Capítulo 4 A FORMA DA TERRA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 4 A FORMA DA TERRA"

Transcrição

1 J M Mianda, J F Luis, P Costa, F M Santos Capítulo 4 A FORMA DA ERRA 4.1 Potenciais Gavitacional, Centífugo e Gavítico Isaac Newton ( ) explicou nos seus Pincípios Matemáticos da Filosofia Natual, publicados em 1687, com a lei da gavitação univesal, que uma massa atai qualque outa massa com uma foça cuja magnitude é popocional ao poduto das duas massas e é invesamente popocional ao quadado da distância ente elas. Esta lei explica tanto a queda dos copos ataidos pela ea, como o movimento dos planetas ataidos pelo Sol e vem epesentada pela fómula: Mm F G (4.1) Na expessão anteio G é um paâmeto fundamental designado constante de gavitação univesal, M e m as massas dos dois copos cuja inteacção estamos a analisa e é o vecto que une os dois copos. As pimeias medições da constante G devem-se a Heny Cavendish, e foam feitas em O seu valo actual em unidades do S.I. é dado po: G = 6, Nm kg - A expessão (4.1) aplica-se apenas a pontos mateiais, ou seja, às situações nas quais as dimensões e foma dos dois copos possam se despezadas, como acontece quando é muito maio do que a dimensão típica dos copos consideados. Uma situação semelhante acontece quando os copos são adialmente isotópicos. Consideemos o caso que nos inteessa essencialmente da ea. Podemos considea que ela gea no espaço que a odeia um campo gavitacional cuja expessão pode se dada simplesmente po: g N M G e (4.) em que M = 6 x 10 4 kg e a ea é consideada, numa pimeia apoximação, como adialmente isotópica. Este campo gavitacional expime-se no SI em Nkg -1 e a sua diecção é adial. Um copo de massa m sob a acção do campo gavitacional sofe a acção da foça: p mg (4.) N que designamos po peso. Note ainda que da segunda lei de Newton, podemos igualmente conclui que o copo de massa m sob a acção do peso move-se com a aceleação p ma (4.4) Pag 117

2 J M Mianda, J F Luis, P Costa, F M Santos pelo que podemos atibui à gavidade as dimensões de uma aceleação (ms - no SI) e intepetá-la como sendo o valo da aceleação adquiida po um copo de massa unitáia sob a acção do seu peso. Como medi expeimentalmente o valo da gavidade? Podemos fazê-lo estudando o movimento oscilatóio de um copo simples como um pêndulo, ou analisando a queda de um copo sob a acção da gavidade. Se o fizemos obteemos um valo póximo de 9.8 NKg -1. Num modelo simples em que consideemos a ea esféica, de aio R, podemos detemina a pati de (4.) o valo da massa da ea: g N 11 M e 9.8e M O campo gavitacional pode se consideado como deivando de um potencial, sob a foma habitual: g gadv N M V G 4 Kg (4.5) (4.6) Note que a pimeia expessão de (4.6) não é a habitual em física já que o potencial gavitacional num ponto P do espaço é definido habitualmente como o simético do tabalho ealizado pela massa unitáia quando esta é deslocada do infinito até esse ponto P. A ea executa uma otação completa em tono do seu eixo num dia sideal (86164 s). Este facto faz com que os copos localizados à supefície do planeta executem solidaiamente um movimento idêntico, pelo que podemos considea a existência de uma foça centífuga cuja intensidade depende da distância ao eixo da ea: f c m Rcos (4.7) onde m é a massa do copo, a latitude, R o aio da ea e a sua velocidade angula (Note que Rcos é a distância ao eixo da ea). Esta foça é diigida pependiculamente ao eixo, pelo que a acção combinada a atacção gavitacional e centífuga (a aceleação centífuga, gc, é dada pela foça po unidade de massa) se pode detemina apoximadamente po: GM g R Rcos e (4.8) uma vez que, sendo a atacção gavitacional na ea muito supeio à foça centífuga, podemos apenas considea a pojecção desta naquela. Designa-se este campo po campo gavítico (na apoximação esféica). Substituindo R pelo valo 671 km, o aio de uma esfea de volume igual ao da ea, M po kg, a massa da ea, e po /, onde = 4 hoas, o peíodo de otação da ea, ou seja = s -1, o módulo da equação anteio fica na foma g = ( cos ) (4.9) que podemos utiliza como uma pimeia apoximação da aceleação da gavidade à supefície da ea. À semelhança do que fizemos paa a atacção Newtoniana também agoa podemos defini um potencial gavítico, que engloba as componentes gavitacional e centífuga, tendo a foma: Pag 118

3 J M Mianda, J F Luis, P Costa, F M Santos g gadw M W G R R cos (4.10) Em que medida é que a foma da ea se afasta de uma esfea? Em que medida é que o campo gavítico eal se afasta da expessão (4.9) coespondente à apoximação esféica? Se substituimos na expessão (4.9) o valo da latitude paa os polos e o equado, obteíamos o seguinte valo paa a gavidade (teóica): g pol = 9.80 Nkg -1 g eq = Nkg -1 Se medimos expeimentalmente o valo da gavidade nos polos e no equado, obteemos espectivamente : g pol = 9.81 Nkg -1 g eq = Nkg -1 o que mosta a existência de discepâncias significativas ente a apoximação esféica e a ealidade. Uma expessão um pouco mais igoosa do que (4.10) pode se a seguinte: M W G R R cos GM R J (sin 1) R onde J epesenta o facto de foma dinâmica da ea e tem o valo x 10 - SI. A existência da componente centífuga influencia necessaiamente a pópia foma da ea: se a ea fosse esféica então a sua supefície extena não seia uma supefície de nível, já que a gavidade não lhe seia pependicula. Nas constantes de tempo caacteísticas da históia do globo é expectável que esta se defome como consequência da otação axial e que, tendencialmente, a sua supefície física se apoxime da de uma supefície de nível do campo gavítico. 4. Vaiação tempoal da gavidade A gavidade sofe pequenas vaiações tempoais em magnitude e em diecção geadas pela acção combinada dos outos astos, em paticula, da Lua e do Sol. Estes efeitos podem se diectos, e povêm da atacção que cada um destes copos exece, ou indiectos, e têm po oigem a defomação elástica induzida na ea. À conjugação destes efeitos denomina-se maé teeste, po semelhança com o fenómeno simila das maés oceânicas. Consideemos uma situação simplificada, na qual consideamos a ea, a Lua, e o cento de massa (O) do sistema ea-lua: A posição do cento de massa do sistema conjunto seá: ML b M M L R O potencial gavitacional total execido em P devido à acção da Lua seá dado po: Pag 119

4 J M Mianda, J F Luis, P Costa, F M Santos W GM R' 1 L P L (4.11) onde, como se indica na figua, é a distância do ponto P ao eixo de otação, L é a velocidade angula da ea, R é a distância ente o ponto P e o cento da Lua. Podemos esceve o valo de R sob a foma: R' R a arcos uma vez que a/r é uma quantidade pequena, podemos esceve uma apoximação de segunda odem do tipo: R' a a a R 1 cos cos... R R R (4.1) Uma vez que, e, cos sin cos (4.1) b (a sin) b(a sin) cos b a sin bacos (4.14) A pati da teceia lei de Keple (cf cap. 1) a 4 GM podemos considea a como o eixo maio da elipse que a lua desceve em tono da ea (aqui chamado R), e substitui o peiodo pela velocidade angula da Lua em tono da ea. Quanto à massa M, nota que a expessão (4.00) despeza o valo da massa do planeta peante a massa da estela em tono da qual ele gia, pelo que podemos genealiza da foma seguinte: L R G(M M ) (4.15) pelo que o potencial (4.11) se esume a: L GM L 1 M L GM La 1 1 W P 1 cos La sin (4.16) R M ML R O pimeio temo da expessão anteio é o potencial (no cento da ea) devido à Lua, o teceio temo é o potencial devido à otação da ea em tono do seu cento, com a velocidade angula L. O segundo temo é o Potencial de maé. GM La 1 W cos (4.17) R A epesentação gáfica deste temo é da foma indicada na figua. De nota, em paticula, a contibuição do potencial de maé paa o achatamento da ea. Sob a acção combinada destes dois potenciais tanto a ea sólida como os Oceanos são solicitados, dando assim oigem às maés oceânicas e às maés teestes. A atacção geada po este potencial de maé pode se calculada, a pati do gadiente da expessão anteio que, uma vez que W=W(R), se eduz simplesmente a: Lua GM La g (cos 1) (4.18) R Pag 10

5 J M Mianda, J F Luis, P Costa, F M Santos substituindo os valoes na expessão anteio (ve tabelas do cap 1) vemos que a atacção geada na supefície da ea é infeio a 0.11 mgal. O Sol gea um potencial de maé simila ao da Lua. Cálculo semelhante ao anteio ealizado paa o Sol conduziia a ceca de mgal. Existem também vaiações não peiódicas na gavidade que podem se poduzidas po vaiações da distibuição da densidade na geoesfea ou na atmosfea. Po exemplo, se o nível de água subteânea sobe em deteminada áea, devido a fotes chuvadas, a atacção devida à água adicional vai altea os valoes da gavidade sobe essa áea. Supondo que a azão de vazios é 0%, 1 meto de elevação no nível feático faá vaia o valo da gavidade, devido à sua atacção, de ceca de 10 gal. O valo da gavidade também pode vaia, po exemplo, devido a vaiações na pessão atmosféica. Uma baixa pessão muito fote epesenta uma deficiência anómala de massa de a e o esultante decéscimo de atacção paa cima vai aumenta o valo da gavidade. Em casos extemos o aumento da gavidade pode atingi váias dezenas de gal. 4. Algumas Popiedades do Potencial 4..1 Equação de Laplace O potencial gavítiacional W possui uma popiedade muito impotante, e que se taduz matematicamente pelo facto de em cetas condições o seu laplaciano se nulo. Vejamos em quais essas condições, utilizando a expessão do laplaciano em coodenadas catesianas: V V V lapv (4.19) x y z Se consideamos uma distibuição de massa (caacteizada po uma distibuição da densidade (,,)), o potencial gavitacional foa da distibuição das massas que o geam pode se calculado genealizando a equação (4.6): (Q) V G dv (4.0) vol As deivadas paciais indicadas em (4.19) têm o valo: V G x vol (x x') (Q)dv V G y vol (y y') (Q)dv V G z vol (z z') (Q)dv deivando de novo, obteemos as expessões: V G x V G y vol vol (x x') 5 (y y') 5 dv dv V G z vol (z z') 5 dv Adicionando os tês temos, obtemos finalmente a Equação de Laplace: lapv 0 (4.1) Esta expessão é muito impotante poque mosta que o potencial gavimético de uma distibuição de massa é hamónico (i.e., obedece à equação de Laplace) na egião foa da distibuição de massa, pelo que é possível empega os métodos matemáticos desenvolvidos paa a eoia do Potencial paa o desceve. Pag 11

6 J M Mianda, J F Luis, P Costa, F M Santos 4.. Equação de Poisson Dento da distibuição de massa, a deteminação feita anteiomente não pode se ealizada da mesma foma simples poque a distância ente as massas e o ponto de medição pode se nula. Nesse caso demonsta-se (ve po exemplo Kellog, 195) que se veifica: lapv 4G (4.) que se designa po Equação de Poisson. Note que a Equação de Laplace pode neste contexto se consideada como um caso paticula da Equação de Poisson. 4.. eoema de Gauss Um dos teoemas básicos da teoia do potencial chamado teoema de Gauss ou do Fluxo-Divegência diz-nos que o fluxo do campo gavitacional atavés de uma supefície fechada S iguala o integal de volume da divegência desse campo estendido ao volume v envolvido po aquela supefície: g n ds S v divgdv (4.) uma vez que lap V = div (gad V) e gad V é exactamente o vecto gavidade, podemos deduzi de (4.) que g.nds 4G dv 4GM S (4.4) Em esumo, o teoema de Gauss aplicado ao campo gavitacional diz que o fluxo do vecto atacção gavítica atavés de uma supefície fechada S depende apenas da massa total situada no seu inteio. 4.4 O Geóide Quando falamos da foma da ea podemos efeimo-nos a dois conceitos difeentes: o pimeio diz espeito à descição geomética da supefície física, e que constitui a peocupação dos Engenheios Geógafos; o segundo diz espeito à foma das supefícies equipotenciais do campo gavítico eal e é impotante paa a caacteização das popiedades deste campo. Uma das supefícies equipotenciais é paticulamente significativa: a que coincide em média com a supefície live dos oceanos, descontados os efeitos meteoológicos. Esta supefície equipotencial designa-se po geóide. Refeimo-nos a ela quando falamos de altuas acima do nível do ma. Qual a foma do geóide? O efeito centífugo da otação da ea causa um empolamento equatoial, o que afasta à patida a hipótese da ea possui uma supefície esféica. Se a ea estivesse completamente cobeta pelos oceanos, então, ignoando os ventos e as coentes intenas, a supefície deveia eflecti as foças devidas à otação e à atacção gavitacional de copos extenos, como o Sol, a Lua e efeitos sugidos do inteio. Quando os efeitos de maé são emovidos, a foma da supefície é devida a vaiações na densidade do inteio. O nível médio do ma é uma supefície equipotencial. Sendo o geóide uma supefície equipotencial do Campo Gavítico Real da ea a gavidade é-lhe pependicula em todos os pontos. Estutuas da custa, continentes, egiões montanhosas e cistas médias oceânicas, heteogeneidades do manto influenciam a foma do geóide A foma do geóide é agoa bastante bem conhecida, paticulamente nas egiões oceânicas, devido às contibuições da geodesia de satélite. Este tem uma foma muito póxima da de um elipsóide de evolução, de tal modo que a difeença ente os dois aamente excede os 100 m! Pag 1

7 J M Mianda, J F Luis, P Costa, F M Santos A difeença ente o geóide e o elipsóide de evolução que melho o apoxima denomina-se ondulação do geóide e epesenta-se po N. Esta ondulação eflecte vaiações na tempeatua e densidade do inteio da ea, que podem não se taduzi necessaiamente na foma da supefície física da ea (SF). Com a utilização cescente do Sistema de Posicionamento Global (GPS) tonou-se mais simples obte a posição de cada ponto da SF em elação à figua matemática da ea o elipsóide do que em elação ao nível do ma (geóide). Esse valo coesponde à soma da altitude com a ondulação do geóide (ve figua). No que diz espeito ao oceano, a sua supefície live coesponde em média ao geóide, pelo que, se medimos igoosamente a foma dessa supefície com o empego de satélites atificiais podemos detemina diectamente a ondulação geóidal. Muitas das catas gaviméticas globais da ea epesentam N e não o valo diecto da gavidade. 4.5 Anomalias Gaviméticas As expessões matemáticas que temos vindo a apesenta paa deceve o campo gavítico da ea patem sempe do pincípio de que esta é homogénea ou, pelo menos, veticalmente estatificada. Contudo, nos sabemos que os pocessos de génese e de dinâmica intena e extena da ea conduzem necessáiamente à fomação de constastes petológicos e litológicos que se taduzem habitualmente po contastes de densidade. abela 4.I - Densidades de alguns mateiais geológicos (extaido de elfod, 1990). ipo Rochas Sedimentaes Rochas Ígneas Rochas Metamóficas Densidade (SI * 10 - ) Valo Médio (SI * 10 - ) Aluviões Agilas Aenitos Calcáio Dolomite Riolito Ganito Andesito Sienito Basalto Gabo Xistos Gneisse Filitos Ganulito Anfibolite Eclogite Pag 1

8 J M Mianda, J F Luis, P Costa, F M Santos Estes contastes de densidade geam vaiações locais do campo gavítico da ea de pequena magnitude, mas que se podem medi com os gavímetos de que dispomos. Contudo, paa que seja possível intepeta os valoes medidos do campo gavítico em temos de constastes de densidade, é necessáio coigi os valoes medidos da influência da altitude, da latitude, e da mofologia do teeno Coecção de A-Live Mesmo no caso simples em que consideamos a ea como um copo esféico, o campo gavitacional geado (veifica a equação 4.), decesce com 1/. Quando ealizamos divesas medidas de g numa deteminada áea de estudo, temos que tona os valoes compaáveis, eduzindo-os todos a um mesmo nível de efeência de modo a sepaamos as vaiações devidas à altitude do ponto de medida (que não nos inteessam) das que são devidas a outos factoes (que nos podem inteessa). O gadiente vetical do campo gavitacional da ea no nível do geóide (apoximação esféica) é dado po: g geóide g geóide (4.5) utilizando como valo paa o aio da ea 671 km e paa a gavidade no geóide o valo médio de 9.8 N/Kg, obtemos um valo de gadiente vetical de: g geóide NKg 1 m 1 (4.6) Uma dedução mais igoosa, que utilizasse uma apoximação elipsoidal conduziia ao valo que é ealmente o utilizado habitualmente em pospecção. É ainda habitual utiliza em pospecção a unidade mgal (miligal, do sistema CGS) cujo valo em SI é de 10-5 N Kg -1, pelo que o gadiente vetical da gavidade (teóica) é consideado como tendo o valo mgal/m. O gadiente vetical da gavidade teóica coloca a necessidade de se conhecida com muito igô a altitude dos pontos de medida utilizados paa os estudos gaviméticos. Os melhoes gavímetos disponíveis podem medi a gavidade com uma pecisão de mgal. Neste caso, paa se utilizada toda a pecisão disponível nesta medida, tona-se necessáio conhece a altitude com uma pecisão melho que mm. Quando coigimos valoes medidos da gavidade utilizando o gadiente vetical da gavidade teóica, de modo a eduzi-los a um mesmo nível (habitualmente o nível do geóide), diz-se que efectuamos uma coecção de a-live. Esta designação pende-se com o facto de nós estamos a considea que não existem massas ente os pontos de medida e o nível de efeência. Esta situação cumpe-se na integalidade, po exemplo, quando queemos compensa a altua do tipé utilizado paa sustenta um gavímeto Coecção de Latitude e Fómula Intenacional da Gavidade Da simples obsevação da equação (4.9) se pode conclui que a gavidade vaia com a latitude. Esta vaiação é induzida não só pela otação o efeito que está incluido na efeida equação mas também poque o campo gavitacional da ea eal possui uma simetia apoximadamente elipsoidal. Modelos físicos complexos têm sido desenvolvidos paa desceve de foma igoosa o campo gavítico da ea. Estes podem pati do pincípio de que o planeta se pode considea como um fluido muito viscoso em otação cuja supefície extena se enconta em equilíbio, ou seja, é uma supeficie equipotencial, ou são apoximações elipsoidas ajustadas a paãmetos geométicos da ea medidos com o auxílio de satélites atificiais. Pag 14

9 J M Mianda, J F Luis, P Costa, F M Santos Duante o século XX duas expessões têm sido utilizadas paa desceve matematicamente a vaiação da gavidade com a latitude. A pimeia é conhecida como a Fómula Intenacional da Gavidade de 190, e tem a expessão: g = ( sin sin ) (4.7) A segunda, conhecida como a Fómula GRS67 (Geodetic Refeence System) de 1967 tem a foma: g = ( sin sin ) (4.8) Os valoes da gavidade paa cada ponto de latitude, calculados com esta fómula, chamam-se valoes teóicos ou nomais da gavidade paa pontos sobe a supefície da ea ao nível do geóide. Pode dize-se, de um modo apoximado, que ceca de 40% da vaiação de g com a latitude é devida ao facto da foma da ea não se um esfeóide pefeito e os outos 60% são devidos à otação da ea Coecção das Massas opogáficas ou de Bougue da gavidade. Quando analisámos a coecção de a-live destacámos o facto de que o gadiente vetical da gavidade deteminado se aplicava apenas às situações nas quais não existissem massas topogáficas ente o ponto de medida e o nível ao qual se petendia eduzi as medições O geofísico belga Piee Bougue ( ) calculou expeimentalmente o efeito das massas topogáficas compa-ando a gavidade em duas cidades do Equado, Guayaquil ao nível do ma e Quito, a,850 m de altitude. Veificou assim que uma boa apoximação podeia se obtida se consideasse que o efeito das massas topogáficas ea idêntico ao de um cilindo de aio infinito ( platafoma de Bougue ), cuja densidade fosse epesentativa das fomações geológicas subjacentes, cuja base se situasse no nível de efeência (habitualmente o geóide) e cujo topo intesectasse o ponto de medição. Um copo finito gea uma atacção gavimética no espaço que o envolve. A foma matematica dessa atacção é a seguinte: ga G dv (4.9) Se integamos a expessão anteio paa o volume do copo, e deteminamos a sua componente vetical, concluiemos que a atacção gavitacional geada no Ponto de Medição pelo cilindo de Bougue (ve dedução em Heiskanen e Moitz) é dada po: g B G h (4.0) Se substituimos as constantes na expessão anteio podemos obte: 8 g B h (4.1) Pag 15

10 J M Mianda, J F Luis, P Costa, F M Santos Anomalia da Faye As coecções descitas nos pontos anteioes pemitem esolve em gande medida o poblema descito no início desta secção, que é o de tona compaáveis medidas da gavidade ealizadas em pontos de obsevação que possuem altitudes difeentes, de modo a daí extai infomação intepetável em temos de contastes de densidade. O caso mais simples é aquele no qual apenas consideamos a vaiação da gavidade com a altitude e com a latitude. Neste caso, podemos eduzi as nossas medidas ao plano do geóide, calculando o que se designa po Anomalia de A-live ou Anomalia de Faye, e que é dada po: 5 g g h (4.) F med em que gmed se efee ao valo medido no Ponto de Obsevação, é o valo dado pela Fómula Intenacional da Gavidade paa a latitude do Ponto de Obsevação, e h é a altitude desse ponto Anomalia Simples de Bougue A anomalia de Bougue é a gandeza mais utilizada em pospecção geológica poque taduz mais fielmente os efeitos geados pelos contastes lateais da densidade. O seu valo é dado po: g B g med h h (4.) No caso muito utilizado de a densidade de Bougue te o valo.67 x 10 Kg/m -, que é o valo caacteístico da custa continental, obtemos a expessão: g B g med Anomalia Completa de Bougue h Nos casos em que a mofologia do teeno é muito acidentada, não é possível considea que a influência das massas topogáficas possa se dada pela platafoma de Bougue. A topogafia eal dá sempe oigem a uma edução da gavidade medida no ponto de obsevação, como pode se deduzido simplesmente pela obsevação da figua: que a egião que se enconta acima da altitude do Ponto de Medida, que a egião que se enconta abaixo da altitude do Ponto de Medida geam neste ponto um campo gavitacional adicional cuja componente vetical é paa cima. A coecção topogáfica que é necessáio adiciona à expessão da Anomalia de Bougue indicada anteiomente pode se calculada po integação do Modelo Digital de eeno, ou, mais convencionalmente pela utilização de denominado Ábaco de Hamme ainda hoje utilizado em opeações de pospecção Coecção de Eötvos Quando um copo se enconta em movimento sobe a supefície da ea, a sua velocidade de deslocação vai contibui paa o valo da aceleação gavítica. É este o caso típico dos levantamentos gaviméticos ealizados a bodo de navios. Suponhamos que o copo se move paa Este em elação à ea; neste caso a sua velocidade angula vai aumenta e, consequentemente, a foça centífuga que actua sobe o copo também aumenta. Invesamente, se o copo se move paa Oeste, a sua velocidade angula diminuiá e, consequentemente, a foça centífuga que o actua também diminui. Se o copo se estive a move no equado com uma velocidade v na diecção Este, a sua velocidade aumentaá do seu valo oiginal R (7, x 10-5 x 6,4 x 10 = 0,5 km/s), paa (R + v). Pag 16

11 J M Mianda, J F Luis, P Costa, F M Santos Consequentemente, a aceleação centífuga seá aumentada de difeença ente estas duas aceleações seá R v R R R v ( R) / R paa ( R v) / R. Se v R, a (4.4) Se, po exemplo, a velocidade de deslocamento fo igual a 1m/s, po exemplo, vem v x10 x7,x x10 isto é, o valo da aceleação da gavidade, g, seá diminuído de 15 mgal. gal Este fenómeno não é de meno impotância, se nos lembamos que gande pate dos valoes da gavidade medidos sobe os oceanos são efectuados a pati de um baco em movimento. Paa se obte o valo coecto da gavidade, deve conhece-se a velocidade Este-Oeste do baco e deve pocede-se à coecção adequada. O valo desta coecção é de 15 mgal paa uma velocidade de 1m/s no equado (seá positiva se o baco se move na diecção Este e seá negativa se ele se move no sentido contáio). Se desejamos conhece o valo de g com uma pecisão de 1 mgal, deveemos conhece a velocidade do baco com uma pecisão de 50 m/h. Até à pouco tempo não ea possível obte-se uma pecisão deste tipo mas, actualmente, já é possível obtê-la ecoendo a GPS Intepetação das Anomalias da Gavidade Se obsevamos uma cata de valoes butos da gavidade medida numa qualque áea de estudo, facilmente veificaemos que a vaiação de g essencialmente espelha a vaiação de altitude. A anomalia gavimética de Bougue emove bem a influência da altitude e da topogafia, pelo que se pode considea epesentativa, desde que cosideemos apenas o que se passa nos pequenos compimentos de onda, infeioes a dezenas de km. Do ponto de vista da pospecção, este é o ponto de vista mais impotante, e a genealidade das catas gaviméticas deteminadas paa fins de pospecção mineia (po exemplo) são na vedade catas de anomalia de Bougue. A densidade escolhida paa a deteminação das anomalias de Bougue deve se intepetada como a densidade média da fomação onde o estudo tem luga, e o valo a utiliza é cítico, uma vez que condiciona todos os cálculos. Existem divesos métodos empíicos paa a sua deteminação, sendo o mais conhecido o poposto po Netletton, que se baseia no pessuposto de que a anomalia de Bougue deve te a meno coelação possível com a topogafia. Nos pontos seguintes, em que nos vamos peocupa com a atacção geada em estudos locais, podemos pati do pincípio que essa atacção é bem descita pela anomalia de Bougue, ou seja, que esta anomalia coesponde efectivamente à componente vetical da atacção gavitacional geada po contastes de densidade sob a supefície física da ea. 4.7 Excesso de Massa Uma aplicação muito útil do teoema de Gauss é a estimativa do excesso de massa existente sob uma supefície, a pati do conhecimento da componente nomal da gavidade sobe essa supefície. Suponhamos que se conhece a componente nomal da gavidade, gz, numa supefície hoizontal SP. oda a massa que causa gz está limitada em volume e localizada abaixo de SP. A massa está fechada numa supefície S, que é composta pela supefície SP e pelo hemisféio SH, de aio a, como Pag 17

12 J M Mianda, J F Luis, P Costa, F M Santos se pode ve na figua. Nestas condições, o fluxo de g atavés de S, vem: S g.nds S P g ds z 0 / V sindd (4.5) onde utilizamos o facto de a nomal ao plano supeio pode se consideada a vetical. O potencial de uma distibuição de massa a gandes distâncias não é dependente dos detalhes da distibuição, pelo que se pode esceve: V(P) G dv G M dv G (4.6) onde M é a massa total. Isto que dize que o potencial de qualque distibuição de massa apaece como uma fonte pontual, quando obsevado a gande distância. Então, como a, ( V / ) pode se passado paa foa do sinal de integal na equação (4.5): S g.nds S P V gzds mas, de (4.5) V / GM / 0 d, logo g.nds gzds GM. S S P / sind (4.7) (4.8) Mas, do teoema de Gauss (4.4) sabemos que o fluxo atavés da supeficie que estamos a considea iguala 4GM, pelo que: gzds. GM (4.9) S P onde SP epesenta agoa todo o plano hoizontal. Isto que dize que, a componente vetical da gavidade integada ao longo de um plano infinito é popocional à massa total sob o plano, enquanto a massa estive limitada em volume. A equação (4.9) fonece um meio de estima o excesso de massa que causa uma anomalia nos valoes medidos da gavidade, se se consegui isola o campo anómalo do das outas fontes gavitacionais. Nem a sepaação da fonte anómala das outas fontes gavitacionais é um poblema simples nem os valoes da gavidade são deteminados num plano infinito. Assim, tenta-se-á obte um valo apoximado da massa anómala, integando os valoes medidos da gavidade ao longo de uma supefície que se estenda o mais possível paa foa da fonte de inteesse. 4.8 Anomalia Gavimética Geada po Copos de Geometia Simples Consideemos então o caso simples da deteminação da atacção gavitacional de uma esfea. Podemos considea que a atacção gavitacional geada po uma esfea possui simetia esféica, pelo que, se escolhemos de foma adequada o sistema de coodenadas a utiliza, apenas devemos espea a existência de uma componente adial. Neste caso, consideemos uma supeficie esféica supefície de contolo - que é concentica com a esfea cujo efeito queemos detemina, e que passa pelo Ponto de Medição. A aplicação do eoema de Gauss dá oigem a: Pag 18

13 J M Mianda, J F Luis, P Costa, F M Santos A g.ds sup vol divgdv o pimeio membo da igualdade anteio tem o valo: sup A g.ds 4 R g (4.40) (4.41) uma vez que a nomal unitáia exteio à supeficie de contolo é colinea com o campo e onde o valo de g é po nós consideado como desconhecido mas que sabemos te simetia adial. O segundo membo de (4.40) tem pela Equação de Poisson, o valo: vol divg A dv 4G pelo que, igualando as expessões anteioes obtemos: (4.4) A GM g e (4.4) R que taduz o facto (impotante!) de que a atacção de uma esfea homogénea é idêntica à de uma massa pontual localizada no seu cento. O efeito gavimético desta esfea, que designamos po anómala, vai-se adiciona ao efeito mais impotante da gavidade da ea. Sendo assim, a gandeza a que temos acesso, não é o módulo da atacção gavitacional geada po esta esfea, mas sim a sua componente segundo a diecção do campo gavítico da ea ou, o que é o mesmo, a sua componente vetical. Paa o cálculo desta componente consideemos a geometia indicada na figua ao lado. A componente vetical do campo descito na equação anteio tem a foma: A GM z GMz gz (4.44) / (x z ) Consideemos a título de exemplo um dome de sal, epesentado po uma esfea de,000 m de aio cujo cento se localiza a 6,500 m de pofundidade. Se consideamos que o contaste de densidade ente o encaixante e o sal é de -0. x 10 kg/m podemos detemina de foma muito simples a anomalia de gavidade que oigina. O esultado enconta-se epesentado na figua ao lado. A anomalia máxima geada (na vetical do cento do doma) é de ceca de 1.0 mgal. Este valo da anomalia máxima pode se obtido fomalmente a pati da expessão anteio, uma vez que coesponde ao valo nulo de x. Note que esta consideação só é possível desde que o sistema de coodenadas seja escolhido de foma adequada. O valo máximo da anomalia gavimética seá então dado po: Pag 19

14 J M Mianda, J F Luis, P Costa, F M Santos ou seja: A,max GM gz (4.45) z A A,max z gz g z (4.46) / (x z ) Se conhecemos o valo máximo de gz e um outo pa de valoes (x, g) podemos detemina a pofundidade (z na expessão anteio) a que se enconta a esfea. Podemos ainda detemina a sua massa. Contudo não podeemos esolve o compomisso ente a massa volúmica ( e o aio da esfea (R). Este é um exemplo muito simples dos métodos que podem se utilizados em pospecção gavimética e da sua indeteminação ineente. Existem fómulas um pouco mais complexas paa copos de geometia simples, ou copos tidimensionais que se possam epesenta po poliedos de faces tiangulaes, etc Isostasia Se bem que as anomalias de Bougue sejam epesentativas paa quando estudamos os pequenos compimentos de onda do campo gavítico da ea, quando consideamos egiões extensas, veifica-se de imediato que elas espelham a influência dos mecanismos de compensação existentes na ea. Estudando com atenção as anomalias de gavidade, pode-se apecia que estão distibuidas de foma que, sobe as montanhas são negativas e sobe os oceanos e zonas costeias são positivas. Isto é devido a um fenómeno já descobeto nos meados do século passado po John H. Patt ( 1871) e Geoge B. Aiy ( ), dois cientistas ingleses que fizeam medidas astonómicas na Índia, peto dos Himalaias. Se analisamos os valoes das medidas da gavidade efectuadas ao longo de toda a ea (ou numa extensão apeciável) e após a aplicação de todas as coecções até agoa efeidas, veificou-se que as anomalias de Bougue apesentavam ainda uma coelação sistemática com a topogafia supeficial. Assim, nas áeas elevadas (gandes cadeias montanhosas) as anomalias de Bougue eam sempe negativas, enquanto sobe os oceanos, elas eam sempe positivas; em tea, junto ao ma, a anomalia de Bougue média ea peto de zeo. Estas anomalias indicam a existência de vaiações lateais da densidade, isto é, vaiações na densidade das ochas que fomam a costa, de tal modo que a densidade das ochas sob as montanhas deveá se abaixo da média e, sob os oceanos, as ochas devem te uma densidade acima do valo médio. Este efeito denomina-se po isostasia e consiste na teoia de que o peso das montanhas deve esta compensado de alguma foma no inteio da ea, paa que o mateial debaixo delas não esteja sujeito a tensões. Algo análogo, mas de sentido inveso, deve acontece nos oceanos, uma vez que a água do ma tem menos peso que as ochas dos continentes. Segundo Delaney (1940), Leonado da Vinci (séc XVI) foi o pimeio a constata que as massas visíveis à supefície da ea se encontavam em equilíbio. Só muito mais tade, em 1749, P. Bougue e R. J. Boscovich chegaam à mesma conclusão. Contudo, as ideias definitivas sobe a compensação de massa sob as montanhas, sugiam no seguimento de uma campanha geodésica efectuada no note da Índia: se os Himalaias epesentassem um acéscimo de massa, a linha de pumo, ou vetical, devia desvia-se na diecção da montanha de uma quantidade coespondente ao excesso de massa epesentado pela montanha. Contudo, as medições efectuadas po Patt (1855) mostaam que a deflexão obsevada ea muito meno, ceca de 1/ da espeada. O temo isostasia, intoduzido pelo geólogo ameicano Dutton, epesenta o Pincípio de Aquimedes aplicado às camadas mais supeficiais da ea, e pode se definido de dois modos: (i) é uma condição natual da ea, de tal modo que são feitos ajustes contínuos paa se apoxima do equilíbio gavítico; (ii) epesenta uma vaiação na densidade da custa sistematicamente elacionada com as elevações à supefície, ou seja, com a topogafia supeficial. Duas hipóteses foam avançadas imediatamente, e paticamente em simultâneo, paa explica estas obsevações: a Pag 10

15 J M Mianda, J F Luis, P Costa, F M Santos hipótese de Patt e a hipótese de Aiy Modelos de Patt-Hayfod Segundo Patt, os Himalaias ao "cesceem" diminuiam a sua densidade, de tal modo que quanto mais alta fo a montanha meno é a sua densidade. Ele genealizou a sua teoia, popondo uma camada supecficial que se estende até uma deteminada pofundidade (o chamado "nível de compensação"), e que apesenta vaiações lateais de densidade de acodo com a topogafia supeficial. Paa justifica geologicamente a sua hipótese, ele postulou que as montanhas eam fomadas po expansão vetical, sem vaiação de massa, de modo que é a densidade que sofe alteação sob um alto ou uma depessão da topogafia. Se consideamos que a pessão é idêntica no nível de compensação H, podemos iguala o seu valo paa o caso em que a altitude é 0 (paa a qual a densidade é consideada 0) e o caso onde a altitude é h. Neste último caso a densidade seá dada po: H h 0 (4.47) H h No caso em que a altitude é negativa (-h), e a depessão se enconta peenchida po um oceano de densidade w, a densidade subjacente seá dada po: 0 H w h h (4.48) H h 4.9. Modelo de Aiy-Heiskanen Segundo Aiy, a montanha assenta numa "aíz" de mateial menos denso que o manto, de tal modo que a massa total sobe a estutua montanhosa não é maio que a da planície adajacente; de acodo com esta teoia, quanto mais alta fo a montanha, maio seá a sua aíz. No nosso modelo da ea tal é mateializado po uma custa que "flutua" sobe um manto, com maio densidade, admitindo-se que o equilíbio hidostático se veifica localmente. Consideemos assim que temos custa de massa volúmica c que se enconta sobe manto de densidade m que c onsideaemos constantes. Consideemos ainda que a elevação zeo coesponde a uma espessua custal H. Uma elevação da custa h acima do geóide deveá se compensada po uma aiz de espessua b de tal modo que: c b h (4.49) m c Se a altitude fo negativa, o que acontece num oceano, então teemos uma anti-aiz de espessua b dada po: Pag 11

16 J M Mianda, J F Luis, P Costa, F M Santos c w b h (4.50) m c onde supomos que a massa volúmica da água é dada po w. O facto de have isostasia não implica que a anomalia gavimética (de A-live ou Bougue) seja nula. Na vedade, podem mesmo obte-se expessões analíticas da ondulação do geóide coespondentes a estes modelos de equilíbio (ve po exemplo ucotte e Schubet, 198). Quando se compaam estas ondulações do geóide com as ondulações obsevadas nas magens continentais passivas, conclui-se que são muito póximas, mesmo nos médios compimentos de onda, o que pemite conclui que que as magens continentais passivas se encontam póximas do equilíbio isostático Qual dos Modelos? As duas hipóteses são bastantes difeentes, se bem que os seus efeitos à supefície sejam equivalentes. Sabemos actualmente que os dois mecanismos estão pesentes na ea. O modelo de Aiy explica bem o que se passa nas vaiações de espessua custal e que ocoem numa gama de pofundidades situada ente 5 e 50 km. Este modelo pode ainda se genealizado de modo a enta em linha de conta com a igidez litosféica, no que se designa gealmente po modelos de placa elástica. O modelo de Patt está pesente quando se estuda a expansão témica da litosfea, a estutua das dosais oceânicas ou das platafomas continentais. Uma situação de uma situação deste tipo é a que ocoe nos swells associados aos pontos quentes como no Hawai. Um outo tipo de modelo de compensação isostática está elacionado com o pocesso de aefecimento e espessamento da litosfea à medida que se afasta da dosal. Este pocesso temomecânico é acompanhado pela tansfeência de calo da litosfea paa o oceano cuja densidade aumenta, geando subsidência. Este pocesso que está na base do pefil dos oceanos na escala global é habitualmente designado po subsidência témica Execícios Popostos 1. Moste, a pati da expessão do opeado gadiente em coodenadas esféicas, que a expessão (4.) se pode obte a pati de (4.6).. Considee o modelo simples em que o campo gavitacional da ea pode se descito pela apoximação esféica. Considee que o valo da gavidade é de 9.8 Nkg -1 e a pati deste detemine o valo médio da densidade do planeta. (G = 6.67 x N m kg - ). A pati da expessão do Campo Gavítico na apoximação esféica, esboce a vaiação da amplitude da gavidade com a latitude. 4. As equações 4.7 e 4.8 pemitem-nos calcula a gavidade teóica em qualque ponto da ea. Calcule o valo da gavidade nomal paa Lisboa. Obtenha de uma cata as coodenadas geogáficas e a altitude média. (ome também em consideação o gadiente vetical da gavidade - equação 4.6) 5. Calcule os valoes máximos dos temos de maé devidos ao Sol e à Lua num ponto à supefície da ea. G = 6.7 x Nm /kg ; Req = 6.7 x 10 6 m ; M = 6 x 10 4 kg; DL =.84 x 10 8 m ; DS = 1.5 x m ; MS = x 10 0 kg ; ML = 7. x 10 kg 6. Calcule qual deveá se o valo da coecção de A-Live no planeta Vénus (utilize os valoes das tabelas do capítulo 1). Pag 1

17 J M Mianda, J F Luis, P Costa, F M Santos 7. Considee um ponto à latitude de 5ºN e a uma altitude de 600 metos, onde o valo obsevado da gavidade é gal. a) Calcule o valo teóico da gavidade paa um local àquela latitude b) Calcule a anomalia de a live. c) Calcule a anomalia simples de Bougue, supondo que a massa volúmica é de.67 x 10 kg/m. d) Detemine a anomalia completa de Bougue, supondo que o valo da coecção de teeno é mgal. 8. Considee a tabela de valoes seguinte, onde se indica a anomalia gavimética medida sobe o geóide, em mgal (10-5 N/kg) em função da distância (em meto): x g x g x g x g -00 0, ,07 0 0, , , , , , ,0-80 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,00 Esboce a anomalia gavimética e detemine a pofundidade do cento de uma esfea capaz de gea esta anomalia. Detemine igualmente a massa da esfea. 9. Considee uma cavena esféica cheia de água, e localizada numa fomação cuja massa volúmica é de.5 x 10 kg/m. Detemine o valo máximo da anomalia da gavidade geada no nível do geóide admintindo que o aio da cavena é de 150 m e que a cota mais elevada é de -75 m. 10. Na hipótese de Aiy considee custa de massa volúmica 700 kg/m em equilíbio sobe manto de massa específica 000 kg/m. Detemine qual a aiz geada po uma cadeia de montanhas com 500 m de altitude, e qual a anti-aiz geada num oceano de pofundidade 000 m. Considee que a água do oceano tem a massa volúmica de 100 kg/m. 11. A eosão diminuiu a altitude de um maciço em 100 m. Admitindo que existe ecupeação isostática qual foi a espessua de mateial ealmente eodida? (considee os esultados obtidos no poblema anteio) 1. Em deteminado local veificou-se que a custa sofeu uma sobe-elevação isostática de 75 m devido ao desapaecimento de uma camada de gelo. Detemine a espessua da camada de gelo inicial, sabendo que a sua massa volúmica é de 900 kg/m, e admitindo os valoes de 700 kg/m e 000 kg/m paa as densidades da custa e do manto. 1. Considee o pocesso de sedimentação numa bacia oceânica, admitindo que a espessua de sedimentos é de 1000 m, e que as densidades da água, sedimentos, custa e manto são 1000 kg/m, 1500 kg/m e 700 kg/m e 000 kg/m, espectivamente. Detemine a vaiação da pofundidade do oceano, antes e depois do pocesso de sedimentação. 14. Aplique os modelos de Patt e de Aiy à situação apesentada na figua seguinte. No modelo de Aiy, detemine a inteface costa manto, consideando os valoes das massas específicas paa a costa, manto e oceano apesentados no poblema 10. No modelo de Patt considee o valo de 700 kg/m paa a massa volúmica da custa sem petubações, o nível de compensação a 70 km de pofundidade e detemine a Pag 1

18 Altitude (km) FUNDAMENOS DE GEOFÍSICA J M Mianda, J F Luis, P Costa, F M Santos densidade dos difeentes blocos de costa Bibliogafia Blakely, R. (1995). Potential heoy in Gavity and Magnetic Applications, Cambidge Univesity Pess, USA. Dobin, M.B. and C.H. Savit (1988). Intoduction to Geophysical Pospecting. McGaw-Hill Book Company, 4th Ed. Heiskanen e Moitz, Physical Geodesy, Shama, P.V. (1976). Geophysical Methods in Geology. Methods in Geochemisty and Geophysics,1. Elsevie Scientific Publishing Company. Sleep, N.H. and K. Fujita (1997). Pinciples of Geophysics. Blackwell Science, Malden, Massachussetts, 586p. Sousa Afonso, J.N.V.M. (1968). Instituto Potuguês de Catogafia e Cadasto,167 pp. Stacey, Fank D. (199). Physics of the Eath, Bookfield Pess, Austalia, 51 pp. elfod, W.M., L.P. Geldat and R.E. Sheiff (1990). Applied Geophysics. Cambidge Univesity Pess, nd Ed. suboi, C. (1981). Gavity. Geoge Allen and Unwin, U.K. Pag 14

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais Mecânica Clássica (icenciatuas em Física Ed., Química Ed.) Folha de oblemas 4 Movimentos de coos sob acção de foças centais 1 - Uma atícula de massa m move-se ao longo do eixo dos xx, sujeita à acção de

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução

2.6 RETRODISPERSÃO DE RUTHERFORD. 2.6.1 Introdução Capítulo Técnicas de Caacteização Estutual: RS.6 RETRODISPERSÃO DE RUTHERFORD.6. Intodução De modo a complementa a análise estutual das váias amostas poduzidas paa este tabalho, foi utilizada a técnica

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

Prova Teórica. Terça-feira, 5 de Julho de 2005

Prova Teórica. Terça-feira, 5 de Julho de 2005 36 a Olimpíada Intenacional de Física. Salamanca (Espanha) 5 Pova Teóica Teça-feia, 5 de Julho de 5 Po favo, le estas instuções antes de inicia a pova:. O tempo disponível paa a pova teóica é de 5 hoas..

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Professor: Newton Sure Soeiro, Dr. Eng.

Professor: Newton Sure Soeiro, Dr. Eng. UNIVERSIDDE FEDERL DO PRÁ MESTRDO EM ENGENHRI MECÂNIC GRUPO DE VIRÇÕES E CÚSTIC nálise Modal Expeimental Pofesso: Newton Sue Soeio, D. Eng. elém Paá Outubo/00 Gupo de Vibações e cústica UFP nálise Modal

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Pof Jason Gallas, DF UFPB 1 de Junho de 13, às 18: Execícios Resolvidos de Física Básica Jason Alfedo Calson Gallas, pofesso titula de física teóica, Douto em Física pela Univesidade Ludwig Maximilian

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

Interações Eletromagnéticas 1

Interações Eletromagnéticas 1 Inteações Eletomagnéticas 1 I.H.Hutchinson 1 I.H.Hutchinson 1999 Capítulo 1 Equações de Maxwell e Campos Eletomagnéticos 1.1 Intodução 1.1.1 Equações de Maxwell (1865) As equações que govenam o eletomagnetismo

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br

F-328-2 º Semestre de 2013 Coordenador. José Antonio Roversi IFGW-DEQ-Sala 216 roversi@ifi.unicamp.br F-38 - º Semeste de 013 Coodenado. José Antonio Rovesi IFGW-DEQ-Sala 16 ovesi@ifi.unicamp.b 1- Ementa: Caga Elética Lei de Coulomb Campo Elético Lei de Gauss Potencial Elético Capacitoes e Dieléticos Coente

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Cap 1 O CAMPO MAGNÉTICO DA TERRA

Cap 1 O CAMPO MAGNÉTICO DA TERRA Intodução ao Geomagnetismo J M A de Mianda Cento de Geofísica da Univesidade de Lisboa Cap 1 O CAMPO MAGNÉTICO DA TERRA 1.1 Intodução A existência do campo magnético da Tea (CMT) é conhecida desde Gilbet,

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

2. Levantamentos Magnéticos

2. Levantamentos Magnéticos 2. Levantamentos Magnéticos O objectivo dos levantamentos magnéticos é o de investiga a geologia subsupeficial com base nas anomalias do campo magnético da Tea, esultantes das popiedades magnéticas dos

Leia mais

FREIOS e EMBRAGENS POR ATRITO

FREIOS e EMBRAGENS POR ATRITO UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DE PROJETO MECÂNICO APOSTILA FREIOS e EMBRAGENS POR ATRITO Auto: Pof.D. Auteliano Antunes dos Santos Junio Esta apostila

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS MECÂNICA DOS SÓLIDOS.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS MECÂNICA DOS SÓLIDOS. FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE ENGENHARIA CIVIL SECÇÃO DE ESTRUTURAS MECÂNICA DOS SÓLIDOS Álvao Azevedo 996 PREFÁCIO A matéia leccionada na disciplina de Mecânica dos

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

Exp. 10 - RESSONÂNCIA

Exp. 10 - RESSONÂNCIA apítulo Exp. 0 - RESSONÂNIA EÉTRIA. OBJETIVOS Estudo das oscilações eléticas foçadas em cicuitos essonantes em séie e em paalelo..2 PARTE TEÓRIA Muitos sistemas físicos estáticos e estáveis, quando momentaneamente

Leia mais

11. ÁGUA SUBTERRÂNEA / HIDRÁULICA DE POÇOS

11. ÁGUA SUBTERRÂNEA / HIDRÁULICA DE POÇOS . ÁGUA SUBTEÂNEA / HIDÁULICA DE POÇOS.. Intodução. Caacteísticas dos meios poosos Neste capítulo, são estudados os escoamentos da água atavés de meios poosos, dando-se paticula ênfase à hidáulica de poços.

Leia mais

Capítulo VII Campo Magnético e suas fontes

Capítulo VII Campo Magnético e suas fontes ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 Capítulo VII Campo Magnético e suas fontes 7.1 Efeitos magnéticos na natueza 7.1.1 Beve intodução históica As obsevações e

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Capítulo 4 A FORMA DA TERRA

Capítulo 4 A FORMA DA TERRA J M Mianda, J F Luis, P T Costa, F M Santos Capítulo 4 A FORMA DA TERRA 4.1 Potenciais Gavitacional, Centífugo e Gavítico Isaac Newton (164-177) explicou nos seus Pincípios Matemáticos da Filosofia Natual,

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

2. Projetos de Investimento como Opções Reais

2. Projetos de Investimento como Opções Reais 8. Pojetos de nvestimento como Opções Reais Uma fima que possui uma opotunidade de investimento adquiiu algo semelhante a uma opção de compa financeia: ela possui o dieito, mas não necessaiamente a obigação

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Dimensionamento de uma placa de orifício

Dimensionamento de uma placa de orifício Eata de atigo do engenheio Henique Bum da REBEQ 7-1 Po um eo de fechamento de mateial de ilustação, pate do atigo do Engenheio Químico Henique Bum, publicado na seção EQ na Palma da Mão, na edição 7-1

Leia mais

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo

Física II F 228 2º semestre aula 2: gravimetria, matéria escura, energia potencial gravitacional e a expansão do universo Física II F 8 º semeste 01 aula : gavimetia, matéia escua, enegia potencial gavitacional e a expansão do univeso Revendo a aula passada: pincípio de supeposição (e coigindo um eo) m F F 1 z M b a M 1 Discussão

Leia mais

PR I. Teoria das Linhas de Transmissão. Carlos Alberto Barreiro Mendes Henrique José da Silva

PR I. Teoria das Linhas de Transmissão. Carlos Alberto Barreiro Mendes Henrique José da Silva PR I II Teoia das Linhas de Tansmissão Calos Albeto Baeio Mendes Henique José da Silva 5 Linhas de Tansmissão 1 LINHAS DE TRANSMISSÃO 1.1 Paâmetos distibuídos Um cabo coaxial ou uma linha bifila (mostados

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Introdução. Base de Dados: Linha de Calibração Observatório Nacional Agulhas Negras

Introdução. Base de Dados: Linha de Calibração Observatório Nacional Agulhas Negras A impotância da eestutuação da Linha de Calibação Obsevatóio Nacional Agulhas Negas paa atende as caacteísticas dos gavímetos Scintex CG5. Fancisma Rimoli Bequó, IFF, Itapeuna, Basil*. Iis Peeia Escoba,

Leia mais

Breve Revisão de Cálculo Vetorial

Breve Revisão de Cálculo Vetorial Beve Revsão de Cálculo Vetoal 1 1. Opeações com vetoes Dados os vetoes A = A + A j + A k e B = B + B j + B k, dene-se: Poduto escala ente os vetoes A e B A B A B Daí, cos A AB cos A B B A A B B AB A B

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

Renato Frade Eliane Scheid Gazire

Renato Frade Eliane Scheid Gazire APÊNDICE A CADENO DE ATIVIDADES PONTIFÍCIA UNIVESIDADE CATÓLICA DE MINAS GEAIS Mestado em Ensino de Ciências e Matemática COMPOSIÇÃO E/OU DECOMPOSIÇÃO DE FIGUAS PLANAS NO ENSINO MÉDIO: VAN HIELE, UMA OPÇÃO

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Rolamentos rígidos de esferas

Rolamentos rígidos de esferas Rolamentos ígidos de esfeas Os olamentos ígidos de esfeas estão disponíveis em váios tamanhos e são os mais populaes ente todos os olamentos. Esse tipo de olamento supota cagas adiais e um deteminado gau

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

TRIBUNAL DE CONTAS DA UNIÃO. Índice:

TRIBUNAL DE CONTAS DA UNIÃO. Índice: ANEXO 4 ROTEIRO DE VERIFICAÇÃO DO CÁLCULO DO CUSTO DO CAPITAL Roteio de Veificação do Cálculo do Custo do Capital Índice: Índice: Conceitos Veificações 1 VISÃO GERAL... 3 1.1 O QUE É CUSTO DE CAPITAL...

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Movimentos: Variações e Conservações

Movimentos: Variações e Conservações Movimentos: Vaiações e Consevações Volume único Calos Magno S. da Conceição Licinio Potugal Lizado H. C. M. Nunes Raphael N. Púbio Maia Apoio: Fundação Ceciej / Extensão Rua Visconde de Niteói, 1364 Mangueia

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais