Breve Revisão de Cálculo Vetorial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Breve Revisão de Cálculo Vetorial"

Transcrição

1 Beve Revsão de Cálculo Vetoal 1

2 1. Opeações com vetoes Dados os vetoes A = A + A j + A k e B = B + B j + B k, dene-se: Poduto escala ente os vetoes A e B A B A B Daí, cos A AB cos A B B A A B B AB A B A B

3 Poduto vetoal do vetoes A e B ABsen B A B A B A A B A B B A B B B A A A B A k j k j B A

4 . Uma denção ísca paa Campo Dada uma egão D no espaço tdmensonal e uma gandea ísca (escala ou vetoal, então, essa egão seá chamada de campo se, nela, o valo da gandea num dado ponto depende unvocamente das coodenadas desse ponto. Se a gandea o escala (pessão, tempeatua, etc., o campo é dto escala. Se a gandea o vetoal (oça, velocdade, etc, o campo é dto vetoal. O valo da gandea também pode depende do tempo. Nesse caso, o campo é dto vaável (ou dnâmco. Caso contáo, ele é dto estaconáo. 4

5 Eemplos de campos escalaes: Em um campo escala, um númeo é dendo paa cada ponto do espaço. Campo de pessão em uma epesa, p = γh. Campos de Tempeatua. 5

6 Um valo escala é dendo paa cada ponto do espaço (analítco ou numéco. Repesentação gáca

7 Lnhas de so-contono (tempeatua ( o C, alttude, etc

8 Campos escalaes em -D

9 9 Campos Vetoas Em um campo vetoal, um veto é dendo paa cada ponto do espaço. Fomalmente, temos: Um campo Vetoal é dendo, no, como uma unção F que assoca a cada ponto M(, em um subconjunto D do, um únco veto F(M bdmensonal, tal que, Um campo Vetoal é dendo, no, como uma unção F que assoca a cada ponto N(,, em um subconjunto E do, um únco veto F(N tdmensonal, tal que, j F F, (, (, ( ( Q P M k j F F,, (,, (,, (,, ( ( R Q P N

10 Campo de velocdade em uma oda ou tubna, F j Campo gavtaconal (campo do quadado nveso, F GMm ˆ 10

11 Eemplo - Eecíco Faça um dagama do campo vetoal F(, Consdeando F(,0 0 : 1 0,,1,,,4 e 5. Temos: F(,1/ F(,1 ( F(, F(, F(,4 F(,5 5 Este campo vetoal desceve a velocdade da coente num cóego ou o em váas pounddades. Velocdade é nula no leto. 11

12 Eemplo de uma epesentação numéca de um campo vetoal. 1

13 Eemplos de magens de campos vetoas 1.5 Há um veto dendo paa cada ponto do Espaço -D O tamanho das lechas epesenta a magntude do veto

14 Eemplos de campos escalaes e vetoas Campo escala Mapa de tempeatua Campo vetoal Velocdade dos ventos 14

15 4. Opeado Nabla Nabla (hapa em gego j k Aplcado sobe uma campo escala,, dene um campo vetoal chamado de Gadente de,. O poduto escala com um campo vetoal, F, dene um campo escala chamado de Dvegente de F, F. Poduto vetoal com um campo vetoal, F, dene um novo campo vetoal chamado de Rotaconal de F, F. 15

16 16 5. Campos Gadentes Se = (, é uma unção escala de duas vaáves, então, seu gadente é dendo po, Se = (,, é uma unção escala de tês vaáves, então, seu gadente é dendo po, Onde é o veto Nabla. j j ou gad, ( k j k j ou gad,, ( k j

17 Eecícos 1 Enconte os campos gadentes das unções abao e tace seus dagamas de campo. a (, = (Resolução a segu b (, = + c (, = ln(+ (Resolução no quado 17

18 Resolução (, j j Intepetação O Gadente é um campo vetoal cujas componentes são as devadas do campo escala. Em qualque ponto, o Ga- Dente aponta na deção de máma nclnação, e sua magntude é a nclnação

19 Em outas palavas, O gadente de uma unção escala, calculado num dado ponto, é um veto cujo módulo epesenta a máma taa de vaação de cescmento dessa unção naquele ponto. Isto sgnca que o veto gadente calculado em ( 0, 0, 0 tem a deção paa a qual ocoe o mámo cescmento da unção em ( 0, 0, 0. Além dsso ele é pependcula à supeíce no ponto ( 0, 0, no, ou ( 0, 0, 0 no. 19

20 Vsualação, Mapa de coes: unção campo escala Repesentação de setas: campo vetoal obtdo a pat do gadente da unção escala. 0

21 6. Campos consevatvos e unções potencas Se F é um campo vetoal em duas ou tês dmensões. Então, d-se que F é um campo consevatvo numa egão do ou, se F o o campo gadente de alguma unção naquela egão. Isto é, F =. A unção é chamada de unção potencal. Eemplo Consdee o campo vetoal do quadado nveso em duas dmensões. c F(, ( j / ( Moste que F é um campo consevatvo em qualque egão do que não contenha a ogem e cuja unção potencal seja (, ( c 1/ 1

22 Resolução Temos que mosta que o campo gadente de, em qualque egão que não contenha a ogem, é F. Paa sso, calculaemos Daí, ( c j / e ( c / ( c / ( c / j ( c / ( j F(, Logo, F é consevatvo em qualque egão do, eceto na ogem, já que F =. é, potanto, unção potencal de F.

23 7. Dvegênca e Rotaconal Seja F(, = (, + g(,j um campo vetoal em duas dmensões, dene-se a dvegênca de F, denotado po dvf ou F, ao escala dvf F (, g(, ou smplesmente, dvf g Em tês dmensões, F(, = (,, + g(,,j + h(,,k dvf g h

24 Seja F(, = (, + g(,j um campo vetoal em duas dmensões, dene-se o otaconal de F, denotado po otf ou F, ao campo vetoal otf F g k Em tês dmensões, F(, = (,, + g(,,j + h(,,k otf F h g h j g k 4

25 Os esultados anteoes podem se eesctos como: Em duas dmensões, j k otf F g 0 0 Em tês dmensões, j k otf F g h 5

26 O dvf tem valoes escalaes, enquanto otf tem valoes vetoas. Ou seja, otf é ele pópo um campo vetoal. Eecícos 1 Calcule a dvegênca e o otaconal do campo vetoal F(,, j k Moste que a dvegênca do campo do quadado nveso c F(,, / ( j k é nula 6

27 7 6 ( ( ( dv dv F F 1 Resolução Dvegênca de F Rotaconal de F k F k j k j F ( ( ( ( ( ( ot ot

28 8 Resolução Levando-se em conta que ( + + 1/ =, 5 1/ 1 (,,,, ( Sendo c dv Daí c c c F k j F

29 9 0 ( 1 1 1, 1 ( 1 (, / 5 1/ c c c dv Assm te Analogamen F

30 Intepetações Físca e Geométca paa o dvegente O dvegente de um veto, mede a vaação do luo desse veto. O dvegente pode se entenddo no conteto da Mecânca dos ludos como: Se F(,, é a velocdade de um ludo, então, dvf epesenta a taa líquda de vaação, com elação ao tempo, da massa de ludo que passa pelo ponto (,,. Em outas palavas, dvf, calculado num ponto ( 0, 0, 0 mede a tendênca de um ludo dee no ponto ( 0, 0, 0. 0

31 Campos magnétcos não são dvegentes, dvh 0 Uma onte de campo magnétco é ao mesmo tempo onte e sovedouo do campo. 1

32 Campos vetoas constantes,

33 Intepetações Físca e Geométca paa o otaconal O veto otaconal está assocado com otações. Se F epesenta um campo de velocdades em Mecânca dos ludos, po eemplo, então, patículas pómas de um ponto ( 0, 0, 0, tendem a oda em tono do eo que aponta paa a deção denda pelo otf calculado nesse ponto. A magntude do veto otf é uma medda do quão ápdo as patículas se movem em tono desse eo. A otação obedece a ega da mão deta. Rega da mão deta Fuacão Katna 5/08/005

34 8. Alguns concetos e teoemas mpotantes Teoema 1 Se é uma unção escala de tês vaáves e que tem devadas pacas de segunda contínuas. Então, ot( gad 0 Como um campo vetoal consevatvo é tal que F =, então, o teoema anteo pode se eescto como: Se F epesenta um campo vetoal consevatvo, então, otf 0 4

35 Teoema Se F = (,, + g(,,j + h(,,k é um campo vetoal no e, g, h têm devadas pacas de segunda odem contínuas, então, dv( otf 0 Laplacano É o esultado da aplcação do opeado É denotado po. Tem a oma, sobe s mesmo. Quando aplcado a uma unção escala Φ(,,, 5

36 Se 0 A equação Φ = 0 é conhecda como equação de Laplace. 6

37 Fluo de um Veto qualque A A quantdade do veto A, que passa po uma detemnada supeíce ds é, d A nds A ds Convencona-se que nds = ds sempe aponta paa oa e é pependcula à supeíce echada ds. 7

38 Teoema da dvegênca s A ds V dva ds A gualdade das duas ntegas acma sgnca que o luo do veto A atavés de uma supeíce echada S é gual à ntegal do dvegente de A no volume V envolto po S 8

39 Cculação de um Veto A cculação de um campo vetoal A ao longo de uma lnha L do ponto P ao ponto Q, conome a gua abao, é dada po, C Q P Q P A dl dl smbola uma pacela elementa da lnha oentada L. 9

40 Teoema de Stokes O luo otaconal de um campo vetoal F atavés de uma supeíce abeta S é gual à cculação do veto A ao longo do camnho L que delmta S. L A dl S ota ds Se A o uma oça, esse teoema é uma oma de calcula o tabalho ealado po essa oça ao longo do camnho L. 40

Potencial Elétrico. Prof. Cláudio Graça 2012

Potencial Elétrico. Prof. Cláudio Graça 2012 Potencal Elétco Po. Cláudo Gaça Campo elétco e de potencal Campo e Potencal Elétcos E Potencal gavtaconal Potencal Elétco O potencal elétco é a quantdade de tabalho necessáo paa move uma caga untáa de

Leia mais

Aula 4: O Potencial Elétrico

Aula 4: O Potencial Elétrico Aula 4: O Potencal létco Cuso de Físca Geal III F-38 º semeste, 4 F38 S4 Potencal elétco Como podemos elacona a noção de oça elétca com os concetos de enega e tabalho? Denndo a enega potencal elétca (Foça

Leia mais

Física I. Aula 9 Rotação, momento inércia e torque

Física I. Aula 9 Rotação, momento inércia e torque Físca º Semeste de 01 nsttuto de Físca- Unvesdade de São Paulo Aula 9 Rotação, momento néca e toque Pofesso: Vald Gumaães E-mal: valdg@f.usp.b Fone: 091.7104 Vaáves da otação Neste tópco, tataemos da otação

Leia mais

4. Potencial Elétrico (baseado no Halliday, 4a edição)

4. Potencial Elétrico (baseado no Halliday, 4a edição) 4. Potencal létco 4. Potencal létco (baseado no Hallday, 4a edção) Gavtação, letostátca e nega Potencal Mutos poblemas podem se tatados atavés de semelhanças. x.: a Le de Coulomb e a Le da Gavtação de

Leia mais

Geradores elétricos. Antes de estudar o capítulo PARTE I

Geradores elétricos. Antes de estudar o capítulo PARTE I PART I ndade B 9 Capítulo Geadoes elétcos Seções: 91 Geado Foça eletomotz 92 Ccuto smples Le de Poullet 93 Assocação de geadoes 94 studo gáfco da potênca elétca lançada po um geado em um ccuto Antes de

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 05. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 5 Pof. D. Maco Antonio Leonel Caetano Guia de Estudo paa Aula 5 Poduto Vetoial - Intepetação do poduto vetoial Compaação com as funções

Leia mais

Notas de Aula de Física

Notas de Aula de Física Vesão pelmna 4 de setembo de Notas de Aula de Físca. OTAÇÃO... AS VAÁVES DA OTAÇÃO... Posção angula... Deslocamento angula... Velocdade angula... 3 Aceleação angula... 3 OTAÇÃO COM ACELEAÇÃO ANGULA CONSTANTE...

Leia mais

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA

ESPAÇO VETORIAL REAL DE DIMENSÃO FINITA EPÇO ETORIL REL DE DIMENÃO FINIT Defnção ejam um conjuno não ao o conjuno do númeo ea R e dua opeaçõe bnáa adção e mulplcação po ecala : : R u a u a é um Epaço eoal obe R ou Epaço eoal Real ou um R-epaço

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

2ªAula do cap. 11. Quantidade de Movimento Angular L. Conservação do Momento Angular: L i = L f

2ªAula do cap. 11. Quantidade de Movimento Angular L. Conservação do Momento Angular: L i = L f 2ªAula do cap. 11 Quantdade de Movmento Angula. Consevação do Momento Angula: f Refeênca: Hallday, Davd; Resnck, Robet & Walke, Jeal. Fundamentos de Físca, vol.. 1 cap. 11 da 7 a. ed. Ro de Janeo: TC.

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Sistemas Equivalentes de Forças MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CPÍTULO 3 Copos ECÂNIC VETORIL PR ENGENHEIROS: ESTÁTIC TIC Fednand P. Bee E. Russell Johnston, J. Notas de ula: J. Walt Ole Teas Tech Unvest Rígdos: Sstemas Equvalentes de Foças 2010 The cgaw-hll Companes,

Leia mais

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013

Aula-09 Campos Magnéticos Produzidos por Correntes. Curso de Física Geral F-328 2 o semestre, 2013 Aula-9 ampos Magnétcos Poduzdos po oentes uso de Físca Geal F-38 o semeste, 13 Le de Bot - Savat Assm como o campo elétco de poduzdo po cagas é: 1 dq 1 dq db de ˆ, 3 ε ε de manea análoga, o campo magnétco

Leia mais

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO

MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Depatamento de Físca da Faculdade de Cêncas da Unvesdade de Lsboa Mecânca A 008/09 1. Objectvo MOMENTO DE INÉRCIA DE UM CORPO RÍGIDO Estudo do movmento de otação de um copo ígdo. Detemnação do momento

Leia mais

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263

PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZVOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 839 PROJETO ASTER: ESTRATÉGIA PARA MANOBRAS DE RENDEZOUS DA SONDA ESPACIAL BRASILEIRA COM O ASTERÓIDE 2001 SN263 Abeuçon Atanáso Alves 1 ;AntonoDelson Conceção de Jesus 2 1. Bolssta voluntáo, Gaduando

Leia mais

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO

CAPÍTULO 2 DINÂMICA DA PARTÍCULA: FORÇA E ACELERAÇÃO 13 CAPÍTULO 2 DINÂMICA DA PATÍCULA: OÇA E ACELEAÇÃO Nese capíulo seá aalsada a le de Newo a sua foma dfeecal, aplcada ao movmeo de paículas. Nesa foma a foça esulae das foças aplcadas uma paícula esá elacoada

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES

MATEMÁTICA II - Engenharias/Itatiba SISTEMAS LINEARES - Mauco Fabb MATEMÁTICA II - Engenhaas/Itatba o Semeste de Pof Mauíco Fabb a Sée de Eecícos SISTEMAS IEARES IVERSÃO DE MATRIZES (I) Uma mat quadada A é nvetível se est a mat A - tal que AA - I Eecíco Pove

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y)

Para duas variáveis aleatórias X e Y define-se Função Distribuição Cumulativa CDF F XY (x,y) Vaáves Aleatóas (contnuação) Po. Waldec Peella Dstbução Conunta: po: Paa duas vaáves aleatóas e dene-se Função Dstbução Cuulatva CDF F (,y) P ( e y ) = F (,y ) e a Função Densdade de Pobabldade de Pobabldade

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

FLUXO E DIVERGENTE DE UM CAMPO VETORIAL

FLUXO E DIVERGENTE DE UM CAMPO VETORIAL ISTITUTO DE FÍSIC D UFB DEPRTMETO DE FÍSIC DO ESTDO SÓLIDO DISCIPLI: FÍSIC ERL E EXPERIMETL I FIS 4 FLUXO E DIERETE DE UM CMPO ETORIL Os concetos de dvegente e otaconal estão elaconados aos de fluo e de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO ESCO POITÉCNIC D UNIESIDDE DE SÃO PUO venda Pofesso Mello Moaes, nº 31. cep 558-9, São Paulo, SP. Telefone: 11 391 5337 Fa: 11 3813 1886 Depatamento de Engenhaa Mecânca PME 3 MECÂNIC II Pmea Pova 9 de

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado Eletomagnetismo plicado Unidade 1 Pof. Macos V. T. Heckle 1 Conteúdo Intodução Revisão sobe álgeba vetoial Sistemas de coodenadas clássicos Cálculo Vetoial Intodução Todos os fenômenos eletomagnéticos

Leia mais

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele.

Tópico 2. Em cada caso, observe o sentido do campo magnético devido ao f io e determine o sentido da corrente que passa por ele. Tópco ogem do campo magnétco Tópco Um campo magnétco é geado: a) po eletzação: o polo note magnétco é postvo e o polo sul magnétco é negatvo. b) po cagas elétcas em epouso. c) po cagas elétcas necessaamente

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET

ELETRÔNICA II. Engenharia Elétrica Campus Pelotas. Revisão Modelo CA dos transistores BJT e MOSFET ELETRÔNICA II Engenaia Elética Campus Pelotas Revisão Modelo CA dos tansistoes BJT e MOSFET Pof. Mácio Bende Macado, Adaptado do mateial desenvolvido pelos pofessoes Eduado Costa da Motta e Andeson da

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Os fundamentos da Física Volume 3 1. Resumo do capítulo

Os fundamentos da Física Volume 3 1. Resumo do capítulo Os fundamentos da Físca Volume 3 1 Capítulo 13 Campo magnétco Ímãs são copos que apesentam fenômenos notáves, denomnados fenômenos magnétcos, sendo os pncpas: I. ataem fagmentos de feo (lmalha). o caso

Leia mais

MODELO PLANO DE SUSPENSÃO MACPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS

MODELO PLANO DE SUSPENSÃO MACPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS MODELO PLNO DE UPENÃO MPHERON UTLZNDO TRNFORMDORE NEMÁTO Rcado Texea da osta Neto cado@epq.me.eb.b nsttuto Mlta de Enenhaa, Depatamento de Enenhaa Mecânca Paça Geneal Tbúco, 8 9-7 Ro de Janeo, RJ, Basl

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Capítulo 2 Galvanômetros

Capítulo 2 Galvanômetros Capítulo 2 Galvanômetos 2.. Intodução O galvanômeto é um nstumento eletomecânco que é, bascamente, um meddo de coente elétca de pequena ntensdade. Exstem bascamente dos tpos de galvanômetos, que são os

Leia mais

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1

digitar cuidados computador internet contas Assistir vídeos. Digitar trabalhos escolares. Brincar com jogos. Entre outras... ATIVIDADES - CAPÍTULO 1 ATIVIDADES - CAPÍTULO 1 1 COMPLETE AS FASES USANDO AS PALAVAS DO QUADO: CUIDADOS INTENET CONTAS DIGITA TAEFAS COMPUTADO A COM O COMPUTADO É POSSÍVEL DE TEXTO B O COMPUTADO FACILITA AS tarefas digitar VÁIOS

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE)

O transistor de junção bipolar (BJT) NPN Base. PNP Base. Departamento de Engenharia Electrotécnica (DEE) Depatamento de ngenhaa lectotécnca (D) O tanssto de junção bpola (J) pola dos tpos de cagas, electões e buacos, enoldos nos fluxos de coente Junção duas junções pn. Junção base/emsso e junção base/colecto

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb.

F G. m 2. Figura 32- Lei da gravitação Universal de Newton e Lei de Coulomb. apítul 3-Ptencal eletc PÍTULO 3 POTEIL ELÉTRIO Intduçã Sabems ue é pssível ntduz cncet de enega ptencal gavtacnal pue a fça gavtacnal é cnsevatva Le de Gavtaçã Unvesal de ewtn e a Le de ulmb sã mut paecdas

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

Aula 7: Potencial Elétrico

Aula 7: Potencial Elétrico Unvesdade Fedeal do Paaná Seto de Cêncas Exatas Depatamento de Físca Físca III Po. D. Rcado Luz Vana Reeêncas bblogácas: H. 6-, 6-, 6-3, 6-4, 6-5, 6-6, 6-, 6- S. 4-, 4-3, 4-4, 4-5 T. -, -, -3, -6 Aula

Leia mais

Consideremos uma distribuição localizada de carga elétrica, de densidade ρ(x), sob a ação de um potencial eletrostático externo ϕ E (x).

Consideremos uma distribuição localizada de carga elétrica, de densidade ρ(x), sob a ação de um potencial eletrostático externo ϕ E (x). pansão Multpola da nega de uma Dstbução de Caga sob a Ação de Potencal letostátco teno. Físca Nuclea e de Patículas Cesa Augusto Zen Vasconcellos Consdeemos uma dstbução localzada de caga elétca, de densdade

Leia mais

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva

De Kepler a Newton. (através da algebra geométrica) 2008 DEEC IST Prof. Carlos R. Paiva De Keple a Newton (atavés da algeba geomética) 008 DEEC IST Pof. Calos R. Paiva De Keple a Newton (atavés da álgeba geomética) 1 De Keple a Newton Vamos aqui mosta como, a pati das tês leis de Keple sobe

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE

II MATRIZES DE RIGIDEZ E FLEXIBILIDADE Cuso de nálise Maticial de stutuas II MTIZS D IGIDZ FXIBIIDD II.- elação ente ações e deslocamentos II.. quação da oça em temos do deslocamento F u Onde a igidez da mola () é a oça po unidade de deslocamento,

Leia mais

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL

SEGUNDA LEI DE NEWTON PARA FORÇA GRAVITACIONAL, PESO E NORMAL SEUNDA LEI DE NEWON PARA FORÇA RAVIACIONAL, PESO E NORMAL Um copo de ssa m em queda live na ea está submetido a u aceleação de módulo g. Se despezamos os efeitos do a, a única foça que age sobe o copo

Leia mais

O uso de integradores numéricos no estudo de encontros próximos

O uso de integradores numéricos no estudo de encontros próximos Revsta TECCE volue núeo - setebo de 009 ISS 1984-0993 O uso de ntegadoes nuécos no estudo de encontos póxos Éca Cstna oguea 1 1 Obsevatóo aconal MCT - eca.noguea@on.b Resuo. O estudo da dnâca do Sstea

Leia mais

Cap.10 Energia. Do professor para o aluno ajudando na avaliação de compreensão do capítulo.

Cap.10 Energia. Do professor para o aluno ajudando na avaliação de compreensão do capítulo. Cap.10 Enega Do poesso paa o aluno ajudando na avalação de compeensão do capítulo. É undamental que o aluno tenha ldo o capítulo. Poduto Escala Dene-se o poduto escala ente dos vetoes como sendo o poduto

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA UNIVERSIDADE FEDERAL DE SANTA CATARINA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA ANÁLISE DO ESCOAMENTO E DA GERAÇÃO DE RUÍDO NO SISTEMA DE VENTILAÇÃO EXTERNO DE UM MOTOR DE INDUÇÃO TRIFÁSICO Dssetação

Leia mais

EXPERIÊNCIA No. 2 - Associação de Resistores

EXPERIÊNCIA No. 2 - Associação de Resistores FTEC-SP Faculdade de Tecologa de São Paulo Laboatóo de Ccutos Elétcos Pof. Macelo aatto EXPEIÊNCI No. - ssocação de esstoes Nome do luo N 0 de matícula FTEC-SP Faculdade de Tecologa de São Paulo Laboatóo

Leia mais

Curso de Análise Matricial de Estruturas 1 II.6 FORMULAÇÃO DAS MATRIZES DE FLEXIBILIDADE E RIGIDEZ EM TERMOS DE ENERGIA

Curso de Análise Matricial de Estruturas 1 II.6 FORMULAÇÃO DAS MATRIZES DE FLEXIBILIDADE E RIGIDEZ EM TERMOS DE ENERGIA Cso de nálse Matcal de sttas II. FOMÇÃO DS MTIZS D FXIBIIDD IGIDZ M TMOS D NGI II.. Tabalho, nega de Defomação e nega Complementa de Defomação Defnções: dτ d tabalho o enega de defomação; dτ d tabalho

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*).

5/21/2015. Prof. Marcio R. Loos. Revisão: Campo Magnético. Revisão: Campo Magnético. Ímãs existem apenas em pares de polos N e S (não há monopolos*). 5/1/15 Físca Geal III Aula Teóca 16 (Cap. 1 pate 1/): 1) evsã: Camp Magnétc ) Le de t-savat ) devd a um f etlíne lng ) Lnhas de camp pduzds p um f 5) n cent de cuvatua de um ac de f 6) Fça ente centes

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? *

ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * ASSOCIAÇÃO DE PILHAS EM PARALELO: ONDE E QUANDO A USAMOS? * Comentáo sobe o atgo Assocação de plhas novas e usadas em paalelo: uma análse qualtatva paa o ensno médo, de Deyse Pedade Munhoz Lopes, Dante

Leia mais

Amperímetros e voltímetros

Amperímetros e voltímetros Apesentaemos, neste tópco, os galvanômetos, ou seja, apaelhos ou dspostvos capazes de detecta ou med a coente elétca. Apesentamos, também, um método paa a medda da esstênca elétca. Meddoes de coente Ampeímetos

Leia mais

Máquina de Corrente Contínua

Máquina de Corrente Contínua Máqna de Coente Contína Objectvos: - estdo do pncípo de nconamento da máq. CC; - Modelo dnâmco. Máqna CC exct. ndependente e sée; - nconamento em egme estaconáo: moto e geado: caacteístcas electomecâncas;

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

Gestão e Teoria da Decisão

Gestão e Teoria da Decisão Gestão e eoa da Decsão Logístca e Lcencatua em Engenhaa vl Lcencatua em Engenhaa do etóo 005/006 Agenda 005/006. O papel dos stocks. lassfcação dos odelos de. omposção do custo assocados aos stocks 4.

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

CONCEITOS EM PLANEJAMENTO E OTIMIZAÇÃO DE REDES PARA MONITORAMENTO DE DEFORMAÇÕES

CONCEITOS EM PLANEJAMENTO E OTIMIZAÇÃO DE REDES PARA MONITORAMENTO DE DEFORMAÇÕES CONCEIOS EM PLANEJAMENO E OIMIZAÇÃO DE REDES PARA MONIORAMENO DE DEFORMAÇÕES Antono Smões Slva 1 Veônca Maa Costa Romão 1 Unvesdade Fedeal de Vçosa UFV -Depatamento de Engenhaa Cvl, asmoes@ufv.b Unvesdade

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Simulação de Dinâmica Molecular Fundamentos e Aplicações em Proteínas. Minicurso VII SEMAQ

Simulação de Dinâmica Molecular Fundamentos e Aplicações em Proteínas. Minicurso VII SEMAQ Smulação de Dnâmca Molecula Fundamentos e Aplcações em Poteínas. Mncuso VII SEMAQ Pof. D. Dav S Vea Unvesdade Fedeal do Ro Gande do Note Cento de Cêncas Exatas e da Tea Insttuto de Químca Laboatóo de Modelagem

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

Controle de Erros Adaptativo para Redes de Sensores sem Fio usando Valor de Informação de Mensagens Baseado em Entropia

Controle de Erros Adaptativo para Redes de Sensores sem Fio usando Valor de Informação de Mensagens Baseado em Entropia Contole de Eos Adaptatvo paa Redes de Sensoes sem Fo usando Valo de Inomação de Mensagens Baseado em Entopa João H. Klenschmdt e Walte C. Boell Resumo Este atgo popõe estatégas de contole de eos adaptatvo

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981

Instituto Tecnológico de Aeronáutica. Prof. Carlos Henrique Q. Forster Sala 121 IEC. ramal 5981 CC Vsã Cputacnal Câeas Insttut ecnlógc de Aenáutca P. Cals Henque Q. Fste Sala IEC aal 598 ópcs da aula Mdels de câeas Aqusçã de agens Paâets da câea Recupeaçã da atz de pjeçã Calbaçã de sa Lv paa acpanha

Leia mais