f, isto é que [, ]. Isto ocorre se e só se [, ]. Assim, podemos definir f : [, ] R. O gráfico de f tem o aspecto mostrado abaio (b) f (c) f (d) f (a) f

4 Questão. A curva por ser reescrita da seguinte forma: = 0 ( ) = 0 ( ) ( ) = 0 ( ) ( ) = Assim, consideremos a seguinte mudança de coordenadas: { = = No sistema de coordenadas, a curva adquire a forma: =. hipérbole cujas assíntotas coincidem com os eios. Portanto, a curva é uma Questão. (a) Como a aresta AB é perpendicular à face BCGF, em particular esta aresta é perpendicular à diagonal BG. Como AB e BG são lados do triângulo ABG, concluímos que este triângulo é retângulo em B. Portanto: cos ˆB = 0 Como os lados BG e AG correspondem, respectivamente, à diagonal da face do cubo e à diagonal do cubo, temos que: BG = a e AG = a. Logo: cos  = AB AG = a a = cos Ĝ = BG AG = a a = 6 (b) Como ABG é retângulo em B, temos que sua área é dada por: S = AB BG = a a = a Questão. A função é definida como h() = 5 em A = { R } = [0, ] e como h() = em B = { R > } = ], 0[ ], + [. Logo, seu gráfico tem o aspecto: (a) Fazendo 5 = 0, obtemos = 5 como solução. Como A, este ponto é solução de h() = 0. Fazendo = 0, obtemos = e = como soluções. Como B, mas B, concluímos que, destes, apenas é solução de h() = 0. Logo, as soluções de h() = 0 são = e = 5, o que também pode ser constatado pela análise do gráfico ao lado. (b) Fazendo 5 =, encontramos = e = 5, ambos pertencentes a A. Analisemos os possíveis pontos fios de h em B. Como o trecho do gráfico correspondente a ], 0[ está contido no o quadrante, não pode haver pontos fios de h neste intervalo. Além disso, verificamos que h() = > e que h() é estritamente crescente para >. Portanto, não pode haver pontos fios de h em ], + [. Logo, os únicos pontos fios de h são e 5.

5 (c) Nos interiores dos conjuntos A e B, a função é certamente contínua, pois cada uma das epressão algébricas são obtidas por meio de composição de funções contínuas. Portanto, os únicos candidatos a descontinuidades são os pontos de fronteira deste conjuntos, = 0 e =. Verificamos que: lim h() = 0 lim h() = lim h() = lim h() = + Logo, a única descontinuidade de h ocorre em = 0. (d) São candidatos a pontos em que a função não é derivável os pontos de fronteira do intervalo, = 0 e =, e os pontos em que as epressões modulares se anulam, = e = 5. A função é certamente diferenciável nos demais pontos R. Como a função é descontínua em = 0, certamente não é derivável neste ponto. Para verificar a diferenciabilidade nos outros três pontos, como h está definida na vizinhança de cada um deles, podemos calcular os limites laterais de h : lim h () = lim = lim h () = lim = lim lim h () = lim 5 5 ( ) = lim lim h () = lim = + + h () = lim + +( ) = 5 h () = lim = Logo, h é derivável em = e não é derivável em = nem em = 5. Os pontos em que h não é derivável são e 5. (e) De acordo com o argumento do item anterior, h está definida no domínio D = R \ {, 5 }. Neste domínio, h é dada por: h () = se < se < < 0 se 0 < < 5 se 5 < se > Eaminando as epressões algébricas acima juntamente com os respectivos intervalos de definição, concluímos que não eistem pontos D em que h () = 0. (f) Analisando a epressão algébrica e o gráfico de h, vemos que a função: admite (, 0) e ( 5, 0) como mínimos absolutos; não admite outros mínimos locais; não admite máimos absolutos; admite (0, 5) como máimo local. (g) A função não é derivável em = 5, logo não eiste reta tangente neste ponto. Para determinar a reta tangente em =, observamos que, como a definição de h no intervalo 0 < < 5 coincide com a reta = + 5, então está é também a reta tangente ao gráfico de h em =. Como h() = e h () =, a reta tangente em = é dada por = ( ), ou seja, = 5.

6 Questão 5. Temos que: g() = ln = { ln( ) se > ln( ) se < Para analisar o sinal de g, consideremos separadamente os casos > e < : Para >, temos: Para <, temos: Então A derivada primeira de g é dada por: g() > 0 > > g() = 0 = = g() < 0 0 < < < < g() > 0 > < 0 g() = 0 = = 0 g() < 0 0 < < 0 < < g() > 0 < 0 ou > g() = 0 = 0 ou = g() < 0 0 < <, Isto é: g () = se > se < Então: g () = R \ {} A derivada segunda de g é dada por: Então: g () > 0 > g () = 0 = 0 g () < 0 <, 0 g () = 6 ( ) ( ) = + ( ) g () > 0 < < 0 g () = 0 = ou = 0 g () < 0 <, 0 < < ou >

7 (a) Como = 0 para =, temos que: lim g() = lim g() = + (b) Quando ±, temos que ±. Logo: lim g() = lim g() = + + (c) Dos itens (a) e (b), concluímos que g não admite assíntotas horizontais e possui uma assíntota vertical em =. (d) Da análise do sinal da derivada primeira, concluímos que g não admite máimos ou mínimos locais ou absolutos. (e) Da análise do sinal da derivada primeira, concluímos que: g é crescente para > ; g é decrescente para <. (f) Da análise do sinal da derivada segunda, concluímos que g possui pontos de infleão em (0, 0) e (, ln ). (g) Da análise do sinal da derivada segunda, concluímos que: g possui concavidade voltada para cima para < < 0; g possui concavidade voltada para baio para <, para 0 < < e para >. Da análise acima, concluímos que o gráfico de g tem o seguinte aspecto:

8 Questão 6. (a) Temos que () = () = e. Portanto, a reta tangente à curva em = é dada por e = e ( ), ou seja: = e Logo, a região R tem o seguinte aspecto: e (b) Observando o esboço acima, vemos que a área da região pode ser calculada como a área sob o gráfico de = e, para 0, menos a área do triângulo de vértices (0, 0), (, 0) e (, e). S = 0 e d e = e e = e (c) O volume pedido pode ser calculado da seguinte forma: V = 0 S() d em que S() é a área da seção gerada pela rotação do segmento determinado entre a curva = e e a reta = e, para 0. Observando o esboço acima, vemos que esta seção é um anel circular com raios interior r () e eterior r () dados por: Logo: r () = e e r () = e e S()=π r() π r() =π [(e e ) (e e ) ] =π [(e e e + e ) (e e e + e )] =π [ e + e + e e ] [ V ()=π e + e + e e ] d 0 ] =π [ e + e + e e 0 =π [ e e e + ] + e ( e 5 =π 6 e e + )

9 Questão 7. (a) Não. Basta considerar como contra-eemplo a função f : [0, ] R definida por: { se f() = 0 se = Então, f está definida em um domínio limitado e fechado, mas não admite um máimo. (b) Não. Basta considerar como contra-eemplo a função f : ]0, [ R definida por f() =. Então, f é contínua, está definida em um domínio limitado, mas não admite um máimo. (c) Não. Basta considerar como contra-eemplo a função f : [0, + [ R definida por f() =. Então, f é contínua, está definida em um domínio fechado, mas não admite um máimo. (d) Não. Basta considerar como contra-eemplo a função f : [0, π] R definida por f() = sen. Então, f satisfaz as hipóteses do Teorema Weierstrass, mas o máimo não é único. Questão 8. Fiemos um elemento R qualquer. Pela definição de limite no infinito, aplicada ao número f( ) > 0, temos que: como lim f() = 0, então eiste a R tal que f() f( ) a; como lim f() = 0, então eiste b R tal que f() f( ) b. Podemos supor, + sem perda de generalidade, a < b. Por outro lado, pelo Teorema de Weierstrass, eiste [a, b ] tal que f() f( ) [a, b ]. Assim, basta escolhermos 0 tal que f( 0 ) = ma{f( ), f( )} (isto é, 0 será o elemento dentre ou que tiver a maior imagem). Então, dado R, temos que: se a ou b, então f() f( ) f( 0 ); se a b, então f() f( ) f( 0 ).

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2

c) R 2 e f é decrescente no intervalo 1,. , e f é crescente no intervalo 2, 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº As questões de números a 9 referem-se à função f ( ). - O domínio da função f é o conjunto: a) R b) R c) R R, 0 e) R 0 - A derivada

Leia mais

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2

x 3 x3 dx = 1 + x2 u = 1 + x 2 5u 1 (u + 1)(u 1) du = A x ln xdx = x2 2 (ln x)2 x2 x2 Questão -A. (, pontos) Calcule a) arctg d = arctg() 1 d = 1 + arctg() 1 u 1 6 u du = u = arctg() du = 1 dv = d v = 1+ d u = 1 + du = d = arctg() 1 1 + [u ln u ] + k = arctg() + ln(1 + ) + k. 6 6 6 b) 5e

Leia mais

Primeiro Teste de Cálculo Infinitesimal I

Primeiro Teste de Cálculo Infinitesimal I Primeiro Teste de Cálculo Infinitesimal I 27 de Março de 26 Questão [8 pontos] Determine, quando eistir, cada um dos limites abaio. Caso não eista, eplique por quê. 5 2 + 3 c ) lim 2 ( 2) 2 2 e ) lim 5

Leia mais

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R.

( a) ( ) ( ) ( ) 1. A função m : x x x 2 tem por representação gráfica. A C 1 B D Seja f uma função definida em R. Para cada uma das seguintes questões, seleccione a resposta correcta entre as quatro alternativas que são indicadas, justificando a sua escolha.. A função m : tem por representação gráfica. A C B D. Seja

Leia mais

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1.

QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL 2 2., calcule a derivada dw dt t = 1. QUESTÕES ANPEC CÁLCULO A UMA VARIÁVEL QUESTÃO Se ( ) a, e a, eamine as seguintes afirmações: () A função é crescente () A função d/d é crescente () lim ( ) () lim ( ) ( ) ( y) y Se, y, então (4) QUESTÃO

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções.

CÁLCULO I - MAT Estude a função dada com relação à concavidade e pontos de inflexão. Faça o esboço do gráfico de cada uma das funções. UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e da Natureza Centro Interdisciplinar de Ciências da Natureza CÁLCULO I - MAT0009 9 a Lista de eercícios.

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número

Leia mais

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0.

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0. Preparar o Eame 0 06 Matemática A Página 55. Sabemos que radianos equivalem a 80º, pelo que a um ângulo de radianos vai corresponder 80,6 graus. Este ângulo só pode estar representado na opção D. Na opção

Leia mais

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0

6. Considere. igual a : (A) f (x) + 2x f(x) = 0 (B) f (x) x f(x) = 0 (C) f (x) + f(x) = 0 (D) f (x) f(x) = 0 (E) f (x) 2x f(x) = 0 QUESTÃO ÚNICA 0,000 pontos distribuídos em 50 itens Marque no cartão de respostas a única alternativa que responde de maneira correta ao pedido de cada item.. O valor da área, em unidades de área, limitada

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) 5x Considere a função f(x)=. Determine, se existirem: x +7 (i) os pontos de descontinuidade de f; (ii) as assíntotas horizontais e verticais

Leia mais

7 Derivadas e Diferenciabilidade.

7 Derivadas e Diferenciabilidade. Eercícios de Cálculo p. Informática, 006-07 1 7 Derivadas e Diferenciabilidade. E 7-1 Para cada uma das funções apresentadas determine a sua derivada formando o quociente f( + h) f() h e tomando o ite

Leia mais

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2 Eame Nacional de 0 (. a fase) Prova Escrita de Matemática A. O Ano de Escolaridade Prova /Versões e GRUPO I. Versão : (B); Versão : (A) Se apenas são distinguíveis pela cor, os discos brancos entre si

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

(Teste intermédio e exames Nacionais 2012)

(Teste intermédio e exames Nacionais 2012) Mais eercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm (Teste intermédio e eames Nacionais 01) 79. Relativamente à Figura Resolva os itens seguintes, recorrendo a métodos, sabe-se que: eclusivamente

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A - 009. A LISTA DE EXERCÍCIOS a Questão:. Para cada uma das funções seguintes, determine as derivadas indicadas: a) f(u) = u, u() =,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química

Instituto de Matemática - IM/UFRJ Gabarito da Primeira Prova Unificada de Cálculo I Politécnica e Engenharia Química Página de 5 Questão : (3.5 pontos) Calcule: + Instituto de Matemática - IM/UFRJ Politécnica e Engenharia Química 3 2 + (a) 3 + 2 + + ; + (b) ; + (c) 0 +(sen )sen ; (d) f (), onde f() = e sen(3 + +). (a)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr João Couto, nº 7-A 1500- Lisboa Tel: +51 1 71 90 / 1 711 0 77 Fa: +51 1 71 4 4 http://wwwapmpt email: geral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

) a sucessão de termo geral

) a sucessão de termo geral 43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8

Cálculo Diferencial e Integral I 1 o Sem. 2015/16 - LEAN, LEMat, MEQ FICHA 8 Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 05/6 - LEAN, LEMat, MEQ FICHA 8 Regra de Cauchy. Estudo de funções. a. a) b 0 é uma indeterminação do tipo

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL

CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL CONTINUIDADE DE FUNÇÕES REAIS DE UMA VARIÁVEL a Edição Rio Grande Editora da FURG 206 Universidade Federal

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em A LISTA DE EXERCÍCIOS INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A Atualizada em 007. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a+ a, >, e a) f (

Leia mais

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique.

x lim, sendo: 03. Considere as funções do exercício 01. Verifique se f é contínua em x = a. Justifique. INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA CÁLCULO A 008. A LISTA DE EXERCÍCIOS 0. Esboce o gráfico de f, determine f ( ), f ( ) e, caso eista, f ( ) : a a a, >, e a) f ( ) =, = (a = )

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

Lista de Exercícios 3 1

Lista de Exercícios 3 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM122 - CÁLCULO DIFERENCIAL E INTEGRAL I 1 Encontre os pontos críticos das funções a seguir: Lista de Eercícios 1 a f = + 7 2 5 b g = 7/ +

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS

Curso de Férias de IFVV (Etapa 3) INTEGRAIS DUPLAS Curso de Férias de IFVV (Etapa ) INTEGAIS UPLAS VOLUMES E INTEGAIS UPLAS Objetivando resolver o problema de determinar áreas, chegamos à definição de integral definida. A idéia é aplicar procedimento semelhante

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ

Cálculo Diferencial e Integral I 1 o Sem. 2016/17 - LEAN, MEMat, MEQ Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I o Sem. 06/7 - LEAN, MEMat, MEQ FICHA 8 - SOLUÇÕES Regra de Cauchy. Estudo de funções.. a) 0; b) ln ; c) ln ; d) +

Leia mais

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x).

de h(x) = f(x) no sistema de coordenadas dado abaixo. Indique as intersecções com os eixos x e y, bem como assíntotas. b) Idem para g(x) = f(2x). UFRGS Instituto de Matemática DMPA - Depto. de Matemática Pura e Aplicada MAT 01 353 Cálculo e Geometria Analítica I A Gabarito da 1 a PROVA fila A de setembro de 005 Questão 1 (1,5 pontos). Seja f uma

Leia mais

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática.

Estudo de funções. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática. Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Estudo de funções Continuidade Consideremos as funções: f : R R g : R R x x + x x +, x 1

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO Preparar o Eame 06 Matemática A EXAME NACIONAL DE MATEMÁTICA A 05.ª FASE VERSÃO / PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Estudar mudança no valor de funções na vizinhança de pontos.

Estudar mudança no valor de funções na vizinhança de pontos. Universidade Federal de Alagoas Faculdade de Arquitetura e Urbanismo Curso de Arquitetura e Urbanismo Disciplina: Fundamentos para a Análise Estrutural Código: AURB006 Turma: A Período Letivo: 007- Professor:

Leia mais

MAT Cálculo I - POLI a Lista de Exercícios

MAT Cálculo I - POLI a Lista de Exercícios MAT 453 - Cálculo I - POLI - 003 a Lista de Eercícios. Calcule a derivada indicada em cada caso: a) y se y = ; b) y se y = ( ) d ; c) ; d + ( d) d d 3 + ); e) d500 3 d 500 (3 3 79 + 4).. Calcule dy por

Leia mais

TESTE GLOBAL 11.º ANO

TESTE GLOBAL 11.º ANO TESTE GLOBAL º ANO NOME: Nº: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos O Grupo I é constituído por itens de escolha múltipla

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x

de ponto para ponto. Por exemplo, consideremos o seguinte gráfico: (x 2, y 2 ) (x 4, y 4 ) x .3. Derivadas.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma recta,

Leia mais

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio

Material Teórico - Módulo Função Quadrática. Funcão Quadrática: Exercícios. Primeiro Ano do Ensino Médio Material Teórico - Módulo Função Quadrática Funcão Quadrática: Eercícios Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 1 Eercícios f() Eemplo

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada

Cálculo I (2015/1) IM UFRJ Lista 3: Derivadas Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Derivada Eercícios de Derivada Eercícios de Fiação Cálculo I (0/) IM UFRJ Lista : Derivadas Prof Milton Lopes e Prof Marco Cabral Versão 7040 Fi : Determine a equação da reta tangente ao gráco de f() no ponto =

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Capítulo Diferenciabilidade e continuidade das derivadas parciais

Capítulo Diferenciabilidade e continuidade das derivadas parciais Cálculo 2 - Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais Capítulo 27 - Diferenciabilidade e continuidade das derivadas parciais 27 - Teorema do Valor Médio 272 - Diferenciabilidade

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e mata O gráfico de uma função é, na maioria das vezes bastante útil para visualizar propriedades da função. Assim, de forma a podermos representar com rigor uma função, devemos fazer um estudo pormenorizado

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia I

MAT Cálculo Diferencial e Integral para Engenharia I MAT453 - Cálculo Diferencial e Integral para Engenharia I 1 o Semestre de 011 - a Lista de Eercícios 1. Calcule a área da região compreendida entre os gráficos de f () = 3 + 1 e g() = + 1, com 1 1.. Desenhe

Leia mais

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (

Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 ( Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor

Lista 6 Gráficos: Pontos críticos, máximos e mínimos, partes crescentes e decrescentes. L Hôpital. Diferencial. Polinômio de Taylor Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 014 Lista 6 Gráficos: Pontos críticos, máimos e mínimos, partes crescentes e decrescentes. L Hôpital.

Leia mais

2 5 tg tg tg tg tg tg tg tg

2 5 tg tg tg tg tg tg tg tg Preparar o Eame 0 06 Matemática A Página 00 PREPARAR O EXAME Questões de Escolha Múltipla. Temos que Asombreada Acírculo A A OPC setor OAP. Temos que: Acírculo Nota que o raio do círculo é porque a respetiva

Leia mais

Material de Apoio. Roteiro para Esboçar uma Curva 1

Material de Apoio. Roteiro para Esboçar uma Curva 1 Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Cálculo M I Prof a Yane Lísle Material de Apoio Roteiro para Esboçar uma Curva A lista a seguir pretende servir como um guia

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão 7.03.05 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo.

Leia mais

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática

MAT Cálculo Diferencial e Integral I Bacharelado em Matemática MAT- - Cálculo Diferencial e Integral I Bacharelado em Matemática - 200 a Lista de eercícios I. Limite de funções. Calcule os seguintes ites, caso eistam: 2 3 + 9 2 + 2 + 4 2 + 6 5 ) 2 3 2 2 2) + 4 + 8

Leia mais

Concavidade e pontos de inflexão Aula 20

Concavidade e pontos de inflexão Aula 20 Concavidade e pontos de inflexão Aula 20 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 22 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração

Leia mais

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra.

O objeto fundamental deste curso são as funções de uma variável real. As funções surgem quando uma quantidade depende de outra. Universidade Federal Fluminense Departamento de Análise GAN0045 Matemática para Economia Professora Ana Maria Luz 00. Unidade Revisão de função de uma variável real O objeto fundamental deste curso são

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Exame: Português Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 5 Ano D. 5

Exame: Português Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 5 Ano D. 5 Eame: Português Nº Questões: Duração: minutos Alternativas por questão: Ano INSTRUÇÕES. Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Aula 5 FUNÇÃO DE º GRAU ( ou função quadrática ) Dados três números reais, a, b e c, com a, denominamos função de º grau ou função quadrática à função f() = a b c, definida para todo número real. Eemplos:

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Matemática do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Eército EsPCE Questão 1 Sabendo-se que Concurso 009 3 5 199 log log log... log 10000 + + + + =,

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

Exercícios para as aulas TP

Exercícios para as aulas TP Generalidades sobre funções reais de variável real. FichaTP0. Considere os gráficos correspondentes a duas funções reais de variável real: y y 5-0 4-5 4 3-3 - - 0 3 4 - Indique para cada uma delas: (a)

Leia mais

Proposta de Resolução do Exame Nacional de Matemática A 2015 (2ª fase)

Proposta de Resolução do Exame Nacional de Matemática A 2015 (2ª fase) Proposta de Resolução do Exame Nacional de Matemática A 2015 (2ª fase) 1. +2+0,4=1 e 3=0,6 =0,2 GRUPO I (versão 1) μ=1 +2 2+3 0,4 Assim: μ=0,2+2 2 0,2+3 0,4=2,2 Opção (B) 2. No contexto do problema, significa

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Caderno (é permitido o uso de calculadora) Na resposta aos itens de escolha múltipla, selecione a opção correta

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,

Leia mais

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica?

Geometria Analítica? Onde usar os conhecimentos. os sobre Geometria Analítica? X GEOMETRIA ANALÍTICA Por que aprender Geometria Analítica?... A Geometria Analítica estabelece relações entre a álgebra e a geometria por meio de equações e inequações. Isso permite transformar questões

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

Exercícios Resolvidos Esboço e Análise de Conjuntos

Exercícios Resolvidos Esboço e Análise de Conjuntos Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Eercícios Resolvidos Esboço e Análise de Conjuntos Eercício Esboce detalhadamente o conjunto descrito por = {(,, ) R 3 :,,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando,

Leia mais

LTDA APES PROF. RANILDO LOPES SITE:

LTDA APES PROF. RANILDO LOPES SITE: Matemática Aplicada - https://ranildolopes.wordpress.com/ - Prof. Ranildo Lopes - FACET 1 Faculdade de Ciências e Tecnologia de Teresina Associação Piauiense de Ensino Superior LTDA APES PROF. RANILDO

Leia mais

Exercícios sobre Trigonometria

Exercícios sobre Trigonometria Universidade Federal Fluminense Campus do Valonguinho Instituto de Matemática e Estatística Departamento de Matemática Aplicada - GMA Prof Saponga uff Rua Mário Santos Braga s/n 400-40 Niterói, RJ Tels:

Leia mais

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente.

Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Análise Matemática - 007/008.5.- Derivada da função composta, derivada da função inversa, derivada da função implícita e derivada de funções definidas parametricamente. Teorema.31 Derivada da Função Composta

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa nº do plano de trabalho nº 7. Considere a função f() -. a. Encontre a epressão analítica da função inversa de f.

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75

MATEMÁTICA 3 ( ) A. 17. Sejam f(x) = sen(x) e g(x) = x/2. Associe cada função abaixo ao gráfico que. 2 e g.f 3. O número pedido é = 75 MATEMÁTICA 3 17. Sejam f() sen() e g() /2. Associe cada função abaio ao gráfico que melhor a representa. Para cada associação feita, calcule i k, onde i é o número entre parênteses à direita da função,

Leia mais

Cálculo III-A Lista 1

Cálculo III-A Lista 1 Universidade Federal Fluminense Instituto de Matemática e Estatística epartamento de Matemática Aplicada Cálculo III-A Lista Eercício : Calcule as seguintes integrais duplas: a) b) c) dd, sendo [,] [,].

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira

MAT146 - Cálculo I - Esboço de Gráficos. Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Nas aulas anteriores, estudamos várias ferramentas (Teste da Derivada Primeira, Teste da Derivada Segunda, Existência de Pontos Críticos,

Leia mais

Distância entre duas retas. Regiões no plano

Distância entre duas retas. Regiões no plano Capítulo 4 Distância entre duas retas. Regiões no plano Nesta aula, veremos primeiro como podemos determinar a distância entre duas retas paralelas no plano. Para isso, lembramos que, na aula anterior,

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1 UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam MA/PROFMAT - Fundamentos de Cálculo a Lista de Eercícios Derivadas. Sejam f e g funções

Leia mais

Lista de Exercícios de Calculo I Limites e Continuidade

Lista de Exercícios de Calculo I Limites e Continuidade Lista de Eercícios de Calculo I Limites e Continuidade ) O gráfico a seguir representa uma função f de [ 6, 9] em Determine: ) Dada a função f definida por:, se f ( ), se, se Esboce o gráfico de f e calcule

Leia mais

Derivada de funções na forma paramétrica

Derivada de funções na forma paramétrica Derivada de funções na forma paramétrica Sejam ( t) y y( t) (1) duas funções da mesma variável t [a,b]. Tomando e y como as coordenadas de um ponto P, podemos dizer que a cada valor de t, corresponde um

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC238 Respostas da Prova de Final - 20/12/2013 Página de 8 Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral I - MAC38 Respostas da Prova de Final - 0//03 Questão : ( pontos) (a) Dado o gráfico da função f, esboce o gráfico da função

Leia mais