Exercícios Complementares 3.4

Tamanho: px
Começar a partir da página:

Download "Exercícios Complementares 3.4"

Transcrição

1 Eercícios Complementares A Falso ou Verdadeiro? Justi que. (a) se jc n j é convergente, então c n n é absolutamente convergente no intervalo [ ; ] ; (b) se uma série de potências é absolutamente convergente em um dos etremos de seu intervalo de convergência, então ela também converge absolutamente no outro etremo; (c) se uma série de potências converge em um etremo de seu intervalo de convergência e diverge no outro, então a convergência naquele etremo é condicional; (d) se R é o raio de convergência de c n n ; então p R é o raio de convergência de c n n ; (e) se lim p n jc n j = L > ; então a série c n ( (f) se c n ( das séries nc n ( a) n e a) n tem raio de convergência =L; a) n tem raio de convergência R > ; então R também é o raio de convergência c n n + ( a)n+ ; (g) uma série de potências c n n pode convergir apenas em dois valores de : (h) se R > é o raio de convergência da série c n ( convergência da série c n ( a) n+p. (i) se lim p n jc n j = L > ; então as séries c n ( convergência = p L; a) n, então R é também o raio de a) n e c n ( a) n+ têm raio de (j) Se c n n tem raio de convergência e d n n tem raio de convergência 3, então o raio de convergência de (c n + d n ) n é R = : 3.4B Em cada caso determine o intervalo de convergência da série de potências:

2 SÉRIES E EQUAÇÕES DIFERENCIAIS MMATOS 9 (a) n n ( 3) n (b) n+ ( 4) n (c) (d) ( ) n+ n (e) n ( 3 n (f) (g) n= (j) n (m) (p) ( ) n n n (ln n) (3 ) n p n (5 n + 5 n ) ( + ) 3n n 3.4C Comece com a fórmula (h) (k) (n) (q) = ) n ( + 5) n n n (n)! n 3 5 : : : (n ) n+ 4 6 : : : (n) 3 5 : : : (n ) n 4 6 : : : (n) (i) ( ) n+ n (n )! (l) p n n 3 5 : : : (n + ) ( ) n (n + ) 3 n (o) ( ) n n n (n + ) 3 (r) n arctg n ( ) n+ ( 3) 4n n =n : n, válida para jj < ; e represente cada função por uma série de potências de : Em cada caso determine raio e o intervalo de convergência. (a) (e) (i) ( ) 3 (b) + (f) ( + ) (c) + (j) 3 4 (d) ( ) (g) ln ( ) (h) (k) 3 (l) 4 3 ( 4 ) 6 : 3.4D. Represente a função f () = e p por uma série de potências de. 3.4E Use a série de e dada em (3.8) e calcule o valor da soma 3.4F Use uma epansão em série de potências de para ( ) n n : ( ) e mostre que n n = : 3.4G Encontre uma série de potências para representar a função e e, por derivação termo a termo, prove que n (n + )! = : 3.4H Encontre uma epansão em série de potências de para e e, derivando o resultado, prove que n= ( ) n (n + ) n+ = 8: 3.4I Derive duas vêzes, termo a termo, uma série de potências que representa a função

3 SÉRIES DE OTÊNCIAS CA. 3 ep e mostre que ( ) n+ (n + ) n = : 3.4J Dado um número inteiro positivo k, considere a k-ésima função de Bessel de a espécie J k (), de nida por: J k () = X ( ) n n+k : (n + k)! (a) mostre que o erro cometido ao aproimar J () ; ; pelo polinômio 6 34 ; é inferior a 5 ; (b) mostre que J = J e R 3 J () d = 3 J 3 () ; (c) esboce os grá cos das somas parciais S 3 () de J () e de J () ; no intervalo : 3.4K Mostre que ln = ln + 3.4L Usando a representação ln ( t) = ( ) n+ ( ) n n n ; < < 4: decimais e compare o valor com o resultado obtido em uma calculadora. t n+ ; jtj < ; calcule ln (:) com 3 casas n + 3.4M Integrando termo a termo de até a série de potências de ln ( t) dada no eercício precedente, mostre que representação é válida? n= n n (n ) = + ( ) ln ( ) : ara que valores de esta 3.4N Integrando de = até = uma série de potências que representa a função e, mostre que (n + ) = : 3.4O Desenvolva as funções f () = 3 e g () = 3 em séries de potências de, determine os respectivos intervalos de convergência e em seguida obtenha séries para representar f () e R g (t) dt: 3.4 Com auílio da série de potências de arctg, mostre que: 6 = p X ( ) n 3 3 n (n + )

4 SÉRIES E EQUAÇÕES DIFERENCIAIS MMATOS e aproime 4 usando os cinco primeiros termos da série de arctg, estimando o valor do erro. 3.4Q Se a probabilidade n de um fóton receptor absorver eatamente n fótons é dada por n = e n ; > ; mostre que n = : 3.4R Represente as integrais Z ln ( t) dt e t Z e t dt por séries de potências de, in- t dicando o intervalo de convergência de cada uma delas. Em cada caso o integrando em t = é de nido pelo limite quando t! : 3.4S Usando uma série de potências adequada, aproime cada integral dada abaio com 4 casas decimais: (a) Z =3 d + 6 (b) Z = arctg d (c) 3.4T Seja f () = = n n n= Z :5 e 3 d (d) Z sen d:, de nida para jj < : Integrando duas vezes, sucessivamente, esta série de até, identi que a função f como sendo 3.4U Identi que a função de nida pela série (n + ) n : Idem para 3.4V Falha na derivação termo a termo. Mostre que a série sen (n) converge absolutamente em qualquer e, ainda assim, a série de derivadas diverge quando = n: n ( ) : (n + ) n n+ : Eercícios Complementares A Represente as seguintes funções em séries de potências de : (a) f () = e (b) f () = sen (c) f () = 3 + (d) f () = ln + (e) f () = sen (f) f () = cos (g) f () = e 4 (h) f () = sen (i) f () = senh (j) f () = sen 4 (k) f () = cosh (l) f () = cos 3 3.6B Em estatística a função E () = p Z e t dt recebe o nome de Função Erro. Encontre

5 SÉRIES DE OTÊNCIAS CA. 3 a Série de Maclaurin da função E () : indicado: 3.6C Determine as constantes a ; a ; a ; a 3 e a 4, de modo que: = a 4 ( ) 4 + a 3 ( ) 3 + a ( ) + a ( ) + a : 3.6D ara cada função f dada abaio, encontre sua epansão de Taylor em torno do ponto (a) f () = p ; a = 9 (b) f () = tg ; a = (c) f () = cos ; a = =3 (d) f () = e ; a = 4 (e) f () = 3p ; a = (f) f () = sen ; a = =6 (g) f () = ; a = (h) f () = ; a = (i) f () = 3 + ; a = 3 : 3.6E Qual a Série de Maclaurin do polinômio () = a + a + a + + a n n? 3.6F Encontre uma série de potências de para representar a função f () = cos cos usando o resultado, conclua que lim = :! e, 3.6G Determine uma série de potências de + para a função f () = e e uma série de potências de para g () = ln : 3.6H Uma função f () tem as seguintes propriedades: f () > ; f () = f () ; 8 R; e f () = : Encontre uma série de potências que represente a função f () : Idem para uma função g () com as propriedades: g () = ; g () = e g () = g () ; 8 R: 3.6I reencha a seguinte tabela com os valores das derivadas indicadas, considerando as seguintes funções f () = sen ; g () = cos ; h () = ln + e p () = R e t dt : f (5) () f (8) () g (6) () h () () p (7) () 3.6J Encontre o valor aproimado de e :4, com erro menor do que 5 4 : 3.6K Considere a função f : R! R de nida por: 8 < ep = ; se 6= f () = : ; se = :

6 SÉRIES E EQUAÇÕES DIFERENCIAIS MMATOS 3 Use indução e mostre que f (n) () = ; 8n = ; ; ; 3; : : : : A função f não pode ser representada por uma Série de Maclaurin numa vizinhança de =? É a função f analítica em =? 3.6L Suponha que uma função par tenha representação em série de potências c n n. Mostre que os coe cientes c n = ; 8n = ; ; 3; : : : : E se a função fosse ímpar? Eercícios Complementares A Usando a série binomial para f () = p, mostre que: arcsen = + X 3 5 : : : (n ) (n + ) n n+ ; jj < : 3.8B Usando a série binomial para 3p +, calcule o valor de 3p 5 com 3 casas decimais e compare o valor com o resultado obtido em uma calculadora. 3.8C Calcule Z p 3 d com 4 casas decimais. 3.8D ara que valores de podemos substituir sen por, sem que o erro supere 5 4? 3.8E Substituindo cos por =; jj < :, qual a estimativa do erro? 3.8F Se jj < :, qual o erro cometido ao substituir p + por + =?

7 4 SÉRIES DE OTÊNCIAS CA. 3 Respostas e Sugestões Eercícios A (a) V (b) V (c) V (d) V (e) V (f) V (g) F 3.4B (a) f3g (b) ( ; ) (c) ( ; ) (d) ( ; ) (e) ( ; 4) (f) ( ; ) (g) ( ; ] (h) [ 6; 4] (i) ( ; ) (j) fg (k) ( ; ) (l) ( ; )(m) (; 4] (n) ( ; 4] (o) ( ; ) (p) j + j = 3p 5 (q) ; (r) (; 4) 3.4C (a) (n + ) (n + ) n ; jj < (b) ( ) n+ n n ; jj < (c) 4n ; jj < (d) 4 n n ; jj < =4 (e) ( ) n n n+ ; jj < (f) (n + ) n ; jj < (g) n+ n + ; jj < (h) n 4n ; jj < (i) n+ ; jj < (k) = =: 3 n n+ n+ ; jj < =3 (l) 5 3.4D 3.4G e = k= = : :8 (j) 3 n n+ n+ ; jj < ( ) n 3 n+ + n+ n= ; : 3.4E p 3.4F e k k! ( ) = d d k= n ; jj < ) d e = (k ) k d k! = n n = ; jj < : Faça n n. Agora faça (n + )! 3.4J (a) R = (b) J ' S 3 (), com erro menor do que a 4 = 6: L ln (:) ' 3.4O f () = 3 n n ; jj < =3; g () = f () n3 n n ; jj < =3; R g (t) dt = n n ; jj < 3= 3n+ n t n+ ; jtj < 3= (n + ) 3n+ 3.4 Observe que 6 = arctg =p 3 e 4 = arctg. Na série arctg = ( ) n n+ ; jj n +

8 SÉRIES E EQUAÇÕES DIFERENCIAIS MMATOS 5, faça = = p 3 e = para obter, respectivamente: 6 = p X ( ) n 3 (n + ) 3 n e 4 = X ( ) n n + ' :835; E < a 6 ' :99: 3.4R ln ( t) = t n+ ln ( t) ) = n + t t n n + ) Z ln ( t) dt = t n+ (n + ), representação válida para jj < : e t t = t n ) Z e t dt = n, representação válida em qualquer real. t n 3.4S (a) :399 (b) :43 (c) :4849 (d) : U f () = 4 ; jj < e g () = ; jj < : ( ) ( ) Eercícios A (a) e = ( ) n n ; R (b) sen = ( ) n n+ ; R (n + )! (c) 3 + = 3 (ln 3) n n ; R (d) ln + = ( ) n n+ ; jj < n + (e) sen = (g) e 4 = e 4 (i) senh = (k) cosh = ( ) n n+ ; 6= (f) cos = + (n + )! ( ) n n ; R (h) sen = n+ (n + )! ; R: (j) sen (4) = n (n)! ; R (l) cos (3) = ( ) n () n ; R (n)! ( ) n () n ; R (n)! ( ) n 4 n+ n+ ; R (n + )! ( ) n 3 n n ; R (n)! 3.6B Integrando a série obtida em 3.4A(a) de até, obtemos E () = p ( ) n n+ (n + ) : 3.6C a = 6; a = ; a = ; a 3 = 5 e a 4 = 3: 3.6D

9 6 SÉRIES DE OTÊNCIAS CA. 3 (a) p = ( 9) + ( ) n+ :3:5: : : : : (n 3) n 3 n ( 9) n (b) tg = (c) cos = (d) e = e 4 :e 4 = e 4 p p 3 ( =3) 4 ( =3) + 3 ( =3)3 ( 4) n (e) 3p = + ( ) =3 ( ) =3 + 5 ( ) 3 =3 4 (f) sen = + p 3 ( p 6 )! ( 3 6 ) 3! ( (g) = ( ) n (n + ) ( ) n ; < < (h) 3 = 3 (i) + = ( ) n ( ) n n+ ( ) n n ( 3) n 7 n+ ; < < 3 : 3.6E () = a k k ; sendo a k = para k n + : 3.6F cos k= segue que lim( cos ) = :! 6 )3 + = ( ( ) n n ) = ( ) n n (n)! (n)! 3.6G e = e (+) e = e ln = R 3.6H f () = (t ) + dt = n, g () = = + 3 4! n ( + ) n ; R. ( ) n ( ) n+, < < : n + ( ) n n+ (n + )! 5 6! + 7 8! e daí 3.6I Todas as derivadas devem ser obtidas a partir das respectivas séries que representam as funções. Da epansão de Maclaurin, sabemos que os coe cientes c n das séries são dados por f (n) () = c n e com cuidado você deve encontrar: f (5) () = ; f (8) () = 8; g (6) () = 6! 8! ; h() () =! ; p(7) () = 6! 8! : 3.6J Aproime a série de e determinada no Eercício 3.4A(a) pela soma parcial S 3 () e, em seguida, faça = : para obter e :4 ' :968, com erro menor do que :6 5 :

10 SÉRIES E EQUAÇÕES DIFERENCIAIS MMATOS 7 Eercícios B 3p 5 = 3 3p 5=7 = 3 3p =7 e usando a série binomial com = =3 e = =7, encontramos a aproimação 3p 5 ' :96: 3.8C Considere os três primeiros termos da epansão de 3 =, integre de = até = e obtenha Z p 3 d ' :857: 3.8D jj < 5p :6 :57 3.8E E < : F E < :3 5 :

a) n tem raio de convergência 1=L.

a) n tem raio de convergência 1=L. 3. SÉRIES DE OTÊNCIAS SÉRIES & EDO - 7. 3.. :::: :::::::::::::::::::::::::::: FUNDAMENTOS GERAIS. Falso (F) ou Verdadeiro (V)? Justi que. (a) Se a série c diverge em = ; etão ela diverge em = 3. (b) Se

Leia mais

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec

Instituto Superior Técnico - 1 o Semestre 2006/2007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec Instituto Superior Técnico - o Semestre 006/007 Cálculo Diferencial e Integral I LEA-pB, LEM-pB, LEN-pB, LEAN, MEAer e MEMec a Ficha de eercícios para as aulas práticas 3-4 Novembro de 006. Determine os

Leia mais

SMA333 8a. Lista - séries de Taylor 07/06/2013

SMA333 8a. Lista - séries de Taylor 07/06/2013 SMA333 8a Lista - séries de Taylor 7/6/213 Definição Para qualquer n = 1, 2, 3,, se uma função f tiver todas as derivadas até ordem n em algum intervalo contendo a como ponto interior, então o polinômio

Leia mais

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão

Universidade Tecnológica Federal do Paraná Câmpus Francisco Beltrão Séries de Potências Câmpus Francisco Beltrão Disciplina: Prof. Dr. Jonas Joacir Radtke Séries de Potências Definição A série do tipo a n (x c) n é denominado de série de potências. Dado uma série de potências,

Leia mais

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT

Séries Potências II. por Abílio Lemos. Universidade Federal de Viçosa. Departamento de Matemática UFV. Aulas de MAT Séries Potências II por Universidade Federal de Viçosa Departamento de Matemática-CCE Aulas de MAT 147-2018 26 e 28 de setembro de 2018 Se a série de potências c n (x a) n tiver um raio de convergência

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1 (Eercício IV1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log, e) sen cos tg, f) (1 + log ), g) cos(arcsen ) h) (log ), i) sen Derive: a) arctg

Leia mais

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de.

Para temos : que é a ideia de um polinômio. A série pode convergir para alguns valores de mas pode divergir para outros valores de. MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 SÉRIES DE POTÊNCIAS Definição: Séries de Potências é uma série infinita de termos variáveis. Elas podem ser usadas em várias aplicações, como por exemplo,

Leia mais

4 Cálculo Diferencial

4 Cálculo Diferencial 4 Cálculo Diferencial 1. (Eercício IV.1 de [1]) Calcule as derivadas das funções: a) tg, b) +cos 1 sen, c) e arctg, d) e log2, e) sen cos tg, f) 2 (1 + log ), g) cos(arcsen ) h) (log ), i) sen 2. 2. Derive:

Leia mais

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados.

Sequências e Séries Infinitas. Copyright Cengage Learning. Todos os direitos reservados. 11 Sequências e Séries Infinitas Copyright Cengage Learning. Todos os direitos reservados. 11.10 Séries de Taylor e Maclaurin Copyright Cengage Learning. Todos os direitos reservados. Começaremos supondo

Leia mais

Séries de Potências. Definição: A série da forma. é uma série de potências centrada em a (ou ainda ao redor de a). Em que x é uma variável e

Séries de Potências. Definição: A série da forma. é uma série de potências centrada em a (ou ainda ao redor de a). Em que x é uma variável e Séries de Potências + Séries de potências são muito semelhantes aos polinômios e podem ser tratadas como funções polinomiais. + Estas, por sua vez, são de grande importância para a representação de funções

Leia mais

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável

Cálculo diferencial, primitivas e cálculo integral de funções de uma variável Análise Matemática Cálculo diferencial, primitivas e cálculo integral de funções de uma variável (Soluções) Jorge Orestes Cerdeira, Isabel Martins, Ana Isabel Mesquita Instituto Superior de Agronomia -

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1 o Semestre de a Lista de Exercícios. sen 3 x cos x. x dx 11. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o Semestre de - a Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. 7 5. 6. 9. tg. e. tg sec 7..

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

Vamos revisar alguns fatos básicos a respeito de séries de potências

Vamos revisar alguns fatos básicos a respeito de séries de potências Seção 4 Revisão sobre séries de potências Vamos revisar alguns fatos básicos a respeito de séries de potências a n (x x ) n, que serão úteis no estudo de suas aplicações à resolução de equações diferenciais

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Eame - Parte I - de Julho de 8 LERC, LEGI, LEE, LEIC-T Número: Nome: valores a) valores b) valores 3 4 valores 4 valores 5 a) 3 valores 5 b) 3 valores 6 valores páginas

Leia mais

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15.

MAT2453- Cálculo Diferencial e Integral para Engenharia I - POLI 1o. Semestre de a. Lista de Exercícios. x cos x. x 1+ x 4 dx 12. sec x dx 15. MAT45- Cálculo Diferencial e Integral para Engenharia I - POLI o. Semestre de - a. Lista de Eercícios I - Integrais Indefinidas Calcule as integrais indefinidas abaio: 7 + +.. e. cos 7 4. tg 7 sen 5. 6.

Leia mais

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy

Ficha de Problemas n o 6: Cálculo Diferencial (soluções) 2.Teoremas de Rolle, Lagrange e Cauchy Ficha de Problemas n o 6: Cálculo Diferencial soluções).teoremas de Rolle, Lagrange e Cauchy. Seja f) = 3 e. Então f é contínua e diferenciável em R. Uma vez que f) = +, f0) = conclui-se do Teorema do

Leia mais

Universidade Federal de Viçosa

Universidade Federal de Viçosa Universidade Federal de Viçosa Ciências Eatas e Tecnológicas Departamento de Matemática MAT 4 - Lista - 07/. Determine o domínio a imagem as raízes e o estudo de sinal das funções a seguir: (a) f() = 4

Leia mais

AULA 13 Aproximações Lineares e Diferenciais (página 226)

AULA 13 Aproximações Lineares e Diferenciais (página 226) Belém, de maio de 05 Caro aluno, Nesta nota de aula você aprenderá que pode calcular imagem de qualquer unção dierenciável num ponto próimo de a usando epressão mais simples que a epressão original da.

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-45 Cálculo Diferencial e Integral I (Escola Politécnica) Terceira Lista de Eercícios - Professor: Equipe de Professores. APLICAÇÕES DE

Leia mais

13 Fórmula de Taylor

13 Fórmula de Taylor 13 Quando estudamos a diferencial vimos que poderíamos calcular o valor aproimado de uma função usando a sua reta tangente. Isto pode ser feito encontrandose a equação da reta tangente a uma função y =

Leia mais

1 Definição de Derivada

1 Definição de Derivada Departamento de Computação é Matemática Cálculo I USP- FFCLRP Prof. Rafael A. Rosales 5 de março de 2014 Lista 5 Derivada 1 Definição de Derivada Eercício 1. O que é f (a)? Eplique com suas palavras o

Leia mais

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4

Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005. Cálculo I. Caderno de Exercícios 4 Faculdade de Economia Universidade Nova de Lisboa Primavera 2004/2005 Cálculo I Caderno de Eercícios 4 Limites, continuidade e diferenciabilidade de funções; fórmulas de Taylor e MacLaurin; estudo de funções.

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva = 0 e = y = nos pontos onde Vamos determinar a reta tangente à curva y = nos pontos

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica

Universidade Federal do Pará Instituto de Tecnologia. Cálculo III. Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia Cálculo III Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto de Tecnologia

Leia mais

FEUP - MIEEC - Análise Matemática 1

FEUP - MIEEC - Análise Matemática 1 FEUP - MIEEC - Análise Matemática Resolução da a Chamada - de Janeiro de 9 Respostas a perguntas diferentes em folhas diferentes Justifique cuidadosamente todas as respostas. Não é permitida a utilização

Leia mais

MAT Lista de exercícios para a 3 a prova

MAT Lista de exercícios para a 3 a prova Universidade de São Paulo Instituto de Matemática e Estatística MAT - Lista de eercícios para a a prova Valentin Ferenczi de maio de 9. Estude a função dada com relação a máimos e mínimos locais e globais.

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 1 a lista de exercícios MAT5 - Cálculo Diferencial e Integral para Engenharia II a lista de eercícios - 0 I - Polinômio de Talor. Utilizando o polinômio de Talor de ordem, calcule um valor aproimado e avalie o erro: (a) 8, (b)

Leia mais

Lista de Exercícios 2 1

Lista de Exercícios 2 1 Universidade Federal de Ouro Preto Departamento de Matemática MTM - CÁLCULO DIFERENCIAL E INTEGRAL I Lista de Eercícios Mostre, utilizando a definição formal, que os ites abaio eistem e são iguais ao valor

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I LEE, LEIC-T, LEGI e LERC - o semestre - / de Junho de - 9 horas I ( val.). (5, val.) Determine o valor dos integrais: x + (i) x ln x dx (ii) (9 x )( + x ) dx (i) Primitivando

Leia mais

Encontre o valor da soma da série numérica

Encontre o valor da soma da série numérica MAT1354 Cálculo e Geometria Analítica IIA PROVA 3 19 de junho de 215 8h3 1 2 3 4 5 81 811 Encontre o valor da soma da série numérica 4 +2 7 1 2 Usando uma série geométrica, mostre que 241 é o número racional

Leia mais

Fórmula de Taylor. Cálculo II Cálculo II Fórmula de Taylor 1 / 15

Fórmula de Taylor. Cálculo II Cálculo II Fórmula de Taylor 1 / 15 Fórmula de Taylor Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Fórmula de Taylor 1 / 15 Outra vez a exponencial... Uma função pode ser aproximada (na proximidade

Leia mais

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18)

3a. Lista de Exercícios. (3x + 1) 2 dx (3) x dx. x cos(nx)dx, n N (9) 2xe x dx. cos 2 θdθ (12) (x cos(x 2 + 2x) + 3x)dx (15) sen 4 θdθ (18) UFPR - Universidade Federal do Paraná Departamento de Matemática CM4 - Cálculo I a. Lista de Eercícios Integrais definidas. Calcule as integrais definidas abaio: () (4) (7) () () (6) (9) () (5) (8) /4

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM300 - Pré-cálculo a lista de eercícios (06//07 a 0//07) Considere f() = 5 Calcule f(), f(),

Leia mais

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ;

Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo de funções e problemas de optimização. x ; Instituto Politécnico de Bragança Escola Superior de Tecnologia e Gestão Análise Matemática I 003/004 Ficha Prática nº. 5: Derivadas de funções reais de variável real; Aplicação das derivadas ao estudo

Leia mais

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2.

( ) ( ) 60 ( ) ( ) ( ) ( ) R i. Método de Newton. Método de Newton = Substituindo i por x, teremos: 1.Introdução 2. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I R A = + i ( i ) n

Leia mais

Método de Newton. 1.Introdução 2.Exemplos

Método de Newton. 1.Introdução 2.Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Método de Newton Prof.:

Leia mais

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c)

4.1 Função Complexa de uma Variável Real. 4.2 Contornos. 1. Calcule as seguintes integrais: Z =4 e it dt. Z 1 e wt dt; (Re w > 0) (c) VAIÁVEL COMPLEXA 4. INTEGAÇÃO COMPLEXA 4. Função Complexa de uma Variável eal. Calcule as seguintes integrais: =4 e it dt e wt dt; (e w > ) (c) 2 e imt e int dt; m; n 2 : 2. Calcule as integrais trigonométricas:

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

Matemática para Engenharia I. Lista Derivadas. 2. Calcule a derivada das funções abaixo nos pontos dados usando a definição:

Matemática para Engenharia I. Lista Derivadas. 2. Calcule a derivada das funções abaixo nos pontos dados usando a definição: Matemática para Engenharia I Lista Derivadas. Usando que ( ) ( ) encontre a equação da reta tangente ao gráfico de f no ponto p(0,y 0 ). a) ( ) ( ) b) ( ), ( ) c) ( ), ( ) d) ( ), ( ( )) e) ( ), ( ) f)

Leia mais

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0:

4.1 Preliminares. 1. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = 1=x; x 6= 0 (c) f (x) = 1= p x; x > 0: 4. FUNÇÕES DERIVÁVEIS ANÁLISE NO CORPO R - 208. 4. Preinares. Em cada caso, use a de nição para calcular f 0 (x) : (a) f (x) = x 3 ; x 2 R (b) f (x) = =x; x 6= 0 (c) f (x) = = p x; x > 0: 2. Mostre que

Leia mais

Regras Básicas de Derivação

Regras Básicas de Derivação Regras Básicas e Derivação. regra a soma: (u + kv) = u + kv, k constante 2. regra a iferença: (u + v) = u + v 3. regra o prouto: (u v) = u v + u v u u v u v 4. regra o quociente: = v v 2 5. regra a caeia:

Leia mais

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários

1 a data de exame. 17 de Janeiro de 2002 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial. Resolução e alguns comentários Análise Matemática I a data de eame 7 de Janeiro de 00 Licenciaturas em Engenharia do Ambiente e Engenharia Aeroespacial Resolução e alguns comentários I.. a) Para n N temos a n = log (cos(/n) + ) log

Leia mais

x + 2 > 1 (x 2)(x + 2) x + 2 > e

x + 2 > 1 (x 2)(x + 2) x + 2 > e Instituto Superior Técnico Departamento de Matematica TESTES DE RECUPERAÇÃO DE CDI I O SEM. / DURAÇÃO: H/H VERSÃO A LEMAT, LEAN, MEBIOL, MEQ, MEAMBI E LMAC, MEBIOM, MEFT RESOLUÇÃO. (,5 val.) (a) (,9 val.)

Leia mais

4.-1 Funções Deriváveis

4.-1 Funções Deriváveis 4.- Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Lista 3 - Métodos Matemáticos II

Lista 3 - Métodos Matemáticos II Lista 3 - Métodos Matemáticos II Prof. Jorge Delgado. Seja a curva poligonal de vértices 2( + i), 2( + i), 2( + i) e 2( i) orientada positivamente. Use a fórmula integral de auchy para verificar que: e

Leia mais

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em

ANÁLISE MATEMÁTICA IV LEEC SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS EDO S. disponível em Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Última actualiação: //003 ANÁLISE MATEMÁTICA IV LEEC RESOLUÇÃO DA FICHA 3 SÉRIES, SINGULARIDADES, RESÍDUOS E PRIMEIRAS

Leia mais

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k =

Séries Alternadas. São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = Séries Alternadas São as séries cujos termos se alternam entre positivos e negativos. Por exemplo, ( 1) k+1 1 k = 1 1 2 + 1 3 1 4 + 1 5 Em geral escrevemos, para uma série alternada, ou ( 1) k+1 a k =

Leia mais

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital.

CÁLCULO I. 1 Aproximações Lineares. Objetivos da Aula. Aula n o 16: Aproximações Lineares e Diferenciais. Regra de L'Hôspital. CÁLCULO I Prof Marcos Diniz Prof André Almeida Prof Edilson Neri Júnior Prof Emerson Veiga Prof Tiago Coelho Aula n o 6: Aproimações Lineares e Diferenciais Regra de L'Hôspital Objetivos da Aula Denir

Leia mais

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS

CAP. 2 ZEROS REAIS DE FUNÇÕES REAIS 5 CAP. ZEROS REAIS DE FUNÇÕES REAIS OBJETIVO: Estudo de métodos iterativos para resolução de equações não lineares. DEFINIÇÃO : Um nº real é um zero da função f() ou raiz da equação f() = 0 se f( )=0.

Leia mais

Lista 2 - EDO s de Ordem Superior

Lista 2 - EDO s de Ordem Superior Lista - EDO s de Ordem Superior. Use o teorema de eistência e unidade de soluções, para EDO s lineares, para encontrar um intervalo em que os PVI s abaio possuam solução única. (a) ( )y 00 + 3y = ; y(0)

Leia mais

CATALOG IDENTIFICAÇÃO. Nome: NUSP: Turma: INSTRUÇÕES

CATALOG IDENTIFICAÇÃO. Nome: NUSP: Turma: INSTRUÇÕES MAT Cálculo Diferencial e Integral I EP USP Terceira Prova // IDENTIFICAÇÃO Nome: NUSP: Turma: INSTRUÇÕES. Não é permitido portar celular (mesmo desligado) durante o eame. Sobre a carteira deie apenas

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

4.1 Funções Deriváveis

4.1 Funções Deriváveis 4. Funções Deriváveis 4.A Em cada caso, encontre a derivada da função y = f (), usando a de nição. (a) y = + (b) y = 3 (c) y = 5 (d) y = 3 (e) y = +

Leia mais

Lista de Exercícios de Funções de Várias Variáveis

Lista de Exercícios de Funções de Várias Variáveis Lista de Exercícios de Funções de Várias Variáveis 29 de dezembro de 2016 2 Sumário 1 Sequências e Séries InnitasP1) 5 1.1 Sequências............................. 5 1.1.1 Digitado por:luele Ribeiro de

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Primeira Lista de Eercícios de Cálculo Diferencial e Integral I - MTM Prof. Júlio César do Espírito

Leia mais

Cálculo diferencial. Motivação - exemplos de aplicações à física

Cálculo diferencial. Motivação - exemplos de aplicações à física Cálculo diferencial Motivação - eemplos de aplicações à física Considere-se um ponto móvel sobre um eio orientado, cuja posição em relação à origem é dada, em função do tempo, pela função s. st posição

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Limites, derivadas e máximos e mínimos

Limites, derivadas e máximos e mínimos Limites, derivadas e máimos e mínimos Psicologia eperimental Definição lim a f ( ) b Eemplo: Seja f()=5-3. Mostre que o limite de f() quando tende a 1 é igual a 2. Propriedades dos Limites Se L, M, a,

Leia mais

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO

IST-TAGUS PARQUE-2007/08-2 o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO IST-TAGUS PARQUE-007/08- o SEMESTRE ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS EXERCÍCIOS DE REVISÃO EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM. Diga, justi cando, se as seguintes

Leia mais

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0.

4.1 Em cada caso use a definição para calcular f 0 (x). (a) f (x) =x 3,x R (b) f (x) =1/x, x 6= 0 (c) f (x) =1/ x, x > 0. 4. Em cada caso use a definição para calcular f 0 (). (a) f () = 3, R (b) f () =/, 6= 0 (c) f () =/, > 0. 4.2 Mostre que a função f () = /3, R, não é diferenciável em =0. 4.3 Considere a função f : R R

Leia mais

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04/12/2010 FILA A Aluno (a): Matrícula: Turma:

UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04/12/2010 FILA A Aluno (a): Matrícula: Turma: UFJF ICE Departamento de Matemática Cálculo I Terceira Avaliação 04//00 FILA A Aluno (a): Matrícula: Turma: Instruções Gerais: - A prova pode ser feita a lápis, eceto o quadro de respostas das questões

Leia mais

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-454 Cálculo Diferencial e Integral II Escola Politécnica) Segunda Lista de Eercícios - Professor: Equipe de Professores BONS ESTUDOS!

Leia mais

4a. Lista de Exercícios

4a. Lista de Exercícios UFPR - Universidade Federal do Paraná Deparameno de Maemáica Prof. José Carlos Eidam CM4 - Cálculo I - Turma C - / 4a. Lisa de Eercícios Inegrais impróprias. Decida quais inegrais impróprias abaio são

Leia mais

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5.

1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (f) x + 3 < 0, 01. (g) 3x 7 5. Lista de Exercícios de Cálculo I - Funções de uma variável Real 1. Resolva a desigualdade e exprima a solução em termos de intervalos, quando possível. (a) 2x + 5 < 3x 7 3 2x 3 5 7 (c) x 2 x 6 < 0 (d)

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru

CÁLCULO DIFERENCIAL E INTEGRAL I NOTAS DE AULAS Prof. Dr. Luiz Francisco da Cruz Departamento de Matemática UNESP/Bauru REGRA DE LHÔPITAL Teorema: Suponhamos que f (a) g(a) e que f (a) e g (a) eistam com g(a). Então: lim a f() g() f(a) g(a). in det er min ação. Forma mais avançada do Teorema de L Hospital: Suponhamos que

Leia mais

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017)

MAT 141 (Turma 1) Cálculo Diferencial e Integral I 2017/II 1 a Lista de Integrais (07/11/2017) Universidade Federal de Viçosa Departamento de Matemática MAT 4 (Turma Cálculo Diferencial e Integral I 07/II a Lista de Integrais (07//07 Faça a antidiferenciação. Verifique o resultado, calculando a

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática Universidade Federal de Viçosa Centro de Ciências Eatas e Tecnológicas Departamento de Matemática MAT 040 Estudo Dirigido de Cálculo I 07/II Encontro 5 - /09/07: Eercício : Seja f a função cujo gráfico

Leia mais

Módulo 1 Limites. 1. Introdução

Módulo 1 Limites. 1. Introdução Módulo 1 Limites 1. Introdução Nesta disciplina você vai estudar o cálculo diferencial e integral e suas aplicações em diversos problemas relacionados à Economia. O conceito de limite é conceito mais básico

Leia mais

Testes de Convergência

Testes de Convergência Testes de Convergência Luciana Borges Goecking Universidade Federal de Alfenas - Instituto de Ciências Exatas outubro - 203 Teste da Divergência Teorema Se a série a n for convergente, então lim a n =

Leia mais

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso

Substituição trigonométrica hiperbólica. Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso MÓDULO - AULA 30 Aula 30 Técnicas de integração Miscelânea Esta é a última aula do segundo módulo da disciplina Cálculo II. Isso significa que você está completando boa parte desta jornada. Você já enfrentou

Leia mais

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares.

CÁLCULO I. 1 Primitivas. Objetivos da Aula. Aula n o 18: Primitivas. Denir primitiva de uma função; Calcular as primitivas elementares. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 8: Primitivas. Objetivos da Aula Denir primitiva de uma função; Calcular as primitivas elementares. Primitivas Em alguns problemas, é necessário

Leia mais

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1

2a Lista de Exercícios. f (x), se x a g (x), se x < a. x 3 x, x 0, se x = 0. 1, se x 1 x 2 4 x 4, se x 1 UFPR - Universidade Federal do Paraná Setor de Ciências Eatas Departamento de Matemática Prof. José Carlos Eidam MA/PROFMAT - Fundamentos de Cálculo a Lista de Eercícios Derivadas. Sejam f e g funções

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT456 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1

y y(y + 3x) em frações parciais: 1 u + 1 A(u + 1) + Bu = 1 A = 1, B = 1 du u(u + 1) u + 1 u 2 u + 1 Turma A Questão : (3,5 pontos) Instituto de Matemática e Estatística da USP MAT455 - Cálculo Diferencial e Integral IV para Engenharia 3a. Prova - o. Semestre 03-0//03 (a) Determine a solução y da equação

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

3.1 Limite & Continuidade

3.1 Limite & Continuidade 3. FUNÇÕES CONTÍNUAS ANÁLISE NO CORPO R - 2018.1 3.1 Limite & Continuidade 1. Mostre que a função valor absoluto f (x) = jxj é contínua em qualquer ponto x 2 R: 2. A função de Dirichlet ' : R! R é de nida

Leia mais

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL

LISTA DE EXERCÍCIOS Valor: 0 a 1,5 Entrega em 28/novembro/2018 INTEGRAÇÃO DE FUNÇÃO REAL DE UMA VARIÁVEL REAL Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Curitiba Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Matemática Disciplina: Cálculo Diferencial e Integral

Leia mais

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011

Exercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes 2011 Eercícios de Cálculo Diferencial e Integral I, Amélia Bastos, António Bravo, Paulo Lopes Introdução Neste teto apresentam-se os enunciados de conjuntos de eercícios para as aulas de problemas do curso

Leia mais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais

Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão Lista 2. Sequências de Números Reais Universidade Federal de Santa Maria Departamento de Matemática Curso de Verão 0 Lista Sequências de Números Reais. Dê o termo geral de cada uma das seguintes sequências: a,, 3, 4,... b, 4, 9, 6,... c,,

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier

MAT Cálculo Diferencial e Integral para Engenharia IV 2o. Semestre de a. Lista de exercícios: Séries de Potências e Séries de Fourier MAT46 - Cálculo Diferecial e Itegral para Egeharia IV o Semestre de - a Lista de eercícios: Séries de Potêcias e Séries de Fourier Usado derivação e itegração termo a termo, calcular as somas das séries

Leia mais

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor

CÁLCULO 3-1 ō Semestre de 2009 Notas de curso: Séries Numéricas e Séries de Taylor UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 29 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Estas notas têm o objetivo de auxiliar o aluno

Leia mais

GABARITO COMENTADO EN Prova Amarela(2º Dia)

GABARITO COMENTADO EN Prova Amarela(2º Dia) PROFESSORES: Carlos Eduardo (Cadu) ndré Felipe Bruno Pedra nderson Izidoro le Ricardo Rafael Sabino Noronha Jean Pierre QUESTÃO 0 (E) Temos da solução do sistema: y 5 y 6 y 9 y y 6 9 5 y 6 6 y 8 Reescrevendo

Leia mais

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 )

t 2 se t 0 Determine a expansão em série de potências para a função F (x) = ( 1) n y2n (2n)!, ( 1) n t4n (2n)! (2n)! ( 1) n t4n 2 dt = ( 1) n t 4n 2 ) MAT456 - Cálculo Diferencial e Integral IV para Engenharia Escola Politecnica - a. Prova - 8// Turma A a Questão (,) a) Seja cos (t ) f(t) = t se t se t = Determine a expansão em série de potências para

Leia mais

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar

Exercícios de Cálculo p. Informática, Ex 1-1 Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar Eercícios de Cálculo p. Informática, 2006-07 Números Reais. E - Nas alíneas seguintes use os termos inteiro, racional, irracional, para classificar o número dado: 7 a) b) 6 7 c) 2.(3) = 2.33 d) 2 3 e)

Leia mais

Notas de curso: Séries Numéricas e Séries de Taylor

Notas de curso: Séries Numéricas e Séries de Taylor UFPE CCEN DEPARTAMENTO DE MATEMÁTICA ÁREA II CÁLCULO 3 - ō Semestre de 23 Notas de curso: Séries Numéricas e Séries de Taylor Professor: Sérgio Santa Cruz Objetivo. Estas notas têm o objetivo de auxiliar

Leia mais

DERIVADA. A Reta Tangente

DERIVADA. A Reta Tangente DERIVADA A Reta Tangente Seja f uma função definida numa vizinança de a. Para definir a reta tangente de uma curva = f() num ponto P(a, f(a)), consideramos um ponto vizino Q(,), em que a e traçamos a S,

Leia mais

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01.

Rafael A. Rosales 29 de maio de Diferencial 1. 4 l Hôpital 3. 5 Série de Taylor 3 01. Departamento de Computação é Matemática Cálculo I USP- FFCLRP Física Médica Rafael A. Rosales 9 de maio de 07 Sumário Diferencial Teorema do Valor Médio 3 Máimos e Mínimos. Gráficos 4 l Hôpital 3 5 Série

Leia mais

Cálculo Diferencial e Integral I - LEIC

Cálculo Diferencial e Integral I - LEIC INSTITUTO SUPERIOR TÉCNICO Departamento de Matemática de Janeiro de Cálculo Diferencial e Integral I - LEIC ō Teste - Versão - Resolução. Indique uma primitiva para a função definida em ], e [ pela epressão

Leia mais

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em.

Questão 1: (2.0 pontos) (a) (1.0 ponto) Obtenha os cinco primeiros termos da série de Taylor da função f(x) = cos x em. Página de 7 Instituto de Matemática - IM/UFRJ Gabarito da prova final unificada - Escola Politécnica / Escola de Química - 0/07/009 Questão :.0 pontos a.0 ponto Obtenha os cinco primeiros termos da série

Leia mais

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo

3ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo ª LISTA DE EXERCÍCIOS CÁLCULO NUMÉRICO Prof.: Magnus Melo Os eercícios a 4 se referem a interpolação polinomial. Resolva-os com os dois polinômios interpoladores estudados. 4 ) Dada a função f ( ), determine:

Leia mais

19. h z 3 e z dz 20. h x tg 2 xdx. xe 2x (1 2x) h dx 22. h (arcsen x) 2 dx 1/ h 0. x cos px dx 24. h h 1. r3 ln r dr 28.

19. h z 3 e z dz 20. h x tg 2 xdx. xe 2x (1 2x) h dx 22. h (arcsen x) 2 dx 1/ h 0. x cos px dx 24. h h 1. r3 ln r dr 28. 7. Eercícios Calcule a integral usando a integração por partes com as escolhas de u e dv indicadas.. y ln ; u ln, dv. y cos d; u, dv cos d 6 Calcule a integral.. h cos 5 4. h e 5. h re r/ dr 6. h t sen

Leia mais

ANÁLISE MATEMÁTICA II

ANÁLISE MATEMÁTICA II ANÁLISE MATEMÁTICA II Acetatos de Ana Matos Séries de Potências DMAT Séries de Potências As séries de potências são uma generalização da noção de polinómio. Definição: Sendo x uma variável e a, chama-se

Leia mais

Unidade 5 Diferenciação Incremento e taxa média de variação

Unidade 5 Diferenciação Incremento e taxa média de variação Unidade 5 Diferenciação Incremento e taa média de variação Consideremos uma função f dada por y f ( ) Quando varia de um valor inicial de para um valor final de, temos o incremento em O símbolo matemático

Leia mais

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M,

FICHA 11 - SOLUÇÕES. b a f(x)g(x)dx b a g(x)dx M, Instituto Superior Técnico Departamento de Matemática Cálculo Diferencial e Integral I - o Sem 07/8 - LEGM, MEC FICHA - SOLUÇÕES a = f/; b = f; c / = f/ Começe por aplicar o Teorema de Weierstrass a f

Leia mais

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira

Universidade Federal do Rio Grande do Norte. Métodos Computacionais Marcelo Nogueira Universidade Federal do Rio Grande do Norte Métodos Computacionais Marcelo Nogueira Raízes de Equações Algébricas Achar a raiz de uma unção signiica achar um número tal que 0 Algumas unções podem ter suas

Leia mais

Exercícios para as aulas TP

Exercícios para as aulas TP Generalidades sobre funções reais de variável real. FichaTP0. Considere os gráficos correspondentes a duas funções reais de variável real: y y 5-0 4-5 4 3-3 - - 0 3 4 - Indique para cada uma delas: (a)

Leia mais