Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Tamanho: px
Começar a partir da página:

Download "Prova Escrita de MATEMÁTICA A - 12o Ano a Fase"

Transcrição

1 Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Temos que P A B) P A) + P B) P A B) P A B) P A) + P B) P A B) Como A e B são independentes, então P A) P B) P A B), pelo que, podemos escrever que P A) + P B) P A B) P A) P B) ) Como P A) P A ) , substituindo os valores conhecidos na igualdade ), 0 vem: 0 + P B) 4 0 P B) 6 0P B) + 5 6P B) P B) 5 6P B) Resposta: Opção B 0P B) 6P B) 5 6 4P B) 9 P B) 9 4. Calculando a probabilidade do acontecimento contrário, ou seja, a probabilidade de que o João e a Margarida fiquem sentados ao lado um do outro, vem: O cálculo dos casos possíveis, pode resultar de considerar as trocas de todos os 7 amigos pelas 7 posições, ou seja, 7 A 7 P 7 7! Relativamente aos casos favoráveis, podemos considerar o par de amigos como um elemento único, resultando assim, nas trocas de 6 elementos o par de amigos mais as restantes 5 pessoas), em 6 posições possíveis, ou seja, 6 A 6 P 6 6!, multiplicado por, porque o João pode ficar à direita ou à esquerda da Margarida. Assim, recorrendo à probabilidade do acontecimento contrário, a probabilidade de o João e a Margarida não ficarem sentados um ao lado do outro é Resposta: Opção D 6! 7! 6! 7 6! Selecionando 7 dos compartimentos para colocar os copos brancos, que por serem iguais, a ordem da seleção não é relevante, temos C 7 formas de arrumar os copos brancos. Por cada arrumação diferente dos copos brancos, devemos considerar 5 A hipóteses diferentes para colocar os copos de outras cores, que correspondem a selecionar dos 5 compartimentos ainda) vazios, e em que a ordem da seleção é relevante por se destinarem a copos de cor diferente. Assim o número de arrumações diferentes é C 7 5 A Resposta: Opção C Página de 8

2 4. Como fx) x ex x ex + x + 0 ex + x ex + x 0 afirmar que a equação fx) x tem, pelo menos, uma solução, é equivalente a afirmar que a função g, também de domínio R, definida por gx) e x + x tem, pelo menos, um zero. Desta forma, como a função g é contínua em R, por ser resultar de operações entre funções contínuas em R, e recorrendo ao corolário do Teorema de Bolzano, podemos analisar cada uma das hipóteses apresentadadas: Como g0) e ), ou seja g0) < 0 e g e ,08, ou seja, ) ) g > 0, temos que, g0) g > 0, e por isso, não é garantida a existência de um zero da 5 ] 5 função g no intervalo 0, [ 5 ) Como g e ) ) 0,08, ou seja, g < 0 e g e ,0, ou seja, ) ) ) g > 0, temos que, g g < 0, e por isso, é garantida a existência de um zero da função 4 ] 5 4 g no intervalo 5, [ 4 ) Como g e ) ) 0,0, ou seja, g > 0 e g e + 4 0,, ou seja, ) ) ) g > 0,temos que, g g > 0, e por isso, não é garantida a existência de um zero da ] 4 4 função g no intervalo 4, [ ) Como g e + ) 0,, ou seja, g > 0 e g) e +,, ou seja, g) > 0, ) temos que, g g) > 0, e por isso, não é garantida a existência de um zero da função g no ] intervalo 4, [ Resposta: Opção B 5. Como a função é contínua em R, também é contínua em x a, pelo que Pela observação do gráfico da função g, temos que E calculando x a fx), vem fa) x a fx) x a +fx) fa) ga) x a +fx) x a +gx) x a fx) log x a x ) log a ) Como fx) fa), temos que x a log a ) a a 9 + a 7 + Resposta: Opção A a 8 a 8 Página de 8

3 6. As retas tangentes ao gráfico nos pontos de abcissas x e x têm declive negativo, ou seja, em x e x a função é decrescente, pelo que f ) < 0 e também f ) < 0. Relativamente ao sentido das concavidades, em x, o gráfico de f tem a concavidade voltada para baixo, pelo que f ) < 0. Em x, o gráfico de f tem a concavidade voltada para cima, pelo que f ) > 0 Resposta: Opção C 7. As operações dividir por i e dividir por correspondem geometricamente a fazer uma rotação de centro em O e amplitude π radianos e dividir a distância ao centro por, respetivamente. w Imz) z Assim, podemos fazer as operações por qualquer ordem e, por isso, temos duas alternativas: w i z w z Resposta: Opção A e e z z, ou então z i z z z 4 π 0 z Rez) 8. A coroa circular representada é o conjunto dos pontos que distam da origem entre e 6 unidades, ou seja a representação dos números complexos z, tais que z 6 Imz) Os pontos assinalados devem ainda satisfazer a condição de que o ângulo medido a partir da representação geométrica do complexo + i está compreendido entre π rad e π 4 rad. R Ou seja: π arg z + i)) π 4 π arg z + i) π 4 P π Q 0 π 4 Rez) Resposta: Opção C Página de 8

4 GRUPO II... Começamos por simplificar as expressões de z e de z : Recorrendo aos coeficientes da linha do Triângulo de Pascal ), temos que: z +i) ) + ) i)+ )i) +i) 8+i 6i i 8+6+i i +i z + 8i + i + 8i) i) + i) i) i + 56i 8i 8 ) + 55i i i 6 + i 4 ) 5 Assim, temos que z + z z z + + i) 6 + i z + i 6 + i z 8 z 8 z 8 cis 0 z 8 cis 0 + kπ, k {0,,} z cis kπ, k {0,,} Ou seja, temos raízes de índice, que são as soluções da equação: k 0 z cis 0 k z cis π k z cis 4π.. Se w e w são raízes de índice n de um mesmo número complexo z, então wn z e Logo temos que: w n w ) n z w ) n w n w n w n w n w n ) w n ± w n ± Como w n z temos que w n ± z ± z z... Considerando a experiência aleatória que consiste em escolher, ao acaso, um aluno dessa escola, e os acontecimentos: R: O aluno é um rapaz E: O aluno tem excesso de peso Temos que P R ) 0,55, P E R ) 0, e P E R ) 0,4 Assim, organizando os dados numa tabela obtemos: P E R ) P R ) P E R ) 0,55 0, 0,65 P R) P R ) 0,55 0,45 P E R ) P R) P E R ) 0,45 0,4 0,8 P R E) P R) P E R ) 0,45 0,8 0,7 P E) P R E) + P R E ) 0,7 + 0,65 0,45 R R E 0,7 0,65 0,45 E 0,8 0,45 0,55 Assim, calculando a probabilidade de o aluno escolhido ser rapaz, sabendo que tem excesso de peso, e escrevendo o resultado na forma de fração irredutível, temos P R E) P R E) P E) 0,5 0, Página 4 de 8

5 .. Como 55% dos alunos são raparigas e existem 00 alunos, podemos calcular o número de raparigas como 00 0,55 0 e o número de rapazes é O número de conjuntos de alunos que podem ser escolhidos o número de casos possíveis) é 00 C. O número de conjuntos com raparigas e rapaz o número de casos favoráveis) pode ser calculado considerando que se escolhe de entre os 90 rapazes, e de entre as 0 raparigas, ou seja 90 0 C Assim, calculando a probabilidade de serem escolhidos duas raparigas e um rapaz e arredondando o resultado às centésimas, temos 90 0 C 00 C 0,4. Como no saco estão 5 bolas e extraímos 4, temos apenas 5 conjuntos de bolas que podem ser extraídos: bolas com os números {,,0,}, produto correspondente: ) bolas com os números {,,0,}, produto correspondente: ) bolas com os números {,,,}, produto correspondente: ) 4 bolas com os números {,0,,}, produto correspondente: bolas com os números {,0,,}, produto correspondente: Ou seja, os produtos possíveis são apenas 0 e 4. Quando a bola com o número 0 é extraída, o que acontece 4 em cada 5 vezes, o produto é 0, ou seja, P X 0) 4 5 Quando a bola com o número 0 não é extraída, o que acontece em cada 5 vezes, o produto é 4, ou seja, P X 4) Resolvendo a equação fx) 0, temos que e x 4e x + 4 e 0 e e x e 4e x + 4 e 0 e e x e 4e x + 4 e 0 ex e 4e x + 4 e 0 ex e 4e x + 4 e 0 ex 4e x 4 e 0 ex 4e x 4 0 e 0 e x 4 e x 4 0 ex e x e x 4 e x 4ex e x 0 e x 0 ex ) 4e x 4 0 Fazendo a substituição de variável y e x, e usando a fórmula resolvente, vem: y 4y 4 0 y 4 ± 4) 4) 4) y 4 ± y 4 ± Como y e x, temos que: y 4 ± 4 y + y e x + e x E como < 0, a equação e x é impossível, pelo que podemos determinar o valor do único zero da função f: e x + x ln + ) Página 5 de 8

6 4.. Assim, traçando, na calculadora gráfica, os gráficos das funções f e g, numa janela que permita visualizar a interseção dos dois gráficos, bem como a interseção do gráfico de f com o eixo das abcissas, obtemos o gráfico reproduzido na figura ao lado. Determinando um valor aproximado às centésimas do zero da função f, com a opção de determinar o valor dos zeros de uma função, obtemos as coordenadas do ponto A,57; 0), belo que podemos assumir o valor,57 para a medida da base do triângulo. y,8 B f g Usando a opção da calculadora para determinar as coordenadas do ponto de interseção de dois gráficos, obtemos os valores, aproximados às centésimas, para as coordenadas do ponto B,;,8). Logo podemos considerar o valor da ordenada,8) como a medida da altura do triângulo. 0 A,57, x Assim, calculando o valor da área do triângulo [OAB], arredondado às décimas, vem: A [OAB],57,8, Página 6 de 8

7 Como o domínio da função f é R, poderão existir assíntotas não verticais quando x e quando x +. Assim, vamos averiguar em primeiro lugar a existência de uma assíntota de equação y mx + b, quando x : m fx) x x xe x x x x e x ) e ) e + + fx) Pelo que, como m não é constante, podemos afirmar que não existe uma assínta não x x vertical do gráfico de f, quando x Averiguando a existência de uma assíntota de equação y mx + b, quando x +, vem: m m fx) x x lnx + ) x lnx) + x x ) lnx+) lnx)+ fx) x ln + x )) + ln + + ) lnx+) lnx)+ + Indeterminação) ln x + ) + x ) lnx+) lnx) + ) + ln + 0 +) + ln) b ) ) fx) mx fx) x ) x lnx+) lnx) )) x ln x + x fazendo y x, temos x y e se x +, então y 0+ ) b x ln + )) x y 0 + y 0 + x lnx + ) x lnx) + x x ) y ln + y 0 + y ) ) ln + y) lny + ) y y 0 + y }{{} Lim. Notável x ln + )) + 0 Indeterminação) x ) ln + y) y Assim temos que a reta de equação y x + é uma assíntota do gráfico de f e não existem outras assíntotas não verticais). 5.. Como o declive m), da reta tangente ao gráfico de f no ponto de abcissa - é f ), começamos por determinar a expressão da derivada, para x < 0: f x) xe x) x) e x +x e x) e x +x x) e x e x +x )e x e x xe x Calculando o declive da reta tangente temos: m f ) e ) )e ) e + e e Calculando as coordenadas do ponto de tangência, temos: f ) )e ) e, ou seja, o ponto P, e ) é um ponto do gráfico de f que também pertence à reta tangente. Substituindo o valor do declive na equação da reta, vem y e x + b Substituindo as coordenadas do ponto na equação da reta, calculamos o valor da ordenada na origem: e e ) + b e e + b e + e b e b Logo, a equação reduzida da reta tangente ao gráfico da função f no ponto de abcissa x é: y e x + e Página 7 de 8

8 Considerando um ponto P, sobre o lado [AB] do trapézio, tal que o segmento [DP ] seja perpendicular ao lado [AB], consideramos o ângulo ADP com amplitude π α Como DP, recorrendo à definição de cosseno, temos: cos α π ) DP DA DA cos ) α π e como cos ) α π, temos que: DA A Da definição de tangente de um ângulo, e como tg ) α π tg α temos: tg Logo, o perímetro do trapézio é: α π ) AP α DP tg π ) AP AP tg α P [ABCD] P B + BC + CD + DA + AP D α π P ) tg α α C B + cos α Ou seja, para cada valor de α + cos α + cos α ] π,π [, o perímetro do trapézio [ABCD] é P α) + cos α 6.. Começando por determinar a expressão da derivada, temos: P α) + cos α ) ) cos α ) cos α) ) cos α)) ) 0 )) cos α)cos α) sen α cos α + cos α sen α Como tg θ + cos θ 8) + cos θ + cos α cos α sen α e tg θ 8, vem: 8 + cos θ Como π < θ < π, cos θ < 0, logo cos θ E também: sen θ + cos θ sen θ ) Assim, P + 4 θ) cos α cos α) sen α cos α sen α cos θ 9 cos θ ± 9 cos θ ± ) sen θ 9 sen θ 8 9 Página 8 de 8

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como só existem bolas azuis e roxas, e a probabilidade de extrair uma bola da caixa, e ela ser azul é igual a, então existem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01 - a Fase Proposta de resolução GRUPO I 1. A escolha pode ser feita selecionando, 9 dos 1 quadrados para colocar os discos brancos não considerando a ordem relevante

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MAEMÁICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como o ponto (0,) pertence ao gráfico de f, temos que f(0) =, e assim vem que: f(0) = a 0 + b = + b = b = b = Como o ponto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 010 - Época especial Proposta de resolução GRUPO I 1. O grupo dos 3 livros de Matemática pode ser arrumado de 3 A 3 = P 3 = 3! formas diferentes. Como a prateleira

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 00 - a Fase Proposta de resolução GRUPO I. Como A e B são acontecimentos incompatíveis, temos que A B, ou seja, P A B 0 Como P A B P A + P B P A B P A B + P A B P

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 0 - Época especial Proposta de resolução GRUPO I. Temos que A e B são acontecimentos incompatíveis, logo P A B 0 Como P A B P B P A B, e P A B 0, vem que: P A B P

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 04 - Época especial Proposta de resolução GRUPO I. Para que os números de cinco algarismos sejam ímpares e tenham 4 algarismo pares, todos os números devem ser pares

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 12o Ano 2008-1 a Fase Proposta de resolução GRUPO I 1. Como se pretende ordenar 5 elementos amigos) em 5 posições lugares), existem 5 A 5 = P 5 = 5! casos possíveis. Como

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009 - a Fase Proposta de resolução GRUPO I 1. Como a Maria escolheu CD de um conjunto de 9, sem considerar a ordem relevante, existem 9 C pares diferentes que podem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 01-1 a Fase Proposta de resolução GRUPO I 1. Sabemos que P B A P B A P A P B A P B A P A Como P A 0,, temos que P A 1 P A 1 0, 0,6 Como P B A 0,8 e P A 0,6, temos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 05 - a Fase Proposta de resolução GRUPO I. Escolhendo os lugares das etremidades para os dois rapazes, eistem hipóteses correspondentes a uma troca entre os rapazes.

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. O declive da reta AB é dado por: m AB = y B y A x B x A = 2 = 2 + = Como retas paralelas têm o mesmo declive, de

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 009-1 a Fase Proposta de resolução GRUPO I 1. Como existem 4 cartas de cada tipo, existem 4 4 4 4 4 4 = 4 6 sequências do tipo 4 6 7 Dama Rei existem 4 hipóteses

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 1o Ano 01 - Época especial Proposta de resolução GRUPO I 1. Como o primeiro e último algarismo são iguais, o segundo e o penúltimo também, o mesmo acontecendo com o terceiro

Leia mais

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20 Eames Nacionais eame nacional do ensino secundário Decreto Lei n. 7/00, de 6 de março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P (A B) P (A B) P (B) P (A B) P (A B) P (B) vem que: P (A B) 6 0 60 0 Como P (A B) P (A) + P (B) P (A B), temos que:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 006 - a Fase Proposta de resolução GRUPO I. Como, pela observação da figura podemos constatar que os gráficos das duas funções se intersetam num ponto de ordenada

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011-1 a Fase Proposta de resolução GRUPO I 1. A igualdade da opção A é válida para acontecimentos contrários, a igualdade da opção B é válida para acontecimentos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 0 - a Fase Proposta de resolução GRUPO I. Para calcular o número de códigos diferentes, de acordo com as restrições impostas, podemos começar por escolher a posição

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTIA A - o Ano 006 - Época especial Proposta de resolução GRUPO I. Estudando a variação de sinal de f e relacionando com o sentido das concavidades do gráfico de f, vem: 6 ) + + +

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 007-1 a Fase Proposta de resolução GRUPO I 1. Calculando o valor do ite, temos: x + 1 1 x + 4 x = x + 4 x ) = 1 4 + ) = 1 4 4 + = 1 0 =. Resolvendo a inequação temos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - 2o Ano 20 - Época especial Proposta de resolução GRUPO I. Considerando a eperiência aleatória que consiste em escolher, ao acaso, um jovem inscrito no clube, e os acontecimentos:

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 7 - a Fase Proposta de resolução GRUPO I. Como a área do retângulo é igual a 5, designado por x o comprimento de um dos lados e por y o comprimento de um lado adjacente,

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - o Ano 04 - a Fase Proposta de resolução GRUPO I. Usando as leis de DeMorgan, e a probabilidade do acontecimento contrário, temos que: P A B P A B P A B então P A B 0,48

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 0 DE JULHO 08 CADERNO... P00/00 Como se trata de uma distribuição normal temos que: ( ) 0,9545. P µ σ

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 20 DE JULHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 65) ª FASE DE JUNHO 06 GRUPO I. Como P ( A B ) P A B P B temos que: P 6, ( A B ) 6 P( B ) P ( A B ) 6 0 P ( A B ) 0

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 08 - Época especial Proposta de resolução Caderno... Como A e B são acontecimentos equiprováveis, temos que P A P B E como A e B são acontecimentos independentes,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2016 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2016 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-6 Lisboa Tel.: +5 76 6 90 / 7 0 77 Fax: +5 76 6 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA PROVA DE

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2019 CADERNO 1. e AV. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-6 Lisboa Tel.: +51 1 716 6 90 / 1 711 0 77 Fa: +51 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 7 de Junho de 2017 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 3 DE JUNHO 07. GRUPO I Dado que os algarismos que são usados são os do conjunto {,, 3, 4, 5, 6, 7, 8, 9

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESOLARIDADE Proposta de resolução GRUPO I. (Número de maneiras de nos lugares da fila escolher lugares para

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 25 DE JUNHO 203 Grupo I Questões 2 3 4 5 6 7 8 Versão B D C A D B C A Versão 2 C A B D D C B B Grupo II...

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

Proposta de Exame Final Nacional do Ensino Secundário

Proposta de Exame Final Nacional do Ensino Secundário Proposta de Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática A. O ANO DE ESCOLARIDADE Duração da Prova: 50 minutos Tolerância: 0 minutos Data: Grupo I Na resposta aos itens deste grupo,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Potências e raízes Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Potências e raízes Propostas de resolução Exercícios de exames e testes intermédios 1. Escrevendo 1 + i na f.t. temos 1 + i ρ cis θ, onde: ρ 1 + i 1 + 1 1 + 1 tg

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 22 DE JULHO 2019 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500-36 Lisboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE

Leia mais

Na resposta a cada um dos itens deste grupo, selecione a única opção correta.

Na resposta a cada um dos itens deste grupo, selecione a única opção correta. Exame Nacional exame nacional do ensino secundário Decreto Lei n. 9/0, de de julho Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρ cis α, onde: ρ = i i = + ) = tg α = = ;

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 5) ª FASE 18 DE JUNHO 01 Grupo I Questões 1 4 5 7 8 Versão 1 B C A D B A C A Versão A D B B C A D C Grupo II 1 11 z

Leia mais

Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 15 de junho de 2015 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I. Grupo II.

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I. Grupo II. Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 1500- Lisboa Tel.: +51 1 71 90 / 1 711 0 77 Fax: +51 1 71 4 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

7. Na figura 3, está representado, no plano complexo, a sombreado, um setor circular. Sabe se que:

7. Na figura 3, está representado, no plano complexo, a sombreado, um setor circular. Sabe se que: Exames Nacionais exame nacional do ensino secundário Decreto Lei n. 74/004, de 6 de março Prova Escrita de Matemática A 1. Ano de Escolaridade Prova 63/.ª Fase Duração da Prova: 10 minutos. Tolerância:

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012

Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012 Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 01 Proposta de resolução 1. 1.1. Como, na turma A os alunos com 15 anos são 7% do total, a probabilidade de escolher ao acaso um aluno desta turma

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Analisando cada uma das afirmações temos (A) z z = z z é uma afirmação verdadeira

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) Propostas de resolução MATEMÁTICA A - o Ano Funções - Derivada extremos, monotonia e retas tangentes) Propostas de resolução Exercícios de exames e testes intermédios. Temos que, pela definição de derivada num ponto, f ) fx)

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 5 DE JUNHO 08 CADERNO... P00/00 Seja X a variável aleatória: Número de vezes que sai a face numerada com

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO 2018 CADERNO 1 Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fa: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações PREPARAR EXAME NACINAL NACINAL PRVA-MDEL Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Leia mais

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias.

Nome do aluno: N.º: Na resposta aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Teste de Matemática A 2018 / 2019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno 2): 90 minutos 12.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Propostas de resolução MATEMÁTICA A - o Ano N o s Complexos - Conjuntos e condições Propostas de resolução Exercícios de exames e testes intermédios. Escrevendo i na f.t. temos i i = ρe iα, onde: ρ = i i = + ) = tg α = = ; como

Leia mais

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A

CDA AD CD. 2cos 2sen 2 2cos sen 2sen 2 2 A A A A Preparar o Eame 01 016 Matemática A Página 19 88. 88.1. O ângulo CDA está inscrito na circunferência, portanto CDA. Assim: AD CD A ABCD A CDA AD CD AD Tem-se que, cos AD cos CD e sen CD sen. Portanto,

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MTEMÁTI - o ciclo 018 - Época especial Proposta de resolução aderno 1 1. omo os dados da tabela já estão ordenados podemos verificar que os valores centrais, são 61,6 e 6,4. Logo a mediana,

Leia mais

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO

EXAME NACIONAL DE MATEMÁTICA A ª FASE VERSÃO 1/2 PROPOSTA DE RESOLUÇÃO Preparar o Eame 06 Matemática A EXAME NACIONAL DE MATEMÁTICA A 05.ª FASE VERSÃO / PROPOSTA DE RESOLUÇÃO Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - 3o ciclo 017 - Época especial Proposta de resolução Caderno 1 1. Como 3π 9,7 então vem que 9, < 3π < 9,3, pelo que, de entre as opções apresentadas, o número 9,3 é a única aproximação

Leia mais

Nome: Nº. Página 1 de 9

Nome: Nº. Página 1 de 9 Nome: Nº Página 1 de 9 Página 2 de 9 1. Uma urna contém 5 bolas, numeradas de 1 a 5 e indistinguíveis ao tato. Retiram-se sucessivamente 3 bolas com reposição e em cada extração anota-se o número obtido.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano Proposta de Teste Intermédio Matemática A 1.º ano Nome da Escola Ano letivo 0-0 Matemática A 1.º ano Nome do Aluno Turma N.º Data Professor - - 0 GRUPO I Os cinco itens deste grupo são de escolha múltipla.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

A) 72 B) 240 C) 720 D) 1440

A) 72 B) 240 C) 720 D) 1440 Concurso de acesso de Estudantes Internacionais Prova escrita de Matemática 18 de Abril de 2018 Duração da prova: 10 minutos. Tolerância: 0 minutos. Primeira Parte As oito questões desta primeira parte

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 6 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Tem-se, ( Assim,. Resposta: B 2. Considere-se a variável aleatória : «peso dos alunos do.º ano» ( e os

Leia mais

Proposta de resolução do exame nacional de Matemática A (PROVA 635) 2ªFASE 27 Julho Grupo I

Proposta de resolução do exame nacional de Matemática A (PROVA 635) 2ªFASE 27 Julho Grupo I Proposta de resolução do exame nacional de Matemática A (PROVA 65) ªFASE 7 Julho 0 Grupo I. Pela Regra de Laplace temos que a probabilidade do acontecimento é dada por : P = 0 0 C C 4 4 Opção correcta:

Leia mais

Proposta de Resolução da Prova Escrita de Matemática A

Proposta de Resolução da Prova Escrita de Matemática A Proposta de Resolução da Prova Escrita de Matemática A.º Ano de Escolaridade Prova 6/.ª fase 9 páginas 0 Grupo I. Homens 6 Mulheres 6 C - Das três mulheres, têm de ser selecionadas eatamente C - Dos 6

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 3 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 2 DE JULHO 207 GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 pares de posições

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009

Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 2009 Teste Intermédio de MATEMÁTICA - 9o ano 11 de maio de 009 Proposta de resolução 1. 1.1. Como na gaveta 1 existem três maillots (1 preto, 1 cor-de-rosa e 1 lilás), são 3 os casos possíveis, dos quais são

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 18 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr João Couto, nº 7-A 1500- Lisboa Tel: +51 1 71 90 / 1 711 0 77 Fa: +51 1 71 4 4 http://wwwapmpt email: geral@apmpt PROPOSTA DE RESOLUÇÃO DA PROVA

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 5 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Agrupando num bloco a Ana, a Bruna, o Carlos, a Diana e o Eduardo, o bloco e os restantes sete amigos

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 5 Matemática A Duração do Teste (Caderno 1 + Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 2ª FASE 21 DE JULHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Proposta de Teste Intermédio Matemática A 12.º ano

Proposta de Teste Intermédio Matemática A 12.º ano GRUPO I. Se f 0,, então f é estritamente crescente em. Se f é estritamente crescente em e se (0) 0 f, então 0, Se f 0,, então f é estritamente crescente em Logo, f f Resposta: (C). f... e f f e Resposta:

Leia mais

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0.

A o ângulo à superior a 180º, na opção B é inferior a 90º e na opção C é superior a 135º. e sen 0. Preparar o Eame 0 06 Matemática A Página 55. Sabemos que radianos equivalem a 80º, pelo que a um ângulo de radianos vai corresponder 80,6 graus. Este ângulo só pode estar representado na opção D. Na opção

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 26 DE JUNHO Grupo I. Questões ROOSTA DE RESOLUÇÃO DA ROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA ROVA 5) ª FASE DE JUNHO 0 Grupo I Questões 5 7 8 Versão C A C B B D C D Versão B D B C B C A C Grupo II Seja w = + Tem-se que:

Leia mais

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I ESCOLA SECUNDÁRIA DA RAMADA Teste de Matemática A 30 de maio de 2017 12º A Versão 1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas, são indicadas quatro alternativas,

Leia mais

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2

Prova Escrita de Matemática A 12. O Ano de Escolaridade Prova 635/Versões 1 e 2 Eame Nacional de 0 (. a fase) Prova Escrita de Matemática A. O Ano de Escolaridade Prova /Versões e GRUPO I. Versão : (B); Versão : (A) Se apenas são distinguíveis pela cor, os discos brancos entre si

Leia mais

Primeira Parte. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos.

Primeira Parte. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos. Acesso de Maiores de 23 anos Prova escrita de Matemática 9 de junho de 2016 Duração da prova: 150 minutos. Tolerância: 30 minutos. Primeira Parte As oito questões desta primeira parte são de escolha múltipla.

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE

EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 12.º ANO DE ESCOLARIDADE EXAME NACIONAL DO ENSINO SECUNDÁRIO MATEMÁTICA A PROVA MODELO N.º 4 PROPOSTA DE RESOLUÇÃO 1.º ANO DE ESCOLARIDADE Site: http://recursos-para-matematica.webnode.pt/ Facebook: https://www.facebook.com/recursos.para.matematica

Leia mais

Proposta de Resolução da Prova Escrita de Matemática A

Proposta de Resolução da Prova Escrita de Matemática A mata prova 65, ª fase, 06 proposta de resolução Proposta de Resolução da Prova Escrita de Matemática A.º Ano de Escolaridade Prova 65/.ª Fase 8 páginas 06 Grupo I. P A B P A B P A B P A B PB 6 0 0 P A

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 6º Teste de avaliação versão A.

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema III Trigonometria e Números Complexos. 6º Teste de avaliação versão A. Escola Secundária com 3º ciclo D. Dinis º Ano de Matemática A Tema III Trigonometria e Números Complexos 6º Teste de avaliação versão A Grupo I As cinco questões deste grupo são de escolha múltipla. Para

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 4 Matemática A Duração do Teste (Caderno 1+ Caderno ): 90 minutos 1.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 7 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Nas condições do enunciado, o número de triângulos que se podem formar com três dos doze pontos é (dos

Leia mais

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1

P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1 P R O P O S T A D E R E S O L U Ç Ã O D O E X A M E T I P O 1 GRUPO I ITENS DE ESCOLHA MÚLTIPLA 1. Trata-se de uma permutação com repetições, ou seja, é uma sequência de oito letras em que a letra repete-se

Leia mais

Proposta de Resolução da Prova Escrita de Matemática

Proposta de Resolução da Prova Escrita de Matemática prova 65, 2ª fase, 205 proposta de resolução Proposta de Resolução da Prova Escrita de Matemática 2.º Ano de Escolaridade Prova 65/2.ª Fase 8 páginas 205 Grupo I. P X P X 2 P X a 2a 0,4 a 0,6 a 0,2 0,2

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática A 1. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Caderno 1 (é permitido o uso de calculadora) Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas,

Leia mais

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações PREPARAR EXAME O NACIONAL NACIONAL PROVA-MODELO Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013

Teste Intermédio de MATEMÁTICA - 9o ano 12 de abril de 2013 Teste Intermédio de MATEMÁTICA - 9o ano 1 de abril de 013 Proposta de resolução Parte 1 1. Como 7 0,33, representando os valores na reta real, temos 11 7 11 0,33 0,7 0.4 0,37 + Logo, ordenando por ordem

Leia mais

Preparar o Exame Matemática A

Preparar o Exame Matemática A 07. { {. 07. Como o polinómio tem coeficientes reais e é uma das suas raízes, então também é raiz de. Recorrendo à regra de Ruffini vem,. Utilizando a fórmula resolvente na equação, vem: ssim, as restantes

Leia mais