Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Curso Satélite de. Matemática. Sessão n.º 4. Universidade Portucalense"

Transcrição

1 Curso Satélite de Matemática Sessão n.º 4 Universidade Portucalense

2 Continuidade de uma função: Seja c um ponto pertencente ao domínio da função f. Dizemos que a função f é contínua em c quando lim f ( x ) f ( c ) lim f ( x ). x c x c Isto quer dizer que o limite da função f à esquerda de c é igual à imagem de f em c que, por sua vez, ainda é igual ao limite da função f à direita de c. Exemplo 1: as funções polinomiais são funções contínuas em todo os x R. Exemplo 2: as funções exponenciais e logarítmicas são funções contínuas em todos os pontos x pertencentes ao seu domínio.

3 Exemplo 1: considere-se a função f de gráfico: Observando o gráfico de f, podemos concluir que: lim f ( x ) lim f ( x ) 1 f (1). x 1 x 1 Então a função f é contínua em 1, bem como nos restantes valores de x R.

4 Exemplo 2: considere-se a função g de gráfico: Observando o gráfico de g, podemos concluir que: lim g ( x ) lim g ( x ) g (1). x 1 x 1 Então a função g não é contínua em 1, mas é contínua nos restantes valores de x R.

5 Propriedades das funções contínuas: Considerem-se duas funções f e g que são contínuas em c. Então f + g, f g, f g e α f, α R, também são funções contínuas em c; se g(c) 0, então f/g também é uma função contínua em c;

6 Derivada de uma função num ponto: Quando se analisa uma função, interessa averiguar quais são os intervalos de números reais onde a função: é crescente: f é crescente no intervalo S se 1 2 é estritamente crescente: f é estritamente crescente em S se é decrescente: f é decrescente em S se x x S x x f x f x ;, x x S x x f x f x ;, x x S x x f x f x ;, é estritamente decrescente: f é estritamente decrescente em S se, x x S x x f x f x 1 2

7 Uma das medidas que permitem caracterizar o comportamento de uma função é a taxa de variação média. A taxa de variação média de f entre dois pontos a e b, é dada por f ( b) f ( a) t. v. m.. b a Tal como o próprio nome indica, esta medida traduz a média de variação da função f no eixo das ordenadas (por cada unidade que se avança no eixo das abcissas), no intervalo entre a e b. Se a taxa de variação média for positiva, então a imagem da função em b é maior do que a imagem da função em a. Se a taxa de variação média for negativa, então a imagem da função em b é menor do que a imagem da função em a.

8 Exemplo: Considere-se a função f(x) = x 2. A t.v.m. entre -1 e 2 é t. v. m. f(2) f( 1) 2 ( 1) Podemos então concluir que, no intervalo de -1 a 2, a função f(x) = x 2 cresce, em média, uma unidade no eixo das ordenadas, por cada unidade que se avança no eixo das abcissas.

9 A taxa de variação média permite-nos averiguar qual é o comportamento médio da função entre a e b, mas não nos permite concluir nada sobre o crescimento ou decrescimento exactos da função em cada ponto concreto do intervalo. Como exemplo, se considerarmos apenas o ponto a do intervalo, a t.v.m. entre a e b não nos permite saber se a função cresce ou decresce nesse ponto. Para tal precisamos de uma taxa de variação instantânea em a e não de uma taxa de variação média. Isso leva-nos a tentar aproximar cada vez mais o ponto b do ponto a, para obter essa taxa de variação instantânea em a.

10

11 Definição de derivada: Seja f uma função real de variável real e a um ponto pertencente ao domínio de f. Chama-se derivada da função f no ponto a, e denota-se por f (a), ao limite f ( b) f ( a) f ( a h) f ( a) lim( t. v. m.) lim que equivale a lim. b a b a b a h 0 h caso o limite exista (podendo ser + ou ). Se uma função admite derivada num ponto dizemos que ela é derivável nesse ponto. Se f (a) é finita, dizemos que f é diferenciável em a. A derivada da função f no ponto a é o declive da recta tangente ao gráfico de f no ponto de coordenadas (a, f(a)).

12 Chamamos função derivada de f e denotamo-la por f à função definida do seginte modo f ': D' x y f '( x), onde D representa o conjunto dos pontos onde f é diferenciável. Seja I D um intervalo de números reais. Então: Se f (x) = 0, para todo o x I, então f é uma função constante em I; Se f (x) > 0, para todo o x I, então f é uma função estritamente crescente em I; Se f (x) < 0, para todo o x I, então f é uma função estritamente decrescente em I.

13 Regras de derivação: Existem algumas regras que facilitam o cálculo das funções derivadas. Seguidamente anunciam-se as mais importantes. Sejam f e g duas funções diferenciáveis em x, e c R. Então: Se f(x) = c, então f (x) = (c) = 0. Exemplo: a derivada de f(x) = 3 é a função f (x) = (3) = 0 (e confirma-se que f é constante porque a sua derivada é zero). Se f(x) = x, então f (x) = 1 (e confirma-se que esta função é estritamente crescente porque a sua derivada é positiva.). Se f(x) = c g(x), então f (x) = (c g(x)) = c g (x). Exemplo: a derivada de f(x) = 3x é a função f (x) = ( 3 x) = 3 (x) = 3 1 = 3 (f é estritamente decrescente).

14 (f + g) (x) = (f(x) + g(x)) = f (x) + g (x). Exemplo: Seja f(x) = 3x e g(x) = 4. A derivada de f + g é a função (f + g) (x) = (f(x) + g(x)) = (3x + 4) = f (x) + g (x) = (3x) + (4) = 3 (f+g é estritamente crescente porque tem derivada positiva) (f g) (x) = (f(x) g(x)) = f (x) g (x). (f g) (x) = (f(x) g(x)) = f (x) g(x) + f(x) g (x). Exemplo: Seja f(x) = x e g(x) = x. A derivada de fg é a função (fg) (x) = (f(x)g(x)) = (x x) = (x) x + x (x) = 1 x + x 1 = 2x (fg é estritamente decrescente de a 0 porque tem derivada negativa nesse intervalo e é estritamente crescente de 0 a + porque tem derivada positiva nesse intervalo). Nota: no exemplo anterior concluímos que a derivada da função f(x) = x 2 é a função f (x) = 2x.

15 f f ( x) g( x) f ( x) g ( x) ( x). g gx ( ) 2 Exemplo: Seja f(x) = 1 e g(x) = x. A derivada de f / g é a função f 1 (1) x 1 ( x) 0 x ( x) g x x x x (como a função derivada é sempre negativa em todos os pontos em que está definida, então f / g é uma função estritamente decrescente em R\{0}). Se f(x) = x n, para qualquer n N, então f (x) = n x n 1. Exemplo: se f(x) = x 5, então f (x) = 5x 4.

16 Se f(x) = a x, então f (x) = a x ln(a), para qualquer a positivo diferente de 1. Exemplo: se f(x) = 5 x, então f (x) = 5 x ln(5). Se f(x) = log a (x), então 1 f ( x), xln( a) para qualquer a positivo diferente de 1. Exemplo: se f(x) = ln(x), então f (x) = 1/x.

17 Extremos de uma função: Seja f uma função de domínio D e a D. a diz-se um maximizante local de f se existir uma vizinhança de a onde, em qualquer x dessa vizinhança, f(a) é maior ou igual do que f(x). Máximo Neste caso, f(a) diz-se um máximo local ou um máximo relativo de f. Maximizante

18 a diz-se um minimizante local de f se existir uma vizinhança de a onde, em qualquer x dessa vizinhança, f(a) é menor ou igual do que f(x). Mínimo Neste caso, f(a) diz-se um mínimo local ou um mínimo relativo de f. Minimizante

19 a diz-se um maximizante global de f se, em qualquer x pertencente ao domínio de f, f(a) é maior ou igual do que f(x). Máximo Neste caso, f(a) diz-se um máximo global ou um máximo absoluto de f. Maximizante

20 a diz-se um minimizante global de f se, em qualquer x pertencente ao domínio de f, f(a) é menor ou igual do que f(x). Mínimo Neste caso, f(a) diz-se um mínimo global ou um mínimo absoluto de f. Minimizante

21 Aos máximos e mínimos locais da função f chamamos extremos locais de f. Aos máximos e mínimos globais da função f chamamos extremos globais de f. Aos maximinantes e minimizantes locais da função f chamamos extremantes locais de f. Aos maximinantes e minimizantes globais da função f chamamos extremantes globais de f. É importante saber determinar os extremos de uma função.

22 Determinação dos extremos de uma função: Seja f uma função de domínio D, contínua em D e diferenciável em D, excepto possivelmente no ponto c D. Então: se f (x) > 0 para todo o x < c, e se f (x) < 0 para todo o x > c, então f(c) é um máximo local de f; se f (x) < 0 para todo o x < c, e se f (x) > 0 para todo o x > c, então f(c) é um mínimo local de f. Se f(c) é um extremo local de f, então f (c) = 0, ou f (c) não está definida. Chamam-se valores críticos aos valores de x que fazem com que f (x) = 0, ou aos valores de x onde f (x) não está definida. Os valores críticos são potenciais extremantes de f.

23 Procedimento para determinar os extremos de uma função: Exemplo: Seja f(x) = x 3 /3 x 2 3x + 2. Pretendemos determinar os extremos da função f. 1. Em primeiro lugar é preciso encontrar a primeira derivada da função f. Usando as regras de derivação: f (x) = x 2 2x Depois de encontrada a derivada de f, devem-se encontrar os valores críticos. Assim f (x) = 0 x 2 2x 3 = 0 x = 1 x = 3. Os valores críticos são o -1 e o 3. Nestes valores de x, podem existir extremos da função f.

24 3. Seguidamente constrói-se um diagrama de sinal para f, onde começamos por marcar os valores críticos: x f (x) 0 0 f(x) 11/3-7 Note-se que também devemos marcar os valores que f e f assumem nos valores críticos. f(-1) = (-1) 3 /3 (-1) 2 3 (-1) + 2 = 11/3; f(3) = 3 3 / = 7; f (-1) = f (3) = 0.

25 Depois averiguamos se f é positiva ou negativa entre os valores críticos. Relembre-se que f positiva implica f estritamente crescente e f negativa implica f estritamente decrescente. f (-2) = (-2) 2 2 (-2) 3 = 5 > 0 (f estritamente crescente); f (0) = = 3 < 0 (f estritamente decrescente); f (4) = = 5 > 0 (f estritamente crescente). Daqui resulta o seguinte diagrama de sinal: X f (x) f(x) 11/3-7

26 Do diagrama de sinal podemos concluir que: f é estritamente crescente no intervalo ]-, -1[; f é estritamente decrescente no intervalo ]-1, 3[; f é estritamente crescente no intervalo ]3, + [. Então: -1 é um maximizante local de f; 11/3 é um máximo local de f; 3 é um minimizante local de f; -7 é um mínimo local de f.

27 4. Usando a informação do diagrama de sinal, é possível fazer um esboço do gráfico da função f.

28 Concavidades e pontos de inflexão de uma função: É possível complementar o estudo do gráfico de uma função f recorrendo à segunda derivada de f: Sejam f e f duas funções diferenciáveis em x. Chamamos segunda derivada de f no ponto x (denotamos por f (x)) à derivada da derivada de f. f permite estudar as concavidades do gráfico de f. Seja f uma função diferenciável em ]a, b[ tal que existe e é finita f (x), para todo o x ]a, b[. Se, para qualquer x ]a, b[: f (x) > 0, então o gráfico de f tem concavidade voltada para cima em ]a, b[; f (x) < 0, então o gráfico de f tem concavidade voltada para baixo em ]a, b[;

29 Procedimento para determinar as concavidades de uma função: Exemplo: Voltando à função f(x) = x 3 /3 x 2 3x + 2, pretendemos determinar as concavidades da função f. 1. Em primeiro lugar é preciso encontrar a primeira derivada da função f. Como vimos atrás f (x) = x 2 2x Seguidamente, temos de encontrar a segunda derivada de f. Assim, a derivada de f é: f (x) = 2x 2 3. Encontramos os pontos onde a segunda derivada é nula: f (x) = 0 2x 2 = 0 x = 1. A segunda derivada anula-se em x = 1. Neste valor de x, a concavidade da função pode ser alterada.

30 4. Seguidamente constrói-se um diagrama de sinal para f, onde começamos por marcar os valores onde a segunda derivada é nula: Note-se que também devemos marcar os valores que f e f assumem em x = 1. f(1) = (1) 3 /3 (1) 2 3 (1) + 2 = -5/3; f (1) = 0. x f (x) 0 f(x) -5/3

31 Depois averiguamos se f é positiva ou negativa nos restantes valores de x. Relembre-se que f positiva implica concavidade do gráfico de f voltada para cima, e f negativa implica concavidade do gráfico de f voltada para baixo. f (0) = = -2 < 0 (concavidade voltada para baixo); f (2) = = 2 > 0 (concavidade voltada para cima). Daqui resulta o seguinte diagrama de sinal: x f (x) 0 + f(x) -5/3

32 Do diagrama de sinal podemos concluir que: f tem concavidade voltada para baixo no intervalo ]-, 1[; f tem concavidade voltada para cima no intervalo ]1, + [. Então: O ponto de coordenadas (1, f(1)) = (1, -5/3) é um ponto onde a concavidade do gráfico da função f é alterada. Os pontos onde a concavidade do gráfico da função se altera denominam-se pontos de inflexão do gráfico da função.

33 5. Usando a informação deste diagrama de sinal, é possível complementar o esboço do gráfico da função f.

34 Problema: Suponha que o lucro diário de uma empresa pode ser traduzido pela função f(x) = x 2 10x 200, onde x representa o número de unidades que a empresa consegue vender nesse dia. Faça um estudo dos intervalos de monotonia e das concavidades do gráfico da função f. Por fim, faça um esboço do gráfico de f. Resolução: Comecemos por estudar os intervalos de monotonia da função f. A primeira derivada de f é a função: f (x) = 2x 10. Os pontos críticos de f são dados por f (x) = 0 2x 10 = 0 x = 5. x = 5 pode ser um extremante de f.

35 Construindo um diagrama de sinal para f, começamos por marcar o valor crítico: Também marcamos os valores que f e f assumem no valor crítico: f(5) = = 225; f (5) = = 0. x f (x) 0 f(x) -225

36 Averiguando se f é positiva ou negativa nos restantes valores de x: f (4) = = 2 < 0 (f estritamente decrescente); f (6) = = 2 > 0 (f estritamente crescente). Daqui resulta o seguinte diagrama de sinal: x f (x) 0 + f(x) -225 f é estritamente decrescente em ]-, 5[ e é estritamente crescente em ]5, + [. Por isso, 5 é um minimizante e -225 é o mínimo global da função f.

37 Estudemos agora as concavidades da função f. A segunda derivada de f é a função: f (x) = 2. Como a segunda derivada de f é positiva em todos os x R, f tem concavidade voltada para cima em R. Obtém-se o seguinte diagrama de sinal para f : x - + f (x) + f(x)

38 Usando a informação obtida anteriormene, é possível fazer um esboço do gráfico da função f.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada.

Para identificar intervalos de crescimento e decrescimento de uma função analisamos o comportamento de sua primeira derivada. O CONCEITO DE DERIVADA (continuação) Funções Crescentes e Decrescentes Existe uma relação direta entre a derivada de uma função e o crescimento desta função. Em geral, temos: Se, para todo x ]a, b[ tivermos

Leia mais

CÁLCULO I. 1 Funções Crescentes e Decrescentes

CÁLCULO I. 1 Funções Crescentes e Decrescentes CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 14: Crescimento e Decrescimento. Teste da Primeira Derivada. Objetivos da Aula Denir funções crescentes e decrescentes; Determinar os intervalos

Leia mais

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... }

Conjuntos Numéricos. I) Números Naturais N = { 0, 1, 2, 3,... } Conjuntos Numéricos I) Números Naturais N = { 0, 1, 2, 3,... } II) Números Inteiros Z = {..., -2, -1, 0, 1, 2,... } Todo número natural é inteiro, isto é, N é um subconjunto de Z III) Números Racionais

Leia mais

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Gráficos. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Gráficos Material online: h-p://www.im.ufal.br/professor/thales/calc12010_2.html O que f nos diz sobre f? O que f nos diz sobre f? f (x) < 0 f (x) > 0 f(x) =x 2 f (x) =2x x>0 f (x) > 0 x

Leia mais

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y

Comecemos por relembrar as propriedades das potências: = a x c) a x a y = a x+y . Cálculo Diferencial em IR.1. Função Exponencial e Função Logarítmica.1.1. Função Exponencial Comecemos por relembrar as propriedades das potências: Propriedades das Potências: Sejam a e b números positivos:

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57

Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE. Aula 2 p.1/57 Aula 2 p.1/57 Aula 2: Funções. Margarete Oliveira Domingues PGMET/INPE Definição e representação Aula 2 p.2/57 Aula 2 p.3/57 Função Definição: Uma função de um conjunto em um conjunto, é uma correspondência

Leia mais

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22

Pelo gráfico, temos: f(x) 5 0 x 5 23 ou x 5 21 f(x). 0 x, 23 ou x. 21. f(x) Pelo gráfico, temos: Pelo gráfico, temos: f(x) 5 0 x 5 22 Resolução das atividades complementares Matemática M7 Função do o grau p. 0 Estude os sinais da função quadrática ƒ dada por: a) 5 x 8x c) 5 x 4x 4 b) 5 x x d) x x a) zeros de f: x 8x 5 0 x 4x 5 0 (x )?

Leia mais

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor

Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Sobre Desenvolvimentos em Séries de Potências, Séries de Taylor e Fórmula de Taylor Pedro Lopes Departamento de Matemática Instituto Superior Técnico o. Semestre 004/005 Estas notas constituem um material

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais 1. Na figura abaixo, está representada, num referencial o.n. xoy, parte do gráfico de uma função polinomial f. Em qual das opções seguintes pode estar representada

Leia mais

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada.

CÁLCULO I Aula 14: Crescimento e Decrescimento. Teste da Primeira Derivada. CÁLCULO I Aula 14:.. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Denição Sejam f : A B uma função e x 1, x 2 D f. Denimos que f é uma (i) função crescente se x 1

Leia mais

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe.

ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO. Um ponto c do domínio de uma função f é chamado de ponto crítico da f se f (c) = 0 ou f (c) não existe. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL Faculdade de Matemática - Departamento de Matemática Cálculo I - 2006 PONTO CRÍTICO ANÁLISE DO COMPORTAMENTO DE UMA FUNÇÃO Um ponto c do domínio de

Leia mais

Aplicações das derivadas ao estudo do gráfico de funções

Aplicações das derivadas ao estudo do gráfico de funções Aplicações das derivadas ao estudo do gráfico de funções MÁXIMOS E MÍNIMOS LOCAIS: Seja f uma f. r. v. r. definida num intervalo e D f. 1) f tem um mínimo local f ( ), em, se e só se f ( ) f ( ) para qualquer

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 2 Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Escola Secundária com º ciclo D. Dinis 0º no de Matemática TEM Funções e Gráficos Generalidades. Funções polinomiais. Função módulo. Tarefa nº 5 FUNÇÕES LINERES E VRIÇÃO DE PRÂMETROS. Considere as seguintes

Leia mais

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:

A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x: 1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e mata O gráfico de uma função é, na maioria das vezes bastante útil para visualizar propriedades da função. Assim, de forma a podermos representar com rigor uma função, devemos fazer um estudo pormenorizado

Leia mais

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense

Curso Satélite de. Matemática. Sessão n.º 2. Universidade Portucalense Curso Satélite de Matemática Sessão n.º 2 Universidade Portucalense Funções reais de variável real Deinição e generalidades Uma unção é uma correspondência que a qualquer elemento de um conjunto D az corresponder

Leia mais

Limites. 2.1 Limite de uma função

Limites. 2.1 Limite de uma função Limites 2 2. Limite de uma função Vamos investigar o comportamento da função f definida por f(x) = x 2 x + 2 para valores próximos de 2. A tabela a seguir fornece os valores de f(x) para valores de x próximos

Leia mais

f x x x f x x x f x x x f x x x

f x x x f x x x f x x x f x x x Página 1 de 7 I. FUNÇÃO DO º GRAU (ou QUADRÁTICA) 1. Definição Chama-se função do º grau (ou função quadrática) a toda função do tipo onde a, e c são números reais e a 0. São exemplos: f ( x) ax x c =

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO QUADRÁTICA PARTE 2 EIXO DE SIMETRIA... COEFICIENTES a, b E c NO GRÁFICO... SINAL DA FUNÇÃO QUADRÁTICA...4 INEQUAÇÕES DO º GRAU...9 INEQUAÇÕES PRODUTO E QUOCIENTE... 4 SISTEMA DE INEQUAÇÕES DO º GRAU... 8 REFERÊNCIA BIBLIOGRÁFICA...

Leia mais

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015

Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 bras.png Cálculo I Logonewton.png Aula 05 - Limite de uma Função - Parte I Data: 30/03/2015 Objetivos da Aula: Definir limite de uma função Definir limites laterias Apresentar as propriedades operatórias

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

A velocidade instantânea (Texto para acompanhamento da vídeo-aula)

A velocidade instantânea (Texto para acompanhamento da vídeo-aula) A velocidade instantânea (Texto para acompanamento da vídeo-aula) Prof. Méricles Tadeu Moretti Dpto. de Matemática - UFSC O procedimento que será utilizado neste vídeo remete a um tempo em que pesquisadores

Leia mais

OBJETIVOS DOS CAPÍTULOS

OBJETIVOS DOS CAPÍTULOS OBJETIVOS DOS CAPÍTULOS Capítulo 1 Nesse capítulo, você notará como muitas situações práticas nas áreas de administração, economia e ciências contábeis podem ser representadas por funções matemáticas.

Leia mais

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I

Universidade Católica de Petrópolis. Matemática 1. Funções Polinomiais Aula 5: Funções Quadráticas v Baseado nas notas de aula de Matemática I Universidade Católica de Petrópolis Matemática 1 Funções Polinomiais Aula 5: Funções Quadráticas v. 0.1 Baseado nas notas de aula de Matemática I da prof. Eliane dos Santos de Souza Coutinho Luís Rodrigo

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

MAT001 Cálculo Diferencial e Integral I

MAT001 Cálculo Diferencial e Integral I 1 MAT001 Cálculo Dierencial e Integral I RESUMO DA AULA TEÓRICA 1 Livro do Stewart: Seções 4.1 a 4.. MÁXIMOS E MÍNIMOS ABSOLUTOS: revisão da aula teórica 6 Deinição: O máximo absoluto de uma unção em um

Leia mais

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática Valor Absoluto: O valor absoluto de a, representa-se por a e é a distância do número a a

Leia mais

Esboço de Gráficos (resumo)

Esboço de Gráficos (resumo) Esboço de Gráficos (resumo) 1 Máximos e Mínimos Definição: Diz-se que uma função tem um valor máximo relativo (máximo local) em c se existe um intervalo ( a, b) aberto contendo c tal que f ( c) f ( x)

Leia mais

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções

Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R.

Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Capítulo 2 Funções e grácos 2.1 Funções númericas Chamamos de funções numéricas aquelas cujas variáveis envolvidas são números reais. Isso é funções denidas sobre R ou uma parte de R e a valor em R. Denição

Leia mais

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA:

LISTA 01 MATEMÁTICA PROF. FABRÍCIO 9º ANO NOME: TURMA: C e n t r o E d u c a c i o n a l A d v e n t i s t a M i l t o n A f o n s o Reconhecida Portaria 46 de 26/09/77 - SEC -DF CNPJ 60833910/0053-08 SGAS Qd.611 Módulo 75 CEP 70200-710 Brasília-DF Fone: (61)

Leia mais

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE)

Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila Organizada por: Kamila Gomes Ludmilla Rangel Cardoso Silva Carmem Lúcia Vieira Rodrigues Azevedo

Leia mais

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18

A derivada da função inversa, o Teorema do Valor Médio e Máximos e Mínimos - Aula 18 A derivada da função inversa, o Teorema do Valor Médio e - Aula 18 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 10 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106

Leia mais

Matemática I - 2 a Parte: Cálculo Diferencial e Integral real

Matemática I - 2 a Parte: Cálculo Diferencial e Integral real Matemática I - 2 a Parte: Cálculo Diferencial e Integral real Ana Rita Martins Católica Lisbon 1 o Semestre 2012/2013 1 / 99 Funções Uma função é uma correspondência f entre dois conjuntos A e B, que a

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

(x 2,y 2 ) (x 4,y 4 ) x

(x 2,y 2 ) (x 4,y 4 ) x 2.3. Derivadas 2.3.1. Definição e Interpretação Geométrica Anteriormente já mostrámos como o coeficiente angular de uma recta - declive de uma recta - indica a taa à qual a recta sobe ou desce. para uma

Leia mais

Derivadas das Funções Trigonométricas Inversas

Derivadas das Funções Trigonométricas Inversas UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Derivadas das Funções

Leia mais

Métodos Matemáticos para Gestão da Informação

Métodos Matemáticos para Gestão da Informação Métodos Matemáticos para Gestão da Informação Aula 04 Taxas de variação e função lineares II Dalton Martins dmartins@gmail.com Bacharelado em Gestão da Informação Faculdade de Informação e Comunicação

Leia mais

A Segunda Derivada: Análise da Variação de Uma Função

A Segunda Derivada: Análise da Variação de Uma Função A Segunda Derivada: Análise da Variação de Uma Função Suponhamos que a função y = f() possua derivada em um segmento [a, b] do eio-. Os valores da derivada f () também dependem de, ou seja, a derivada

Leia mais

Apostila de Cálculo I

Apostila de Cálculo I Limites Diz-se que uma variável tende a um número real a se a dierença em módulo de -a tende a zero. ( a ). Escreve-se: a ( tende a a). Eemplo : Se, N,,,4,... quando N aumenta, diminui, tendendo a zero.

Leia mais

LIMITES E CONTINUIDADE

LIMITES E CONTINUIDADE LIMITES E CONTINUIDADE Marina Vargas R. P. Gonçalves a a Departamento de Matemática, Universidade Federal do Paraná, marina.vargas@gmail.com, http:// www.estruturas.ufpr.br 1 NOÇÃO INTUITIVA DE LIMITE

Leia mais

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão)

Resolvendo inequações: expressões com desigualdades (encontrar os valores que satisfazem a expressão) R é ordenado: Se a, b, c R i) a < b se e somente se b a > 0 (a diferença do maior com o menor será positiva) ii) se a > 0 e b > 0 então a + b > 0 (a soma de dois números positivos é positiva) iii) se a

Leia mais

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO

TEORIA CONSTRUINDO E ANALISANDO GRÁFICOS 812EE 1 INTRODUÇÃO CONSTRUINDO E ANALISANDO GRÁFICOS 81EE 1 TEORIA 1 INTRODUÇÃO Os assuntos tratados a seguir são de importância fundamental não somente na Matemática, mas também na Física, Química, Geografia, Estatística

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA

4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 43 4. AS FUNÇÕES EXPONENCIAL E LOGARÍTMICA 4.1. A FUNÇÃO EXPONENCIAL Vimos no capítulo anterior que dado a R +, a potência a pode ser definida para qualquer número R. Portanto, fiando a R +, podemos definir

Leia mais

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante

eixo das ordenadas y eixo das abscissas Origem 1º quadrante 2º quadrante O (0, 0) x 4º quadrante 3º quadrante PLANO CARTESIANO eixo das ordenadas y 2º quadrante 1º quadrante eixo das abscissas O (0, 0) x Origem 3º quadrante 4º quadrante y ordenado do ponto P 4 P P(3, 4) O 3 x abscissa do ponto P No caso, 3 e 4

Leia mais

MATEMÁTICA Prof.: Alexsandro de Sousa

MATEMÁTICA Prof.: Alexsandro de Sousa E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães

Leia mais

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES 47 6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES Na figura abaixo, seja a reta r e o ponto F de um determinado plano, tal que F não pertence a r. Consideremos as seguintes questões: Podemos obter,

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório

E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO. Conteúdo Programáticos / Matemática e a Realidade. Curso de Nível III Técnico de Laboratório E. S. JERÓNIMO EMILIANO DE ANDRADE DE ANGRA DO HEROISMO Curso de Nível III Técnico de Laboratório Técnico Administrativo PROFIJ Conteúdo Programáticos / Matemática e a Realidade 2º Ano Ano Lectivo de 2008/2009

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

1.1 Conceitos Básicos

1.1 Conceitos Básicos 1 Zeros de Funções 1.1 Conceitos Básicos Muito frequentemente precisamos determinar um valor ɛ para o qual o valor de alguma função é igual a zero, ou seja: f(ɛ) = 0. Exemplo 1.1 Suponha que certo produto

Leia mais

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU

UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU UNIDADE IV FUNÇÃO AFIM OU POLINOMIAL do 1 o. GRAU 1. MOTIVAÇÃO/INTRODUÇÃO. FUNÇÃO AFIM DO DE PRIMEIRO GRAU 3. GRÁFICO DE UMA FUNÇÃO AFIM 4. RAIZ DA FUNÇÃO AFIM 5. INTERSECÇÃO DO GRÁFICO DE UMA FUNÇÃO AFIM

Leia mais

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e

Conceitos: Função. Domínio, contradomínio e imagem de uma função. Funções potência, exponencial e Matemática II 05/6 Curso: Gestão Departamento de Matemática ESTG-IPBragança Ficha Prática : Revisões: Funções, Derivadas. Primitivas -------------------------------------------------------------------------------------------------------------------

Leia mais

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano

CÁLCULO NUMÉRICO. Profa. Dra. Yara de Souza Tadano CÁLCULO NUMÉRICO Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 04/2014 Zeros reais de funções Parte 1 Objetivo Determinar valores aproximados para as soluções (raízes) de equações da

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo

Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D. Professora: Elisandra Bär de Figueiredo Lista 8: Análise do comportamento de funções - Cálculo Diferencial e Integral I - Turma D Professora: Elisandra Bär de Figueiredo 1. Seja f() = 5 + + 1. Justique a armação: f tem pelo menos uma raiz no

Leia mais

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o

P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o P L A N I F I C A Ç Ã 0 E n s i n o S e c u n d á r i o 206-207 DISCIPLINA / ANO: Matemática A - ºano MANUAL ADOTADO: NOVO ESPAÇO - Matemática A º ano GESTÃO DO TEMPO Nº de Nº de Nº de tempos tempos tempos

Leia mais

Funções Crescentes e Funções Decrescentes

Funções Crescentes e Funções Decrescentes UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Funções Crescentes

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis.

0.1 Função Inversa. Notas de Aula de Cálculo I do dia 07/06/ Matemática Profa. Dra. Thaís Fernanda Mendes Monis. Notas de Aula de Cálculo I do dia 07/06/03 - Matemática Profa. Dra. Thaís Fernanda Mendes Monis. 0. Função Inversa Definição. Uma função f : A C é injetiva se f(x) f(y) para todo x y, x, y A. Seja f :

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.2 Limites e Continuidade Nesta seção, aprenderemos sobre: Limites e continuidade de vários tipos de funções. LIMITES E CONTINUIDADE Vamos comparar o

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos

CDI-II. Resumo das Aulas Teóricas (Semana 5) 1 Extremos de Funções Escalares. Exemplos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 5) 1 Etremos de Funções Escalares. Eemplos Nos eemplos seguintes

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Inequação do Segundo Grau Iva Emanuelly Pereira Lima - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

Composição de Funções

Composição de Funções Composição de Funções Existem muitas situações em que uma função depende de uma variável que, por sua vez, depende de outra, e assim por diante. Podemos dizer, por exemplo, que a concentração de monóxido

Leia mais

Faculdades Integradas Campos Salles

Faculdades Integradas Campos Salles Curso: Administração e Ciências Contábeis Profª Alexandra Garrote Angiolin Disciplina: Matemática II Derivada O conceito de derivada foi introduzido em meados do século XVII em estudos de problemas de

Leia mais

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor

Derivada de ordem n. Equação da recta tangente e da recta normal. Polinómio de Taylor Equação da recta tangente e da recta normal Como já vimos este ano a equação de uma recta na forma reduzida édadapor y y 0 = m(x x 0 ) Também sabemos que o declive da recta tangente ao gráfico de f no

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Faculdade de Engenharias, Arquitetura e Urbanismo Universidade do Vale do Paraíba Cálculo Diferencial e Integral I Prof. Rodrigo Sávio Pessoa São José dos Campos 0 Sumário Tópico Tópico Tópico Tópico Tópico

Leia mais

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega Maria Auxiliadora 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma relação

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Função Exponencial, Inversa e Logarítmica Bruno Conde Passos Engenharia Civil Rodrigo Vanderlei - Engenharia Civil Função Exponencial Dúvida: Como

Leia mais

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) =

FUNÇÃO EXPONENCIAL. Chama-se função exponencial de base a, com a Є f: R definida por f(x) = Matemática Matemática Avançada 3 o ano João mar/11 Nome: FUNÇÃO EXPONENCIAL Definição Chama-se função exponencial de base a, com a Є f: R definida por f(x) = - {1}, a função Definições - O gráfico da função

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES NOME: N O : blog.portalpositivo.com.br/capitcar 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um

Leia mais

O ESTUDO DAS FUNÇÕES INTRODUÇÃO

O ESTUDO DAS FUNÇÕES INTRODUÇÃO O ESTUDO DAS FUNÇÕES INTRODUÇÃO DEFINIÇÃO As funções explicitam relações matemáticas especiais entre duas grandezas. As grandezas envolvidas nessas relações são conhecidas como variável dependente

Leia mais

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução

Exame de Acesso ACFES Maiores de 23; Acesso Específico. Matemática. PROVA MODELO - proposta de resolução Ministério da Ciência, Tecnologia e Ensino Superior Exame de Acesso ACFES Maiores de 23; Acesso Específico Matemática PROVA MODELO - proposta de resolução - INSTRUÇÕES - Deverá responder à prova na folha

Leia mais

SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE

SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE SESSÃO 4: PERFIL VERTICAL DA VELOCIDADE DO VENTO PRÓXIMO À SUPERFÍCIE Respostas breves: 1.1) 2m 1.2) 20. 5.2) x=1,

Leia mais

Conceitos Básicos de Matemática. Aula 1. ISCTE - IUL, Mestrados de Continuidade. Diana Aldea Mendes. 12 de Setembro de 2011

Conceitos Básicos de Matemática. Aula 1. ISCTE - IUL, Mestrados de Continuidade. Diana Aldea Mendes. 12 de Setembro de 2011 Conceitos Básicos de Matemática Aula 1 ISCTE - IUL, Mestrados de Continuidade Diana Aldea Mendes diana.mendes@iscte.pt 12 de Setembro de 2011 DMQ, ISCTE-IUL (diana.mendes@iscte.pt) Matemática 12 de Setembro

Leia mais

Aula 06: Funções e seus Gráficos

Aula 06: Funções e seus Gráficos GST1073 Fundamentos de Matemática Aula 06: Funções e seus Gráficos Fundamentos de Matemática Aula 6 Funções e seus Gráficos Objetivos Gerais: Modelar e solucionar vários tipos de problemas com o uso do

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Inequação do Segundo Grau Vitor Bruno Santos Pereira - Engenharia Civil Na aula de hoje... Introdução e Exemplos de Inequação do Segundo Grau; Solucionando

Leia mais

As funções do 1º grau estão presentes em

As funções do 1º grau estão presentes em Postado em 01 / 04 / 13 FUNÇÃO DO 1º GRAU Aluno(: 1.1.2 TURMA: 1- FUNÇÃO DO PRIMEIRO GRAU As funções do 1º grau estão presentes em diversas situações do cotidiano. Vejamos um exemplo: Uma loja de eletrodomésticos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1.

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...

Leia mais

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica

ALGA - Eng. Civil e Eng. Topográ ca - ISE /11 - Geometria Analítica 88. Geometria Analítica ALGA - Eng. Civil e Eng. Topográ ca - ISE - 010/ - Geometria Analítica Geometria Analítica A noção de recta em R e R ; tal como a noção de plano em R já foram abordados no ensino secundário. Neste capítulo

Leia mais

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas

Recursos críticos disponíveis: Madeira 300 metros Horas de trabalho 110 horas I. Programação Linear (PL) 1. Introdução A Programação Linear é, no campo mais vasto da Programação Matemática, uma das variantes de aplicação generalizada em apoio da Decisão. O termo "Programação" deve

Leia mais

Funções de duas (ou mais)

Funções de duas (ou mais) Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)

Leia mais

Funções de várias variáveis

Funções de várias variáveis GOVERNO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO VALE DO SÃO FRANCISCO CÂMPUS JUAZEIRO/BA COLEG. DE ENG. ELÉTRICA PROF. PEDRO MACÁRIO DE MOURA CÁLCULO II 2015.2 Funções de várias variáveis

Leia mais

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB

ANÁLISE MATEMÁTICA II 2007/2008. Cursos de EACI e EB ANÁLISE MATEMÁTICA II 2007/2008 (com Laboratórios) Cursos de EACI e EB Acetatos de Ana Matos 1ª Parte Sucessões Séries Numéricas Fórmula de Taylor Séries de Potências Série de Taylor DMAT Ana Matos - AMII0807

Leia mais

Continuidade e o cálculo do imposto de renda

Continuidade e o cálculo do imposto de renda Universidade de Brasília Departamento de Matemática Cálculo 1 Continuidade e o cálculo do imposto de renda Neste texto vamos introduzir um importante conceito, utilizando como motivação o cálculo do imposto

Leia mais

Como exemplo, consideremos os seguintes dados hipotéticos: Severidade das penas (Anos de prisão)

Como exemplo, consideremos os seguintes dados hipotéticos: Severidade das penas (Anos de prisão) 1 1 - Variáveis endógenas vs eógenas A teoria económica geralmente serve-se da análise matemática em dois momentos distintos: na formulação de relações causais entre variáveis; no confronto dessas relações,

Leia mais

Função Exponencial, Inversa e Logarítmica

Função Exponencial, Inversa e Logarítmica CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:

Leia mais

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda

Bases Matemáticas Continuidade. Propriedades do Limite de Funções. Daniel Miranda Daniel De modo intuitivo, uma função f : A B, com A,B R é dita contínua se variações suficientemente pequenas em x resultam em variações pequenas de f(x), ou equivalentemente, se para x suficientemente

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

FUNÇÕES EXPONENCIAIS

FUNÇÕES EXPONENCIAIS FUNÇÕES EXPONENCIAIS ) Uma possível lei para a função eponencial do gráfico é (a) = 0,7. (b) =. 0,7 (c) = -. 0,7 (d) = -.,7 (e) = - 0,7. ) Os gráficos de = e = - (a) têm dois pontos em comum. (b) são coincidentes.

Leia mais

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X

Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa prova? Sim Não X Disciplina: Cálculo 1 Identificação da Prova: Simulado Ex. Final Nota: Professor e Visto: Visto da Coordenação: Período: Data: Visto do Professor: Prof. Rafael D N X Laboratório de Informática para essa

Leia mais

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS

FICHA DE TRABALHO FUNÇÕES POLINOMIAIS. Matemática (10/11º ano) EXERCÍCIOS FICHA DE TRABALHO FUNÇÕES POLINOMIAIS Matemática (10/11º ano) EXERCÍCIOS I. Questões de escolha múltipla 1. Das seguintes representações gráficas, quais são representativas de funções? (A) I e IV (B) II

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 65) ª fase 9 de Julho de 00 Grupo I. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é, existem tantas bolas roxas

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Rafael Carvalho - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 06. Função do Grau Rafael Carvalho - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime uma relação de igualdade.

Leia mais

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1.

COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Data: / /2015 III Unidade. Aluno: 1. COLÉGIO MODELO LUIZ EDURADO MAGALHÃES CAMAÇARI BA MATEMÁTICA - 1ª SÉRIE - ENSINO MÉDIO - ANO : 2015 Professor: Henrique Plínio Função Quadrática Lista 2 Data: / /2015 III Unidade Aluno: 1 Turma: 1º 1.Considere

Leia mais