Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cálculo I IM UFRJ Lista 1: Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno. Tópicos do Pré-Cálculo"

Transcrição

1 Cálculo I IM UFRJ Lista : Pré-Cálculo Prof. Marco Cabral Versão Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio que chamaremos de pré-cálculo. Quanto antes foram revistos e dominados melhor. Recomendamos que o aluno, além de fazer esta lista, estude e revise estes tópicos utilizando livros do ensino médio ou Cálculo e a Internet. Recomendamos o uso de softwares: (a) para visualização de grácos (uma sugestão é fooplot, que é um site que plota grácos sem precisar instalar programa). (b) CAS (computer algebra sstem) que faz manipulações algébricas (sugerimos maima, que tem versão para Linu e Windows). Tópicos do Pré-Cálculo. Aritmética e Álgebra. (a) Propriedades de potências de mesma base e de raízes. Potências fracionárias e negativas. (b) Racionalizar epressões algébricas envolvendo raízes. (c) Divisão de polinômios. (d) Teorema de D'Alambert: Se a é raiz de um polinômio, então ele é divisível por a. 3 (e) Signicado de somatórios, como por eemplo (i 5i) = ( 5 )+( 5 )+(3 5 3). (f) Produtos notáveis: (a ± b) = a ± ab + b e (a + b)(a b) = a b.. Funções. (a) Domínio e imagem de função. (b) Funções denidas por palavras, por grácos, por tabelas e por fórmulas eplícitas. Função denida por partes. (c) Composição de funções. i= (d) Função injetiva, sobrejetiva, crescente/decrescente. (e) Grácos de funções. Translação de gráco de funções (horizontal e vertical). (f) Quando uma curva no plano é o gráco de uma função? Teste da reta vertical. Dado o gráco de uma função, quando (e onde) ela possui inversa? Teste da reta horizontal. (g) Função par/impar: denição e simetrias no gráco. (h) Função inversa e seu gráco, obtido por reeão em torno da reta =. Eemplos importantes: arcsen, arctan, log e (não é verdade que arsen é igual a sen!). (i) Sinal de funções racionais, função da forma f() = p(), onde p e q são polinômios. Técnica: q() Quadro de sinais. (j) Máimo e mínimo de função do segundo grau em intervalos fechados (pode estar nos etremos). (k) Funções logaritmo e eponencial. Propriedades básicas (soma/produto). Uma inversa da outra. Observação: log e = ln. Em cálculo log = ln, embora para alguns autores log = log 0. Ao longo do Cálculo será eplicado porque utilizamos e como base do logaritmo.

2 (l) Funções Trigonométricas. Ângulo medido em radianos (em Cálculo esta é a unidade conveniente). Comprimento do arco de círculo. Determinar quadrante de ângulo no círculo trigonométrico. Saber determinar sinal e/ou valor de seno, cosseno e tangente de ângulo qualquer. Saber localizar no círculo trigonométrico seno, cosseno, tangente. Propriedades básicas: sen( ) = sen, cos( ) = cos. sen(a ± b) =..., cos(a ± b) =... etc. sen () + cos () =. (m) Função Módulo. Denição: =, 0,, < 0. Gráco do módulo de uma função, como por eemplo, gráco de = ( )( ). 3. Geometria Analítica no Plano Básica. (a) Equação da reta no plano: signicado geométrico do coeciente angular (incluindo como determinar que retas são perpendiculares entre si pelo coeciente angular), saber calcular equação da reta que passa em dois pontos no plano, e que passa em um ponto com certo coeciente angular (b) Saber calcular interseção entre: duas retas (= resolver sistema linear); reta e equação do o grau; duas equações do o grau. (c) Distância entre dois pontos no plano e Pitágoras. Função módulo e distância. = (não é ). Eercícios Aritmética e Álgebra.. Determine k e m se 7 3 = 3 k e. Escreva na forma m+ 5 3 = Determine p, q inteiros tais que 8/ / 3 0 = p q. 4. Escreva epressão equivalente a sem raiz no denominador (racionalize). 5. Determine o quociente e o resto da divisão de por. 6. (Verique o Teorema de D'Alambert.) Verique que é raiz de Aplique o teorema de D'Alambert para dividir o polinômio e obter TODAS raizes Determine o valor de (i + ). i= 8. Calcule (a + b) (a b). Funções.. Determine imagem da função g() = (3 ) 5. log( ). Determine o domínio da função g() = Dado R, dena f() como o maior inteiro menor que. Determine: f(π) e f( π). Esta função é injetiva? É sobrejetiva? Qual sua imagem? 4. Esboce o gráco de:, se <, (a) f() = 4 3, se. ; ; (c) f() = log() + ; <. (b) f() = 9 ; 3 3; > 3.

3 5. Se f() = 3 e g() = 5 4, determine: g(f()) e f(g()). 6. Determine o maior intervalo contendo 0 onde f() = ( + ) + é injetiva. Esta função é sobrejetiva? 7. Determine, caso seja possível, TODOS intervalos onde é crescente: (a) f() = 9. (b) f() = 6. (c) f() = log() 4. (d) f() = 3 7. (e) f() = sen() 4. (f) f() = e. 8. Baseado no gráco de f() =, esboce o gráco de g() = ( + ) Esboce os grácos de f() = e f() =. Elas são funções par ou impar? 0. Esboce o gráco de f() = e, fazendo translações, de g() = Determine intervalos onde a curva abaio pode representar o gráco de uma função.. Considere o gráco de g da gura abaio. (a) Determine intervalos onde g é injetiva. (b) Nestes intervalos pode-se dena uma função inversa g. Determine o domínio de g associado a estes intervalos. g() 3. Esboce o gráco de f() = 3 e f() = 4 (são semelhantes ao de e respectivamente). Baseado nestes grácos, esboce o gráco das inversas 3, 4 (reeão em torno da reta = ). 4. Baseado no gráco de f() = e, esboce o gráco da sua inversa log (reeão em torno da reta = ). 5. Faça o estudo de sinal do numerador e denominador para determinar os valores de que satisfazem as desigualdades: (a) 3 0; (b) 3 ( 4) Determine intervalos onde é positiva e onde é negativa cada função abaio. (a) f() = ( + ). (b) g() =. 7. Determine o máimo e mínimo de f() = ( ) + nos intervalos: (a) [0, 3]. (b) [, 3]. 8. Determine a R se log 0 (00 3a 0) = Determine o valor de: (a) e 0. (b) log 0. (c) ln. (d) ln e. (e) e ln 3. (f) ln(e 5 ). 0. Determine o valor de: (a) sen(3π/). (b) cos(3π). (c) tan(3π/4). (d) cos(5π/4).. Epresse log 5 30 utilizando ln.. Determine em qual quadrante do círculo trigonométrico ca o ângulo (em radianos): (a) 3π/3. (b) 3π/4. (c) π/5. 3. Determine o sinal de seno e cosseno de β = π e θ = + 3π/. 4. Sabendo que sen β = /3, determine valores possíveis para cos β. 5. Sabendo que tan γ = 5 e que cos γ > 0, determine sen γ. 6. Determine em termos de sen a e cos a (utilizando fórmulas de sen(a+b) e cos(a+b)): cos(3a) e sen( 4a). 3

4 7. Aplique a denição do módulo para esboçar o o gráco de: cos (a) cos() ; (b). 8. Partindo de gráco de funções simples (±,, log()), utilizando translações verticais e/ou horizontais e/ou reeões, esboce o gráco de: (a) = + (b) = log( ) + ; (c) = ( + )( + ). Geometria Analítica no Plano Básica.. Ordene as retas de acordo com seu coeciente angular: = 0, 3 + = 4, = 0.. Determine a equação da reta que passa em (, ): (a) e em (, 3). (b) com coeciente angular. (c) perpendicular à reta 3 + =. 3. Determine a interseção (todos os pontos) entre o gráco de = + e o gráco de: (a) + = 0. (b) + = Determine a distância entre os pontos do plano (, ) e (4, ). 5. Determine todo a, R tal que: (a) a + = 4. (b) < Verique se 4 + = + para todo R. Respostas dos Eercícios Aritmética e Álgebra.. k = 5, m = 4.. = 3/, = /. 3. p =, q = , obtida multiplicando numerador e denominador por. Com maima: epand((3*sqrt()+)*(-sqrt())); 5. Quociente:, resto:. Com maima: divide(^4-3*^ + +, ^-); 6. Raizes:, 5, 3. Como é raiz, divida polinômio por ( ( )) = +. Obtenha polinômio do o grau e determine suas raizes Com maima: sum(*i+, i,, 5); 8. 4ab. Funções.. ( 5, ) pois g() 5 para todo (note que (3 ) é sempre não-negativo).. Resposta: os intervalos [, ) e (, ). Como eiste logaritmo somente de números positivos, deve ser positivo, ou seja, > 0, logo >. Por outro lado, + 0, logo. Além disso o denominador não pode se anular: + 0, o que implica. Assim > > ou >. 3. f(π) = 3 e f( π) = 4. Não é injetiva pois f(π) = f(3, 5). Não é sobrejetiva pois a imagem é somente os inteiros: Imagem de f: Z. 4. (a) f() =, se <, 4 3, se (b) f() = ; 3 3; > 3. 4

5 (c) f() = ; ; log() + ; <. 5. g(f()) = e f(g()) = 5 3. Com maima: f() := 3*-; g() := 5*^-4;epand(f(g())); 6. (, ), pois a função é decrescente (e portanto injetiva) para <. Basta ver que seu vértice é em =. Não é sobrejetiva pois sua imagem é somente o intervalo (, ). 7. (a) (, 0). (b) Sempre decrescente. (c) (0, ). (d) (, ) = R. (e) Em ( π/, π/) é crescente. De forma geral em (kπ π/, kπ + π/) para todo k Z. (f) Sempre decrescente. 8. Basta transladar em 3 unidades verticalmente para baio e unidades para esquerda. Veja grácos utilizando algum software (como o fooplot). Eperimente modicar o e 3 para ver efeito no programa. 9. Faça um tabela de valores e verique o que ocorre quando ca próimo de 0 (por eemplo /00, /0 3, /0 5 e /00, /0 3, /0 5, /000) e também muito grande em módulo próimo de ± (por eemplo 0, 0 3, 0 5 e 0, 0 3, 0 5 ). Depois (somente após tentar pela tabela) veja os grácos utilizando algum software (como o fooplot). A função / é impar e / é par. Veja que são similares / 3, / 4, Partindo do gráco de, reita o gráco na reta = para obter gráco de. Depois faça translações para obter o gráco de g() = Veja os grácos de =, = e = utilizando algum software (como o fooplot) para ver a reeão.. (, ) ou (0, ) ou (0, ) dependendo de qual parte do gráco será utilizada.. (a) (, ), (, ) e (, ). (b) Pelo gráco pode-se ver que a imagem destes intervalos são, respectivamente, os intervalos: (, ), (0, ) e (0, ). Logo domínios possíveis para g (não será a mesma função!): (, ), (0, ) e (0, ). Comprove a eistência de mais de uma inversa observando que eistem três possibilidades para g (): aproimadamente, e 3 pelo gráco. 3. Faça um tabela de valores positivos e negativos. Depois (somente após tentar pela tabela) veja os grácos com algum software (como o fooplot). Obtenha inversas por reeão. Veja os grácos de = 3, = /3 = 3 e = utilizando algum software (como o fooplot) para ver a reeão. 4. Verique com algum software (como o fooplot) plotando = ep() = e, = log() e =. 5. (a) Análise de dois termos quadráticos. Será positiva em [ 3, ) e em (, 3]. (b) O termo 3 possui a raiz. Pelo Teorema D'Alembert pode ser fatorado por. Fazendo divisão de polinômios obtemos que 3 = ( )( + + ). Calculando Delta, vemos que o segundo polinômio possui raízes compleas. Como a > 0, o termo Fazendo quadro de sinais com, e 4 (podemos ignorar o termo sempre positivo + + ) obtemos que será negativa em (, 0) e [, ). 6. (a) Positiva nos intervalos ( 3, ) e (, ). Negativa em < 3 ou < < ou >. (b) Positiva nos intervalos (, ) e (0, ). Negativa em < ou < < 0 ou >. Com maima: load("solve_rat_ineq"); solve_rat_ineq((*(+))/(-^)<0); 7. O vértice da parábola tem coordenada =. (a) Mínimo em =, com f() =, máimo em = 3 com f(3) = 6 (veja que f(0) = 3 < f(3) = 6). (b) Comparando valor de f nos etremos (o vértice não pertence ao intervalo): Mínimo em =, f() = 3, máimo em = 3, f(3) = a = 4/3. 9. (a) e 0 =. (b) log 0 não eiste. Mas quando se aproima de 0 pela direita (isto é > 0), log se aproima de. Veja gráco de log próimo do 0. (c) ln = 0. (d) ln e =. (e) e ln 3 = 3. (f) ln(e 5 ) = (a) sen(3π/) =. (b) cos(3π) =. (c) tan(3π/4) =. (d) cos(5π/4) = /. ln 30. Por propriedade do logaritmo, log 5 30 = ln 5. 5

6 . (a) o quadrante pois 3π/3 = π/3 + 5 π e π/3 está no o quadrante. (b) 3o quadrante pois 3π/4 = π + π/4 + π. (c) 4o quadrante π/5 = π π/5. 3. Como β está no o quadrante e θ no 4o, sen β > 0, cos β < 0, sen θ < 0, cos θ > cos β = 5/3 ou cos β = 5/3. No maima: solve(^ + (-/3)^=);. 5. sen γ = 5/ 6. Dica: utilizar + tan = sec = / cos. 6. cos(3a) = cos 3 a 3 cos a sin a e sen( 4a) = 4 cos a sin 3 a 4 cos 3 a sin a. No maima: trigepand(cos(3*a)). 7. (a) a função alterna entre, quando cos() > 0, e, quando cos() < 0. Nos pontos onde cos() = 0 ela não está denida. = = 5π 3π π π 3π 5π (b) f() = cos() cos() f() = 8. (a) Translação vertical de uma unidade do gráco de. (a) = + (b) translação horizontal do log por uma unidade seguido por translação vertical de duas unidades (faça duas guras antes de obter a resposta abaio). (c) = log( ) + (c) Raízes do polinômio:,. Esboce o gráco da parábola ( + )( + ) e depois reita em torno do eio (efeito do módulo). 6

7 (e) = ( + )( + ) Geometria Analítica Básica.. Maior coeciente para menor: = 0 (/3), 3 + = 4 ( 3/) e = 0 ( 5/3).. (a) = 7/3 /3. (b) =. (c) = (3 + )/. 3. (a) =, = 0 e = 3/, = 5/4. (b) =, = e =, = 0. No maima: algss([=^ + -, ^ + -=0], [,]); (a) R: a = 6 ou a =. Dica: distância de a até deve ser 4. (b) R: > /. Dica : Separe em casos: se > 0... e se < 0. Em cada um destes casos eistem subcasos: + > 0 ou + < 0. Alguns destes casos não tem solução alguma. Dica : Em termos de distância, deve estar mais perto de do que de. Faça uma gura. 6. Errado. O correto é 4 + = + pois =. Para > 0 é correto, mas para < 0 não (verique!). 7

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo

Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio

Leia mais

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par.

Funções Elementares. Sadao Massago. Maio de Alguns conceitos e notações usados neste texto. Soma das funções pares é uma função par. Funções Elementares Sadao Massago Maio de 0. Apresentação Neste teto, trataremos rapidamente sobre funções elementares. O teto não é material completo do assunto, mas é somente uma nota adicional para

Leia mais

1 Geometria Analítica Plana

1 Geometria Analítica Plana UNIVERSIDADE ESTADUAL DO PARANÁ CAMPUS DE CAMPO MOURÃO Curso: Matemática, 1º ano Disciplina: Geometria Analítica e Álgebra Linear Professora: Gislaine Aparecida Periçaro 1 Geometria Analítica Plana A Geometria

Leia mais

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0

FUNÇÕES. a < 0. a = 0. a > 0. b < 0 b = 0 b > 0 FUNÇÕES As principais definições, teorias e propriedades sobre funções podem ser encontradas em seu livro-teto (Guidorizzi, vol1, Stewart vol1...); Assim, não vamos aqui nos alongar na teoria que pode

Leia mais

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim

Lista de Férias. 6 Prove a partir da definição de limite que: a) lim. (x + 6) = 9. 1 Encontre uma expressão para a função inversa: b) lim Lista de Férias Bases Matemáticas/FUV Encontre uma epressão para a função inversa: + 3 a) 5 2 + e b) e c) 2 + 5 d) ln( + 3) 6 Prove a partir da definição de ite que: a) 3 ( + 6) = 9 b) = c) 2 = 4 2 d)

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL

CÁLCULO DIFERENCIAL E INTEGRAL Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática CÁLCULO DIFERENCIAL E INTEGRAL Notas de aula para o

Leia mais

Zero de Funções ou Raízes de Equações

Zero de Funções ou Raízes de Equações Zero de Funções ou Raízes de Equações Um número ξ é um zero de uma função f() ou raiz da equação se f(ξ). Graficamente os zeros pertencentes ao conjunto dos reais, IR, são representados pelas abscissas

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites www.cursoeduardochaves.com Cálculo I ª Lista de Eercícios Limites Calcule os ites: a (4 7 +5 b + 5 c ( 5 ++4 d + 5 4 e 5 + 4 + ++ f 6 4 Resp. : a b 0 c /8 d / e 9 5 f Calcule os ites abaio: a 4 b + c +5

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

Resolução dos Exercícios Propostos no Livro

Resolução dos Exercícios Propostos no Livro Resolução dos Eercícios Propostos no Livro Eercício : Mostre que não é número racional Dica: escreva como um possível quociente de números inteiros e use o Teorema Fundamental da Aritmética Mostremos inicialmente

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5.

Curso de linguagem matemática Professor Renato Tião. Relações X Funções Considere a equação x + y = 5. Relações X Funções Considere a equação + =. Embora esta equação tenha duas variáveis, ela possui um número finito de soluções naturais. O conjunto solução desta equação, no universo dos números naturais,

Leia mais

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos

Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne

Leia mais

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18

CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1. CAPÍTULO 2 Sistemas de Coordenadas Retangulares 9. CAPÍTULO 3 Retas 18 Sumário CAPÍTULO 1 Sistemas de Coordenadas Lineares. Valor Absoluto. Desigualdades 1 Sistema de Coordenadas Lineares 1 Intervalos Finitos 3 Intervalos Infinitos 3 Desigualdades 3 CAPÍTULO 2 Sistemas de

Leia mais

Cálculo Diferencial e Integral I CDI I

Cálculo Diferencial e Integral I CDI I Cálculo Diferencial e Integral I CDI I Limites laterais e ites envolvendo o infinito Luiza Amalia Pinto Cantão luiza@sorocaba.unesp.br Limites 1 Limites Laterais a à diretia b à esquerda c Definição precisa

Leia mais

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES

REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES REVISÃO - DESIGUALDADE, MÓDULO E FUNÇÕES Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 REVISÃO

Leia mais

SUMÁRIO. Unidade 1 Matemática Básica

SUMÁRIO. Unidade 1 Matemática Básica SUMÁRIO Unidade 1 Matemática Básica Capítulo 1 Aritmética Introdução... 12 Expressões numéricas... 12 Frações... 15 Múltiplos e divisores... 18 Potências... 21 Raízes... 22 Capítulo 2 Álgebra Introdução...

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas

D I F E R E N C I A L. Prof. ADRIANO CATTAI. Apostila 02: Assíntotas ac C Á L C U L O D I F E R E N C I A L E I N T E G R A L I 02 Prof. ADRIANO CATTAI Apostila 02: Assíntotas NOME: DATA: / / Não há ciência que fale das harmonias da natureza com mais clareza do que a matemática

Leia mais

Lista de Exercícios de Funções

Lista de Exercícios de Funções Lista de Eercícios de Funções ) Seja a R, 0< a < e f a função real de variável real definida por : f() = ( a a ) cos( π) + 4cos( π) + 3 Sobre o domínio A desta função podemos afirmar que : a) (], [ Z)

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Lista de Exercícios do capítulo 4

Lista de Exercícios do capítulo 4 Lista de Eercícios do capítulo 4 1. Eplique a diferença entre um mínimo local e um mínimo absoluto. 2. Nos gráficos abaio, diga se a função tem um máimo local, um mínimo local, um máimo absoluto, um mínimo

Leia mais

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x.

= ; a = -1, b = 3. 1 x ; a = -1, b = 0. M > 0 é um número real fixo. Prove que quaisquer que sejam x, y em I temos f ( x) < x. INSTITUTO DE MATEMÁTICA -UFBA DEPARTAMENTO DE MATEMÁTICA LIMITES E DERIVADAS MAT B a LISTA DE EXERCÍCIOS - 008. - Prof a Graça Luzia Dominguez Santos. Prove que entre duas raízes consecutivas de uma função

Leia mais

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU :

IFSP - EAD _nº 5 FUNÇÃO POLINOMIAL DE PRIMEIRO GRAU, OU FUNÇÃO DE PRIMEIRO GRAU : IFSP - EAD _nº 5 FUNÇÕES CONSTANTE, DE PRIMEIRO E DE SEGUNDO GRAUS. DEFINIÇÕES : FUNÇÃO CONSTANTE : Uma função f: R R é chamada constante se puder ser escrita na forma y = f() = a, onde a é um número real

Leia mais

1 = 0,20, teremos um aumento percentual de 20% no gasto com

1 = 0,20, teremos um aumento percentual de 20% no gasto com 6ROXomR&RPHQWDGDURYDGH0DWHPiWLFD 0. Suponha que o gasto com a manutenção de um terreno, em forma de quadrado, seja diretamente proporcional à medida do seu lado. Se uma pessoa trocar um terreno quadrado

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO PARANÁ CURSO DE ENGENHARIA CIVIL DISCIPLINA DE CÁLCULO DIFERENCIAL E INTEGRAL I 1) Considerações gerais sobre os conjuntos numéricos. Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Cálculo I - Curso de Matemática - Matutino - 6MAT005

Cálculo I - Curso de Matemática - Matutino - 6MAT005 Cálculo I - Curso de Matemática - Matutino - 6MAT005 Prof. Ulysses Sodré - Londrina-PR, 17 de Abril de 008 - provas005.te TOME CUIDADO COM OS GRÁFICOS E DETALHES DA SUBSTITUIÇÃO UTILIZADA.....................................................................................................

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

Gráficos de Funções Trigonométricas

Gráficos de Funções Trigonométricas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Gráficos de Funções

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula

A função do 2º grau. Na aula anterior, estudamos a função do. Nossa aula A UA UL LA A função do º grau Introdução Na aula anterior, estudamos a função do 1º grau ( = a + b) e verificamos que seu gráfico é uma reta. Nesta aula, vamos estudar outra função igualmente importante:

Leia mais

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS

TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS TEMA 2 PROPRIEDADES DE ORDEM NO CONJUNTO DOS NÚMEROS REAIS O conjunto dos números reais,, que possui as seguintes propriedades:, possui uma relação menor ou igual, denotada por O1: Propriedade Reflexiva:

Leia mais

DVD do professor. banco De questões

DVD do professor. banco De questões coneões com Capítulo 8 números compleos capítulo 8. Escreva na forma algébrica os números compleos abaio. a) i i b) i i i c) e o i. (UEL-PR) Qual é a parte real do número compleo 5 a bi, com a e b reais

Leia mais

Lista 0: Revisão Números Reais e Funções Elementares

Lista 0: Revisão Números Reais e Funções Elementares GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/ BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO DIFERENCIAL E INTEGRAL I Lista 0: Revisão

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Equações da reta no plano

Equações da reta no plano 3 Equações da reta no plano Sumário 3.1 Introdução....................... 2 3.2 Equação paramétrica da reta............. 2 3.3 Equação cartesiana da reta.............. 7 3.4 Equação am ou reduzida da reta..........

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

Ordenar ou identificar a localização de números racionais na reta numérica.

Ordenar ou identificar a localização de números racionais na reta numérica. Ordenar ou identificar a localização de números racionais na reta numérica. Estabelecer relações entre representações fracionárias e decimais dos números racionais. Resolver situação-problema utilizando

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Deduzimos a equação do ciclóide na proxima seção.

Deduzimos a equação do ciclóide na proxima seção. Chapter Curvas Paramétricas Introdução e Motivação: No estudo de curvas cartesianas estamos acostumando a tomar uma variável como independente e a outra como dependente, ou seja = f() ou = h(). Porem,

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 2 GABARITO 22 de junho de 201 1. Em cada um dos itens abaixo, dê, se possível,

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

FUNÇÕES E SUAS PROPRIEDADES

FUNÇÕES E SUAS PROPRIEDADES FUNÇÕES E SUAS PROPRIEDADES Í N D I C E Funções Definição... Gráficos (Resumo): Domínio e Imagem... 5 Tipos de Funções... 7 Função Linear... 8 Função Linear Afim... 9 Coeficiente Angular e Linear... Função

Leia mais

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados.

Conjuntos Numéricos. É o conjunto no qual se encontram os elementos de todos os conjuntos estudados. Conjuntos Numéricos INTRODUÇÃO Conjuntos: São agrupamentos de elementos com algumas características comuns. Ex.: Conjunto de casas, conjunto de alunos, conjunto de números. Alguns termos: Pertinência Igualdade

Leia mais

0 < c < a ; d(f 1, F 2 ) = 2c

0 < c < a ; d(f 1, F 2 ) = 2c Capítulo 14 Elipse Nosso objetivo, neste e nos próximos capítulos, é estudar a equação geral do segundo grau em duas variáveis: Ax + Bxy + Cy + Dx + Ey + F = 0, onde A 0 ou B 0 ou C 0 Para isso, deniremos,

Leia mais

Notas de Aula de Cálculo Diferencial e Integral

Notas de Aula de Cálculo Diferencial e Integral Notas de Aula de Cálculo Diferencial e Integral Volume I Fábio Henrique de Carvalho Copright c 03 Publicado por Fundação Universidade Federal do Vale do São Francisco Univasf) www.univasf.edu.br Todos

Leia mais

MATEMÁTICA CADERNO 1 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO SEMIEXTENSIVO E FRENTE ÁLGEBRA n Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, então: I) Δ =

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Matemática B Extensivo v. 8

Matemática B Extensivo v. 8 Matemática B Etensivo v. 8 Eercícios y = Eio real = a = a = C = A + B ( = ( + B B = a y b = D C y = y = 6 9 Daí, a = 6 e b = 9 c = a + b c = 9 + 6 c = c = c = Portanto, a distância focal é dada por: c

Leia mais

Como a PA é decrescente, a razão é negativa. Então a PA é dada por

Como a PA é decrescente, a razão é negativa. Então a PA é dada por Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas DEPARTAMENTO DE MATEMÁTICA E INFORMÁTICA DISCIPLINA: Matemática A (11º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período (15 de setembro a 16 de dezembro) Metas/ Objetivos Conceitos/ Conteúdos Aulas Previstas

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

1.2. Generalidade Sobre Funções O Plano Cartesiano

1.2. Generalidade Sobre Funções O Plano Cartesiano 1.. Generalidade Sobre Funções 1..1. O Plano Cartesiano Assim como podemos representar números reais por pontos numa recta de números reais, podemos também representar pares ordenados de números reais

Leia mais

TEMA I: Interagindo com os números e funções

TEMA I: Interagindo com os números e funções 31 TEMA I: Interagindo com os números e funções D1 Reconhecer e utilizar característictas do sistema de numeração decimal. D2 Utilizar procedimentos de cálculo para obtenção de resultados na resolução

Leia mais

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ

UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as

Leia mais

Modelos Matemáticos: Uma Lista de Funções Essenciais

Modelos Matemáticos: Uma Lista de Funções Essenciais Modelos Matemáticos: Uma Lista de Funções Essenciais Campus Francisco Beltrão Disciplina: Professor: Jonas Joacir Radtke Um modelo matemático é a descrição matemática de um fenômeno do mundo real, como

Leia mais

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos

TEMA TÓPICOS OBJETIVOS ESPECÍFICOS AVALIAÇÃO* Lei dos senos e lei dos cossenos. casos de ângulos retos e obtusos. Resolução de triângulos AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática A 11º ano Ano Letivo

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais

Cálculo 1. S. Friedli Departamento de Matemática Instituto de Ciências Exatas Universidade Federal de Minas Gerais Cálculo S. Friedli Departamento de Matemática Instituto de Ciências Eatas Universidade Federal de Minas Gerais Versão.0 6 de fevereiro de 05 Apostila em acesso livre em www.mat.ufmg.br/~sacha. Cálculo,

Leia mais

por José Adonai Pereira Seixas

por José Adonai Pereira Seixas Cálculo 1 l Q l Q l Q l Q l Q l Q l Q t = f(a + ) Q t b γ Q Q Q Q Q P l f(a) γ : = f() P f(a + ) f(a) l θ θ Q a s θ θ Q a s = a + por José Adonai Pereira Seias Maceió-010 Conteúdo 4 Aplicações da Derivada

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFBA FASE 2 Profa. Maria Antônia Conceição Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFBA FASE 2 Profa. Maria Antônia Conceição Gouveia. RESOLUÇÃO PROV E MTEMÁTI VESTIBULR UFB-8 - FSE Profa. Maria ntônia onceição Gouveia. Questão. Para estudar o desenvolvimento de um grupo de bactérias, um laboratório realiou uma pesquisa durante 5 semanas.

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Escolas João de Araújo Correia ORGANIZAÇÃO DO ANO LETIVO 16 17 GESTÃO CURRICULAR DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA A 11º ANO 1º PERÍODO ---------------------------------------------------------------------------------------------------------------------

Leia mais

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos

NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C

Leia mais

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes Matéria Eame Colegial Aula Matries Aula Matries: Igualdade, adição e subtração Aulas e Multiplicação de matries Aulas 5 e 6 Determinantes: Ordens, e Aula 7 Sistemas Lineares Aulas 8 Sistemas Lineares:

Leia mais

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo)

ESCOLA BÁSICA DE MAFRA 2016/2017 MATEMÁTICA (2º ciclo) (2º ciclo) 5º ano Operações e Medida Tratamento de Dados Efetuar com números racionais não negativos. Resolver problemas de vários passos envolvendo com números racionais representados por frações, dízimas,

Leia mais

Exercício- teste 7 (+) ( ) Figura 1: Análise de sinais de f(x) = ln(x+3) x=0 é A.V. x + = lim. x + x. indet. y=0 é A.H.

Exercício- teste 7 (+) ( ) Figura 1: Análise de sinais de f(x) = ln(x+3) x=0 é A.V. x + = lim. x + x. indet. y=0 é A.H. 2 o Semestre de 2009/200 Eercício- teste 7 a) Faça o estudo da função f() = ln(+3), determinando o seu domínio máimo de definição, assímptotas, caso eistam, intervalos de crescimento e decrescimento (critério

Leia mais

Fun»c~oes trigonom etricas e o \primeiro limite fundamental"

Fun»c~oes trigonom etricas e o \primeiro limite fundamental Aula Fun»c~oes trigonom etricas e o \primeiro ite fundamental" Nesta aula estaremos fazendo uma pequena revis~ao de fun»c~oes trigonom etricas e apresentando um ite que lhes determina suas derivadas..

Leia mais

Prova Escrita de MATEMÁTICA

Prova Escrita de MATEMÁTICA Prova Escrita de MATEMÁTICA Identi que claramente os grupos e as questões a que responde. As funções trigonométricas estão escritas no idioma anglo saxónico. Utilize apenas caneta ou esferográ ca de tinta

Leia mais

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2

UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 2 UFJF ICE Departamento de Matemática CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1- Resolva a inequação 4 3 Resp: 1,4 - Dizemos que uma relação entre dois conjuntos não vazios A e B é uma função de A em B quando:

Leia mais

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação

< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação . Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,

Leia mais

NOVA School of Business & Economics CÁLCULO I 2ºSEM 2011/2012

NOVA School of Business & Economics CÁLCULO I 2ºSEM 2011/2012 NOVA School of Business & Economics CÁLCULO I ºSEM / Equipa Docente Responsável: Maria Helena Almeida.... (mhalmeida@novasbe.pt) Assistentes: Cláudia Alves.... (claudia.alves@novasbe.pt) Cláudia Andrade....

Leia mais

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande

Pré-Cálculo. Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega. FURG - Universidade Federal de Rio Grande Pré-Cálculo Camila Perraro Sehn Eduardo de Sá Bueno Nóbrega Projeto Pré-Cálculo Este projeto consiste na formulação de uma apostila contendo os principais assuntos trabalhados na disciplina de Matemática

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 2015-2016 DISCIPLINA / ANO: Matemática A 10ºano de escolaridade MANUAL ADOTADO: NOVO ESPAÇO 10 GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar).

Segue, abaixo, o Roteiro de Estudo para a Verificação Global 2 (VG2), que acontecerá no dia 26 de junho de 2013 (a confirmar). Divisibilidade - Regras de divisibilidade por 2, 3, 4, 5, 6, 8, 9 e 10. - Divisores de um número natural. - Múltiplos de um número natural. - Números primos. - Reconhecimento de um número primo. - Decomposição

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1

2.1A Dê o domínio e esboce o grá co de cada uma das funções abaixo. (a) f (x) = 3x (b) g (x) = x (c) h (x) = x + 1 (d) f (x) = 1 3 x + 5 1 2.1 Domínio e Imagem 2.1A Dê o domínio e esboce o grá co de cada uma das funções abaio. (a) f () = 3 (b) g () = (c) h () = (d) f () = 1 3 + 5 1 3 (e) g () 2 (f) g () = jj 8 8

Leia mais

7. Diferenciação Implícita

7. Diferenciação Implícita 7. Diferenciação Implícita ` Sempre que temos uma função escrita na forma = f(), dizemos que é uma função eplícita de, pois podemos isolar a variável dependente de um lado e a epressão da função do outro.

Leia mais

MATEMÁTICA ELEMENTAR II:

MATEMÁTICA ELEMENTAR II: Marcelo Gorges Olímpio Rudinin Vissoto Leite MATEMÁTICA ELEMENTAR II: situações de matemática do ensino médio no dia a dia 009 009 IESDE Brasil S.A. É proibida a reprodução, mesmo parcial, por qualquer

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

MATEMÁTICA A - 12o Ano

MATEMÁTICA A - 12o Ano MATEMÁTICA A - 1o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. Seja f a função, de domínio ] π, + [, definida por + sen se π cos < 0 f() = ln se >

Leia mais

Apostila- Pré-Cálculo

Apostila- Pré-Cálculo Apostila- Pré-Cálculo Disciplina: Cálculo Diferencial e Integral Curso: Engenharias Profª: Gislaine Vieira Capítulo Matemática Elementar.) Conjuntos Numéricos Conjunto dos números Naturais (IN) IN {0,,,,,...}

Leia mais

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES

LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES 008 LISTA DE EXERCÍCIOS CÁLCULO II INTEGRAL DEFINIDA E SUAS APLICAÇÕES. Calcular a soma superior e inferir de f ( =. sen( no intervalo [0,] com divisões.,86 u.a. e,6 u.a.. Esboce o gráfico e aproime com

Leia mais

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO

DISTRIBUIÇÃO DOS DOMÍNIOS POR PERÍODO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Planificação Anual da Disciplina de Matemática 10.º ano Ano Letivo de 2015/2016 Manual adotado: Máximo 10 Matemática A 10.º ano Maria Augusta Ferreira

Leia mais

Matemática e suas tecnologias

Matemática e suas tecnologias Matemática e suas tecnologias Fascículo 1 Módulo 1 Teoria dos conjuntos e conjuntos numéricos Noção de conjuntos Conjuntos numéricos Módulo 2 Funções Definindo função Lei e domínio Gráficos de funções

Leia mais

Posição relativa entre retas e círculos e distâncias

Posição relativa entre retas e círculos e distâncias 4 Posição relativa entre retas e círculos e distâncias Sumário 4.1 Distância de um ponto a uma reta.......... 2 4.2 Posição relativa de uma reta e um círculo no plano 4 4.3 Distância entre duas retas no

Leia mais

Extensão da tangente, cossecante, cotangente e secante

Extensão da tangente, cossecante, cotangente e secante Extensão da tangente, cossecante, cotangente e secante Definimos as funções trigonométricas tgθ = senθ cosθ para θ (k+1)π, onde k é inteiro. Note que os ângulos do tipo θ = (k+1)π secθ = 1 cosθ, são os

Leia mais

LISTA TRIGONOMETRIA ENSINO MÉDIO

LISTA TRIGONOMETRIA ENSINO MÉDIO LISTA TRIGONOMETRIA ENSINO MÉDIO 1. Um papagaio ou pipa, é preso a um fio esticado que forma um ângulo de 45 com o solo. O comprimento do fio é de 100 m. Determine a altura do papagaio em relação ao solo.

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS PÚBLICO GERAL RESOLUÇÃO DA PROVA DE MATEMÁTICA. 2 0x RESOLUÇÃO DA PROVA DE MATEMÁTICA Sistema de equações. 0) Definimos por renda familiar a soma dos salários dos componentes de uma família. A família de Carlos é composta por ele, a esposa e um filho. Sabendo-se

Leia mais

Exercícios para as aulas TP

Exercícios para as aulas TP Generalidades sobre funções reais de variável real. FichaTP0. Considere os gráficos correspondentes a duas funções reais de variável real: y y 5-0 4-5 4 3-3 - - 0 3 4 - Indique para cada uma delas: (a)

Leia mais

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ)

MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) [ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec =, sen 0 sen sen cos tg cotg = sec =, cos 0 cos tg = sen cos, cos 0 cos sen, sen 0 sen + cos = ) a n = a + (n ) r ) A = onde b h D = ou y A = D y y a + an )

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Trigonometria Circular - 1a. parte Roteiro no. 6 - Atividades didáticas de 2007 Versão compilada no dia 23 de Maio de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré

Leia mais