Prof. Dirceu Pereira

Tamanho: px
Começar a partir da página:

Download "Prof. Dirceu Pereira"

Transcrição

1 Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de 8 km/s km/h, o copo ficaá em óbita cicula em tono da Tea (figua 7). Esse é o caso dos satélites. A foça de atação da Tea sobe o satélite altea a dieção de sua velocidade, dando-lhe a aceleação centípeta necessáia paa pemanece em óbita. atuantes seá a foça centípeta, oientada paa o cento da tajetóia. Assim, do pincípio fundamental da Dinâmica, temos que: m a ESULTANTE CENTÍPETA E TANGENCIAL Neste caso, temos apenas uma foça atuando, que é a foça de atação gavitacional. Neste caso, esta foça equivale à foça centípeta. Considee, agoa, uma bola de feo pesa a um fio e que desceve uma cicunfeência hoizontal, confome mosta a figua 8. Sobe a bola atuam as foças peso P e tação do fio T, que lhe gaantem a aceleação centípeta. Neste caso, a foça centípeta é a soma vetoial da foça de tação no fio e do peso da bola, ou seja, P + T No item anteio, consideamos o movimento cicula unifome e, potanto, a esultante das foças que agiam no copo, oientada paa o cento da tajetóia. Entetanto, se a foça esultante não estive oientada paa o cento da tajetóia, o que ocoe nos movimentos cuvilíneos vaiados (figua 0), podemos decompo nas dieções nomal e tangente à tajetóia. A esultante das foças nomais à tajetóia é a esultante centípeta, esponsável pela vaiação da dieção da velocidade. A esultante das foças tangentes à tajetóia é a esultante tangencial t, esponsável pela vaiação do módulo de. Pelos exemplos acima, podemos conclui que, toda vez que um copo desceve uma cuva, sua velocidade vetoial vaia em dieção. Paa que isso ocoa, pelo pincípio fundamental da Dinâmica, as foças que atuam no copo devem gaanti a aceleação centípeta ESULTANTE CENTÍPETA Na figua 9, temos um copo de massa m ealizando um movimento plano, cuvilíneo e unifome sob ação das foças mostadas. Po se um movimento cuvilíneo, a aceleação é centípeta e a esultante das foças A esultante centípeta poduz a aceleação centípeta a e a esultante tangencial poduz a aceleação tangencial a t. Pelo pincípio da Dinâmica, temos: m a e m a Lembe que no movimento cicula unifome t 0 e a esultante das foças é a pópia foça centípeta. t t Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes

2 Polícia odoviáia edeal eja o pêndulo da figua. A foça de tação no fio T tem dieção nomal à tajetóia e o peso P é decomposto nas dieções nomal (P n ) e tangencial (P t ), confome a indica a posição A do pêndulo. Concluímos que as esultantes, centípeta e tangencial, têm módulo: T P cos θ e P senθ Quando a esfea passa pela posição mais baixa (), as foças T e P têm dieção nomal à tajetóia e, nesse instante: T P e 0 t t Pof. Diceu Peeia ísica Essa foça cf é chamada foça centífuga e somente existe em elação a efeenciais não-ineciais. Paa o obsevado exteio fixo na estada (efeencial inecial), a foça centífuga não existe. A foça centífuga não é eação da foça centípeta. A foça centífuga é uma foça de inécia EECÍCIOS ESOLIDOS 8) Um motociclista executa manobas dento do globo da mote, em um cico. O aio inteno do globo é,5 m. Adote g 0 m/s². Detee a mínima velocidade que a motocicleta deve te paa não pede contato com a supefície esféica. eja a figua abaixo. À medida que a moto sobe, tende a pede contato com a pista e o ponto cítico é o supeio. Considee o copo nessa posição supeio. Nele atuam o peso P e a nomal esultante centípeta. n, que dão a OÇA EM EEENCIAL NÃO-INECIAL Considee um cao numa cuva de aio. Paa um obsevado exteio fixo na estada (efeencial inecial), o veículo tende a sai pela tangente consevando sua velocidade, pelo pincípio da inécia. Paa esse obsevado exteio, as foças que atuam no veículo, peso P, nomal n e atito de escoegamento lateal at altea a dieção da velocidade., gaantem a esultante centípeta, que n n m a + P m a + P m m () Po essa fómula, à medida que decesce a velocidade, diui também a foça de contato n, pois P, m e são constantes. Sendo assim, a velocidade mínima paa se faze a cuva ocoe quando n 0. Obseve que o copo não cai, pois possui velocidade tangencial. Na fómula (), quando n 0. O fenômeno, poém, é difeente paa um obsevado no inteio do pópio cao, pois este possui aceleação em elação à estada e, po isso, é um efeencial nãoinecial. Esse obsevado inteio sente-se atiado paa foa do cao na cuva e intepeta o fenômeno consideando uma foça cf em elação ao pópio cao. n + P m g 5 m / s 8 km / h esposta: 8 km/h o + P m,5 0 m g m 5 9) Uma massa m está pesa a um fio inextensível, de peso despezível, e gia num plano hoizontal Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes

3 Polícia odoviáia edeal Pof. Diceu Peeia ísica constituindo um pêndulo cônico. Se o compimento do fio é L m e o ângulo que o fio foma com a vetical é θ 60º (cos60º 0,5), detee a velocidade angula ω de otação da massa m. Adote g 0 m/s². Na massa pendula atuam o peso P e a tação T. A esultante centípeta é a soma de P e T confome se indica no diagama de foças. Pela equação fundamental da Dinâmica: UNIDADE 4 ESTÁTICA Do pincípio fundamental da Dinâmica, sabemos que: A esultante das foças aplicadas a um ponto mateial é igual ao poduto de sua massa pela aceleação adquiida: m a Se um copo está em epouso, sua velocidade é constante e igual a zeo. Sua aceleação também seá igual a zeo. m a m ϖ () Do tiângulo destacado da figua abaixo, vem: tanθ P m ϖ ϖ tanθ m g m g g ( ) Do pincípio acima, temos que a esultante de um sistema de foças que agem sobe um copo em epouso seá nula, o que coloca o copo em equilíbio estático. A Estática é o caso paticula da Dinâmica em que a esultante de um sistema de foças que agem sobe um copo é nula. Na Estática também são válidos e aplicáveis os pincípios da inécia (ª lei de Newton) e da ação-e-eação (3ª lei de Newton). 4.. UM POUCO MAIS SOE ETOES Considee um sistema de foças confome figua. O aio, poém, depende do compimento L do fio. Da elação tigonomética do tiângulo etângulo, tiamos que: L senθ (3 ) Substituindo (3) na fómula () e consideando senθ tan θ, obtemos: cosθ ϖ ϖ L senθ senθ ϖ tanθ g g cosθ g g ϖ ϖ (4 ) L cosθ L cosθ L senθ g Substituindo os dados do poblema na fómula (4), vem: 0 ϖ ϖ 0 ϖ 3, ad / s 0,5 esposta: 3, ad/s imos na Unidade, o método gáfico paa a soma e subtação de vetoes. Poém, podemos, atavés da pojeção do paalelogamo acima segundo eixos catesianos, enconta expessões matemáticas que nos pemitam faze tais opeações. Paa o caso da soma de dois vetoes, temos, em módulo: + + cos θ Paa o caso da subtação de dois vetoes, temos, em módulo: + cos θ Se θ 90º, temos que cos90º 0 e os vetoes fomam um tiângulo etângulo. Daí, temos que: + tanto paa a soma como paa a subtação, o que é coeente com o método gáfico. Alguns lembetes são impotantes: ) no método gáfico, a odem de colocação dos vetoes não altea o esultado final; Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes 3

4 Polícia odoviáia edeal Pof. Diceu Peeia ísica ) se a extemidade do último veto coincidi com a oigem do pimeio, ou seja, tivemos uma linha poligonal fechada, veto esultante seá zeo; 3) dois vetoes seão iguais quando tiveem o mesmo módulo, a mesma dieção e o mesmo sentido. 0,86 T 0,50 P T,7 P 4.. EQUILÍIO DE UM PONTO MATEIAL amos estuda este assunto atavés de um exemplo. Considee a figua que epesenta um sistema em equilíbio, na iência de movimento. Detee o coeficiente de atito ente o copo A e o plano hoizontal. Os fios são inextensíveis e de massa despezível. Os pesos dos copos A e são, espectivamente, 40 N e P 0 N (senφ 0,50 e cosφ 0,86). De (), sendo T µ p A, vem: µ P A,7 P Logo : µ 0,86 µ 40,7 0 onde µ 0,86 Potanto, paa que o sistema pemaneça em equilíbio estático, o coeficiente de atito estático deve se de, no mínimo, 0,86. Sabemos que o sistema está em epouso. Potanto, a foça esultante que age sobe o ponto O deve se zeo. amos analisa o diagama de copo live paa o bloco A MOMENTO DE UMA OÇA EM ELAÇÃO A UM PONTO Chama-se momento de uma foça aplicada num ponto P, em elação a um ponto O, ao poduto da intensidade da foça pela distância d do ponto O à linha de ação da foça, confome mosta a figua 3. M ± d O bloco A é puxado pelo bloco geando uma tensão T no fio. A tendência de movimento é esistida pela foça de atito at, a qual é esultado do poduto da foça nomal N, decoente do peso P do bloco com o coeficiente de atito µ. As igualdades mostadas na figua acima demonstam que o bloco A está em equilíbio estático, donde podemos tia que: P A N T µ Do ponto C em equilíbio, temos: T cos θ T 0 T 0,86 T T senθ P p 0 T 0,50 P A () () (3) Dividindo-se, membo a membo, () po (3), esulta: O momento, também chamado de toque, pode se positivo ou negativo. Po convenção, adota-se: (+) a foça poduz otação no sentido anti-hoáio; (-) a foça poduz otação no sentido hoáio. A unidade de momento, ou toque, no Sistema Intenacional de Unidades (SI) é o Newton vezes meto (N.m), sendo pemitido o uso de seus múltiplos e submúltiplos, quando necessáio. Costumeiamente, chamamos o ponto O de pólo e a distância d de baço. Daí, o famoso temo baço de alavanca. Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes 4

5 Polícia odoviáia edeal Pof. Diceu Peeia ísica 4.4. INÁIO Na figua 4, temos duas foças de mesma intensidade, mesma dieção e sentidos opostos, cujos pontos de aplicação estão a uma ceta distância d ente si. Potanto, o sistema de foças que age sobe um copo em equilíbio deve se tal que: a) a esultante do sistema de foças seja nula (equilíbio de tanslação); n n 0 0 b) a soma algébica dos momentos das foças do sistema, em elação a qualque ponto, seja nula (equilíbio de otação). MO M + M + M3 +...M n 0 A distância d é chamada de baço de bináio. O momento do bináio é a soma algébica dos momentos das foças que o constituem. Desta foma, adotando-se um pólo abitáio C, confome figua 5, e levando em consideação a convenção de sinais, temos: M + a b M (a b) 4.6. TEOEMA DAS TÊS OÇAS onte: Os undamentos da ísica Mecânica amalho-nicolau-toledo, 8ª Ed., Editoa Modena. Se um copo estive em equilíbio sob a ação exclusiva de tês foças, estas deveão se coplanaes e suas linhas de ação seão, necessaiamente, concoentes num único ponto ou paalelas. M d Da expessão M.d, concluímos que o momento de um bináio independe do pólo C adotado. O sentido do momento do bináio da figua 5 é antihoáio, e, potanto, positivo, confome convenção adotada. Se aplicamos um bináio a um copo inicialmente em epouso, este não alteaá o seu estado de tanslação, mas tendeá a te movimento não-unifome de otação devido ao momento do bináio EQUILÍIO DOS COPOS ETENSOS amos entende melho este teoema atavés de um exemplo. Uma escada A enconta-se apoiada em uma paede lisa. Na figua 7, epesentamos duas das tês foças que atuam sobe a escada: o peso P e a foça execida pela paede. Podemos obte gaficamente a dieção da foça, que o chão exece na escada, na posição de equilíbio. asta detea o ponto C (ponto de concoência das linhas de ação de e P ) paa conclui que a linha de ação de é a eta deteada pelos pontos C e. Quando estudamos a Mecânica atavés de um ponto mateial, consideamos que este ponto possuía somente movimento de tanslação, etilíneo ou cicula, uma vez que suas dimensões eam despezíveis. Ao estudamos os copos extensos, pecisamos considea suas dimensões e, potanto, leva em conta que uma esultante de foças não-nula podeá impo a este copo um movimento de tanslação, um movimento de otação, ou ambos. Assim, uma esultante de foças coplanaes nula manteá o copo em equilíbio estático ou equilíbio dinâmico. Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes 5

6 Polícia odoviáia edeal Pof. Diceu Peeia ísica 4.7. CENTO DE GAIDADE E CENTO DE MASSA onte: Os undamentos da ísica Mecânica amalho-nicolau-toledo, 8ª Ed., Editoa Modena. O ponto de aplicação do peso de um copo é denoado cento de gavidade (CG) ou baicento. É um ponto no qual, podemos imagina, concenta-se todo o peso do copo. Se o copo fo homogêneo e apesenta um elemento de simetia, o cento de gavidade coincidiá com o cento geomético deste copo (figua 8). A aticulação pemite que a baa gie no plano da figua em tono de A. A pincípio não sabemos em que dieção e sentido a foça de eação da aticulação na baa estaá agindo. amos então, no diagama de copo live abaixo, considea suas componentes x e y, confome mostado. O ponto no qual podemos considea concentada toda a massa de um copo é denoado cento de massa. Nos locais onde a aceleação da gavidade pode se consideada constante, o cento de gavidade coincide com o cento de massa. Um copo que se enconta no espaço, live da atação gavitacional da Tea e de outos copos celestes, tem cento de massa, mas não tem cento de gavidade TIPOS DE EQUILÍIO DE UM COPO Temos tês tipos de equilíbio: estável, instável e indifeente. Equilíbio estável: O copo, sendo movido de sua posição inicial de equilíbio, etona a esta após cessa a foça que poduziu o movimento. Equilíbio instável: O copo, sendo movido de sua posição inicial de equilíbio, afasta-se ainda mais desta de equilíbio. Equilíbio indifeente: O copo, sendo movido de sua posição inicial de equilíbio, iá atingi uma nova condição de equilíbio em outa posição EECÍCIOS ESOLIDOS ) Um viga A de secção eta e unifome está aticulada em A e é mantida na posição hoizontal pelo fio, inextensível e de massa despezível, C. Em sua extemidade, a baa, com peso de 500 N, suspende uma esfea maciça D com peso de 00 N. Detee a tacão no fio C e as eações hoizontal e vetical da aticulação A. São dados senφ 0,50 e cosφ 0,86. Note que a esfea tem peso 00 N atuando como indicado. A baa tem seu peso de 500 N aplicado no seu cento de gavidade, com sentido paa baixo. O somatóio destes pesos povoca a eação de tação T no fio, que pode se decomposta em suas componentes T x e T y. amos impo as condições de equilíbio da baa A. ) esultante das foças deve se nula: y 0 T cos ϕ 0 T () T senϕ 0 + T senϕ ( ) T T cos ϕ 0 0 ) Soma algébica dos momentos em elação ao ponto deve se nula. d d M N Substituindo o valo encontado de y na equação (), esulta: 50 + T 0,5 700 T 900 N Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes 6

7 Polícia odoviáia edeal Pof. Diceu Peeia ísica Da equação (), podemos enconta o valo de x atavés da substituição de T pelo seu valo encontado: 900 0, N Se x ou y esultassem negativo, significaia que os sentidos adotados no início não foam coetos. Em geal, escolhe-se como pólo o ponto em elação ao qual a maioia das foças tem momento nulo. esposta: 494 N, 50 N,T 900 N ) Considee uma tábua de madeia A 3 m, eta, plana e homogênea, suficientemente ígida, de peso 40 N, fixa e aticulada em um pisma na posição P, confome mosta a figua abaixo. Em sua extemidade A, é suspenso um bloco C de massa 00 kg. No outo lado do pisma, sobe a tábua, sobe um iogue, de massa 80 kg, e se posiciona em D. Considee g 0 m/s² e detee a distância AD paa que a tábua tenha equilíbio estável na posição hoizontal. Paa esolve este poblema, basta fazemos a soma algébica dos momentos em elação ao ponto P e toná-lo nulo. açamos o diagama de copo live da tábua. M P , (d ) d 70 d 0,9 m esposta: d 0,9 m Neste cuso os melhoes alunos estão sendo pepaados pelos melhoes Pofessoes 7

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

Os Fundamentos da Física

Os Fundamentos da Física TEMA ESPECAL DNÂMCA DAS TAÇÕES 1 s Fundamentos da Física (8 a edição) AMALH, NCLAU E TLED Tema especial DNÂMCA DAS TAÇÕES 1. Momento angula de um ponto mateial, 1 2. Momento angula de um sistema de pontos

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

a ± g Polícia Rodoviária Federal Física Aula 2 de 5 Prof. Dirceu Pereira 2.5.4. MOVIMENTO VERTICAL NO VÁCUO

a ± g Polícia Rodoviária Federal Física Aula 2 de 5 Prof. Dirceu Pereira 2.5.4. MOVIMENTO VERTICAL NO VÁCUO Polícia odoiáia edeal Pof. Diceu Peeia ísica ula de 5.5.4. MOVIMENTO VETIL NO VÁUO O moimento etical de um copo póimo ao solo é chamado de queda lie quando o copo é abandonado no ácuo ou se considea despezíel

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão

I~~~~~~~~~~~~~~-~-~ krrrrrrrrrrrrrrrrrr. \fy --~--.. Ação de Flexão Placas - Lajes Placas são estutuas planas onde duas de suas tês dimensões -lagua e compimento - são muito maioes do que a teceia, que é a espessua. As cagas nas placas estão foa do plano da placa. As placas

Leia mais

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação:

Capítulo 12. Gravitação. Recursos com copyright incluídos nesta apresentação: Capítulo Gavitação ecusos com copyight incluídos nesta apesentação: Intodução A lei da gavitação univesal é um exemplo de que as mesmas leis natuais se aplicam em qualque ponto do univeso. Fim da dicotomia

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais

Mecânica Clássica (Licenciaturas em Física Ed., Química Ed.) Folha de problemas 4 Movimentos de corpos sob acção de forças centrais Mecânica Clássica (icenciatuas em Física Ed., Química Ed.) Folha de oblemas 4 Movimentos de coos sob acção de foças centais 1 - Uma atícula de massa m move-se ao longo do eixo dos xx, sujeita à acção de

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelimina de setembo de Notas de Aula de ísica 8. CONSRVAÇÃO DA NRGIA... ORÇAS CONSRVATIVAS NÃO-CONSRVATIVAS... TRABALHO NRGIA POTNCIAL... 4 ORÇAS CONSRVATIVAS - NRGIA MCÂNICA... 4 negia potencial

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Pofissional SENAI Plínio Gilbeto Köeff MECÂNICA TÉCNICA Pofesso: Dilma Codenonsi Matins Cuso: Mecânica de Pecisão São Leopoldo 2009 1 SUMÁRIO

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Renato Frade Eliane Scheid Gazire

Renato Frade Eliane Scheid Gazire APÊNDICE A CADENO DE ATIVIDADES PONTIFÍCIA UNIVESIDADE CATÓLICA DE MINAS GEAIS Mestado em Ensino de Ciências e Matemática COMPOSIÇÃO E/OU DECOMPOSIÇÃO DE FIGUAS PLANAS NO ENSINO MÉDIO: VAN HIELE, UMA OPÇÃO

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Movimentos: Variações e Conservações

Movimentos: Variações e Conservações Movimentos: Vaiações e Consevações Volume único Calos Magno S. da Conceição Licinio Potugal Lizado H. C. M. Nunes Raphael N. Púbio Maia Apoio: Fundação Ceciej / Extensão Rua Visconde de Niteói, 1364 Mangueia

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998

Romero Tavares. Vestibulares da UFPB. Provas de Física Resolvidas de 1994 até 1998 Romeo Taaes Vestibulaes da UFPB Poas de Física Resolidas de 994 até 998 João Pessoa, outubo de 998 Pof. Romeo Taaes - (8)5-869 Apesentação Romeo Taaes é Bachael em Física pela Uniesidade Fedeal de Penambuco,

Leia mais

Capítulo III Lei de Gauss

Capítulo III Lei de Gauss ELECTROMAGNETISMO Cuso de Electotecnia e de Computadoes 1º Ano º Semeste 1-11 3.1 Fluxo eléctico e lei de Gauss Capítulo III Lei de Gauss A lei de Gauss aplicada ao campo eléctico, pemite-nos esolve de

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA ESCOL DE ESPECILISTS DE ERONÁUTIC CONCURSO DE DMISSÃO O CS /00 PROV DE MTEMÁTIC ÍSIC QUÍMIC CÓDIGO D PROV 9 MRQUE NO CRTÃO DE RESPOSTS O CÓDIGO D PROV. s questões de 0 a 0 efeem se a Matemática 0 Se a

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

Questão 2. Questão 1. Resposta. Resposta

Questão 2. Questão 1. Resposta. Resposta Atenção: Esceva a esolução COMPLETA de cada questão no espaço esevado paa a mesma. Não basta esceve apenas o esultado final: é necessáio mosta os cálculos e o aciocínio utilizado. Utilize g 10m/s e π3,

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 18:20. Jason Alfredo Carlson Gallas, professor titular de física teórica, LISTA 3 - Pof Jason Gallas, DF UFPB 1 de Junho de 13, às 18: Execícios Resolvidos de Física Básica Jason Alfedo Calson Gallas, pofesso titula de física teóica, Douto em Física pela Univesidade Ludwig Maximilian

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais:

Polícia Rodoviária Federal. Exercícios de Física Aula 1 de 5. Prof. Dirceu Pereira UNIDADE 1 - NOÇÕES SOBRE VETORES. 1) Não são grandezas vetoriais: UNIDADE 1 - NOÇÕES SOBRE VETORES 1) Não são gandezas vetoiais: a) tempo, deslocamento e foça. b) foça, velocidade e aceleação. c) tempo, tempeatua e volume. d) tempeatua, velocidade e volume. ) (Unitau-SP)

Leia mais

As grandezas vetoriais

As grandezas vetoriais As gandezas vetoiais No capítulo I, vimos o poquê da utilização de vetoes na caacteização de algumas gandezas físicas, difeenciando as gandezas escalaes das vetoiais. As gandezas escalaes são aquelas pefeitamente

Leia mais

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio

Equações Básicas na Forma Integral - I. Prof. M. Sc. Lúcio P. Patrocínio Fenômenos de Tanspote Equações Básicas na Foma Integal - I Pof. M. Sc. Lúcio P. Patocínio Objetivos Entende a utilidade do teoema de Tanspote de Reynolds. Aplica a equação de consevação da massa paa balancea

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia Rodoviáia Fedeal Pof. Diceu Peeia Aula de 5 UNIDADE NOÇÕES SOBRE ETORES.. DIREÇÃO E SENTIDO Considee um conjunto de etas paalelas a uma dada eta R (figua ). aceleação, foça, toque, etc. As gandezas

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Prova Teórica. Terça-feira, 5 de Julho de 2005

Prova Teórica. Terça-feira, 5 de Julho de 2005 36 a Olimpíada Intenacional de Física. Salamanca (Espanha) 5 Pova Teóica Teça-feia, 5 de Julho de 5 Po favo, le estas instuções antes de inicia a pova:. O tempo disponível paa a pova teóica é de 5 hoas..

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido

CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO. 1. Leis Físicas Fundamentais. 3 leis escoamentos independentes da natureza do fluido CAPÍTULO III- DESCRIÇÃO DE UM FLUIDO EM MOVIMENTO 1. Leis Físicas Fundamentais 3 leis escoamentos independentes da natueza do fluido Leis Básicas Equações Fundamentais Lei da Consevação de Massa Equação

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais