Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Questão 1. Questão 2. Questão 3. alternativa C. alternativa E"

Transcrição

1 Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa 75 segundos paa completa uma volta. Mantendo-se constante a velocidade de ambos, no momento em que Máio completa a volta de númeo cinco, paa completa essa mesma volta, Júlio teá que pecoe ainda a) 6m. d) 1 68m. b) 990m. e) 1 936m. c) 1 30m. Ao completa a volta de númeo cinco, Máio teá pecoido, 5 11 km em 1,1 5 5,5 min 330 s. Nesse tempo Júlio teá pecoido, km 330 s 9,68 km, ou seja, teá de pecoe ainda 11 9,68 1,3 km 1 30 m paa 75 s completa tal volta. Questão Ente as epesentações gáficas, a que melho desceve a áea A de um tiângulo eqüiláteo em função do compimento L do seu lado é a) c) d) e) A áea A de um tiângulo eqüiláteo de lado L é dada po A L 3, o que epesenta um techo da paábola de vétice (0; 0) passando pelo ponto (; 3 ). Questão 3 O ponto D é o cento de uma cicunfeência de 6 cm de diâmeto. O tiângulo ABC inscito nesta cicunfeência possui base BC 10 cm e é isósceles. A áea hachuada do cículo é igual a b)

2 matemática a) (169π 15) cm. b) (π) cm. c) (19π 75) cm. d) (130π 15) cm. e) (6π 5) cm. Seja M o ponto médio de BC. Como o tiângulo ABC é isósceles, AM passa pelo cento D da cicunfeência e é pependicula a BC. Na n-ésima etapa da seqüência foma-se um quadado composto po n quadados escuos, odeado po n + quadados claos (n vizinhos a cada lado do quadado e nos cantos). Queemos, então, n inteio positivo tal que n (n + ) 9 n 1. Potanto a difeença ente o númeo de quadados escuos e claos seá igual a 9 na 1ª etapa. Questão 5 6 O aio da cicunfeência é AD CD 13. Aplicando o Teoema de Pitágoas ao tiângulo DMC, obtemos DM CD CM LogoaaltuaelativaaoladoBC mede AD + DM Potanto, a áea hachuada, que é igual à áea do cículo subtaída da áea do 10 5 tiângulo ABC, é π π 15 cm. Questão As figuas epesentam 3 etapas de uma seqüência constuída com quadados escuos e claos, todos de lados iguais. A difeença ente o númeo de quadados escuos e o númeo de quadados claos em uma etapa seá igual a 9 apenas na a) 11ª etapa. c) 13ª etapa. e) 15ª etapa. b) 1ª etapa. d) 1ª etapa. Duante o último jogo da seleção basileia, binquei com meu pimo, apostando quem conseguiia coloca mais pipocas na boca. Comecei colocando na boca e fui aumentando pipocas po vez, como em uma PA. Ele começou colocando 1 na boca e foi multiplicando po, como numa PG. Na quata vez em que colocamos pipocas na boca, descobimos que a quantidade colocada po nós dois foi a mesma. Nessa nossa bincadeia, o valo de é a) um númeo quadado pefeito. b) um númeo maio que 3. c) um diviso de 15. d) um múltiplo de 3. e) um númeo pimo. Na n-ésima vez que eles colocam pipocas na boca, um teá colocado + (n 1) e o outo (o n 1 n 1 pimo),1 pipocas. Como na quata vez as quantidades são iguais, ( 1) ( + 1)( 1) ( + 1) 0 ( + 1)( ) ou 0 1 ou Nas condições do poblema, deve se um inteio não negativo, logo, que é um númeo pimo.

3 matemática 3 Questão 6 A figua epesenta uma fileia de n livos idênticos, em uma estante de metos e 0 centímetos de compimento. AB DC 0 cm AD BC 6 cm Nas condições dadas, n é igual a a) 3. b) 33. c) 3. d) 35. e) 36. O livo n tem a sua base a uma distância CE da lateal da estante, confome figua a segui: O ponto (p; q) (0; 0) petence aos gáficos de y 5 x e y x. Logo: q 5 p q 5 p p 5 q p 5 p p 16 q 5 O tiângulo sombeado é etângulo, de catetos p 16 e q, e sua áea é p q Questão 8 Dados AB 18 cm, AE 36 cm e DF 8 cm, e sendo o quadiláteo ABCD um paalelogamo, o compimento de BC, em cm, é igual a a) 0. b). c). d) 6. e) 30. Então CE CD cos 60 o cm. Como há n livos de base 6 cm e o compimento da estante é de 0 cm, temos 6n n 35 Questão 7 A análise conjunta dos gáficos pemite conclui que a áea do tiângulo sombeado é igual a a) 6/5. d) 16/15. b) 16/5. e) 8/15. c) 3/15. Sendo ABCD um paalelogamo, BC AD e como AB//DC, m (BAE) m (FDE). Uma vez que m (AEB) m (DEF), temos AEB ~ DEF e assim AB AE BC 0 cm. DF DE 8 36 BC Questão 9 O volume de água de um esevatóio foi medido em tês datas difeentes, I, II e III, com intevalos de 30 dias ente duas datas consecutivas. A pimeia medição acusou 100% de água no esevatóio, a segunda, 85%, e a teceia, 75%. Sabendo-se que a vaiação do volume de água no esevatóio se dá apenas pelo ecebimento de água das chuvas e pela etiada de litos diáios de água, pode-se afima que

4 matemática a) se ocoeam chuvas ente as datas I e II, não ocoeam ente as datas II e III. b) se ocoeam chuvas ente as datas II e III, não ocoeam ente as datas I e II. c) se ocoeam chuvas ente as datas II e III, então, ocoeam ente as datas I e II. d) ocoeam chuvas ente as datas II e III. e) não ocoeam chuvas ente as datas I e II. Como a vaiação de medição ente as datas II e III (85% 75% 10%) é meno que ente I e II (100% 85% 15%), e o consumo diáio de água é o mesmo nos dois peíodos, concluímos que uma meno vaiação de volume ente II e III deve-se à ocoência de chuvas. Questão 10 Analise as instuções a segui: I. Anda metos em linha eta. II. Via x gaus à esqueda. III. Anda metos em linha eta. IV. Repeti y vezes os comandos II e III. Se as instuções são utilizadas paa a constução de um pentágono egula, pode-se afima que o meno valo positivo de x yé a) 1. b) 16. c) 16. d) 88. e) 3. Ao via x gaus no sentido anti-hoáio (à esqueda) e anda metos, foma-se um ângulo de x o, que deve se igual ao ângulo exteno de um pentágono egula. Questão 11 Considee uma lata de óleo de cozinha de fomato cilíndico que, oiginalmente, compotava o volume de 1 lito de óleo e, atualmente, passou a compota 0,9 lito. Assumindo-se log0,9 0,95 0,5, e admitindo-se que a altua da lata pemaneceu a mesma, a edução pecentual do aio de sua base foi igual a a) 6%. b) 5%. c) %. d) 3%. e) %. Como a altua do cilindo se mantém constante, o volume é dietamente popocional ao quadado do aio da base. A azão ente os aios dos cilindos oiginal e atual 1 é 0,9 0,9 0,5 0,9. Assim, utilizando a apoximação dada log0,90,95 0,5 0,9 0,95, a edução pecentual do aio da base foi 0,05 0,5 5%. Questão 1 Seja a matiz A 1 1. A soma dos elementos da matiz A 100 é a) 10. d) 175. b) 118. e) 300. c) Temos A e A, o que sugee que 1 n A n k 1 k. De fato, supondo que A, o 360 o Logo x 7. 5 Nos passos I e III são constuídos dois lados do pentágono. Potanto é peciso executa o passo IV pelo menos tês vezes, ou seja, y 3. Temos então x y 7 3 xy 16. O valo mínimo de x y é 16. k k k 1 A + e, potanto, n pelo pincípio da indução finita, A n Logo A 100 e, assim, a soma dos elementos de A 100 é

5 matemática 5 Questão 13 Uma pesquisa com tês macas concoentes de efigeantes, A, B e C, mostou que 60% das pessoas entevistadas gostam de A, 50% gostam de B, 57% gostam de C, 35% gostam de A e C, 18% gostam de A e B, % gostam de B e C, % gostam das tês macas e o estante das pessoas não gosta de nenhuma das tês. Soteando-se aleatoiamente uma dessas pessoas entevistadas, a pobabilidade de que ela goste de uma única maca de efigeante ou não goste de maca alguma é de a) 16%. d) 5%. b) 17%. e) 7%. c) 0%. Repesentemos atavés de um diagama de Venn a situação descita no poblema. Nele, os conjuntos A, B e C epesentam, espectivamente, as pessoas que gostam dos efigeantes A, B e C; U é o conjunto de todas as pessoas pesquisadas. Indicaemos no pópio diagama os pecentuais de pessoas em cada um dos conjuntos e em suas intesecções. Aplicando-se o valo de uma coida de 90 quilômetos duante um mês à taxa de 10% ao mês, com o juo obtido seá possível faze uma coida de táxi de a) 8 km. c) 9 km. e) 10 km. b) 8, km. d) 9,6 km. Seja f(x) ax + b uma função polinomial do 1º gau do númeo x de quilômetos odados. Assim f(7) 3 a 7 b 3 a 3 + e, deste f(10) 3 a 10 + b 3 b modo, f(x) 3x + eais. Po uma coida de 90 km, paga-se f(90) 7 eais, que, aplicados duante um mês à taxa de 10% ao mês, endem 7 10% 7, eais de juos. Com esse valo é possível faze uma coida de 3x + 7, x 8, km. Questão 15 O gáfico epesenta a função polinomial 3 P(x) x x 9x + 98 Assim, a pobabilidade de que uma pessoa entevistada goste de uma única maca ou de nenhuma é 9% + 10% + 0% + 8% 7%. Questão 1 O valo de uma coida de táxi é uma função polinomial do pimeio gau do númeo x de quilômetos odados. Po uma coida de 7 quilômetos, paga-se R$ 3,00 e po uma coida de 10 quilômetos, paga-se R$ 3,00. Sendo, s, t e as únicas intesecções do gáfico com os eixos, o valo de é s t a) 5. b). c) 3. d). e) 1. Do gáfico, s, e t são as aízes de P(x) e P(0) 98. Pelas elações ente coeficientes e aízes, s t. 1 s t

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo.

GEOMETRIA ESPACIAL. a) Encher a leiteira até a metade, pois ela tem um volume 20 vezes maior que o volume do copo. GEOMETRIA ESPACIAL ) Uma metalúgica ecebeu uma encomenda paa fabica, em gande quantidade, uma peça com o fomato de um pisma eto com base tiangula, cujas dimensões da base são 6cm, 8cm e 0cm e cuja altua

Leia mais

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F

- B - - Esse ponto fica à esquerda das cargas nos esquemas a) I e II b) I e III c) I e IV d) II e III e) III e IV. b. F. a. F LIST 03 LTROSTÁTIC PROSSOR MÁRCIO 01 (URJ) Duas patículas eleticamente caegadas estão sepaadas po uma distância. O gáfico que melho expessa a vaiação do módulo da foça eletostática ente elas, em função

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE

DISCIPLINA ELETRICIDADE E MAGNETISMO LEI DE AMPÈRE DISCIPLINA ELETICIDADE E MAGNETISMO LEI DE AMPÈE A LEI DE AMPÈE Agoa, vamos estuda o campo magnético poduzido po uma coente elética que pecoe um fio. Pimeio vamos utiliza uma técnica, análoga a Lei de

Leia mais

PARTE IV COORDENADAS POLARES

PARTE IV COORDENADAS POLARES PARTE IV CRDENADAS PLARES Existem váios sistemas de coodenadas planas e espaciais que, dependendo da áea de aplicação, podem ajuda a simplifica e esolve impotantes poblemas geométicos ou físicos. Nesta

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro;

Gregos(+2000 anos): Observaram que pedras da região Magnézia (magnetita) atraiam pedaços de ferro; O Campo Magnético 1.Intodução: Gegos(+2000 anos): Obsevaam que pedas da egião Magnézia (magnetita) ataiam pedaços de feo; Piee Maicout(1269): Obsevou a agulha sobe imã e macou dieções de sua posição de

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Aula de UNIDADE - MOVIMENTO VERTICAL NO VÁCUO 1) (UFJF-MG) Um astonauta está na supefície da Lua quando solta, simultaneamente, duas bolas maciças, uma de chumbo e outa de madeia, de uma altua de,0 m em

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse mateial é pate integante do ulas Paticulaes on-line do IESDE BSIL S/, MTEMÁTI PÉ-VESTIBUL LIVO DO POFESSO 006-009 IESDE Basil S.. É poibida a epodução, mesmo pacial, po qualque pocesso, sem autoização

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência. Elementos de Sistemas Eléticos de Potência..4 apacitância e Susceptância apacitiva de Linhas de Tansmissão Pofesso:. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Objetivo Estudo do efeito de sistemas de forças não concorrentes.

Objetivo Estudo do efeito de sistemas de forças não concorrentes. Univesidade edeal de lagoas Cento de Tecnologia Cuso de Engenhaia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Pofesso: Eduado Nobe Lages Copos Rígidos: Sistemas Equivalentes de oças Maceió/L

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA

SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Profissional SENAI Plínio Gilberto Kröeff MECÂNICA TÉCNICA SERVIÇO NACIONAL DE APRENDIZAGEM INDUSTRIAL Escola de Educação Pofissional SENAI Plínio Gilbeto Köeff MECÂNICA TÉCNICA Pofesso: Dilma Codenonsi Matins Cuso: Mecânica de Pecisão São Leopoldo 2009 1 SUMÁRIO

Leia mais

Renato Frade Eliane Scheid Gazire

Renato Frade Eliane Scheid Gazire APÊNDICE A CADENO DE ATIVIDADES PONTIFÍCIA UNIVESIDADE CATÓLICA DE MINAS GEAIS Mestado em Ensino de Ciências e Matemática COMPOSIÇÃO E/OU DECOMPOSIÇÃO DE FIGUAS PLANAS NO ENSINO MÉDIO: VAN HIELE, UMA OPÇÃO

Leia mais

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica

Antenas. Antena = transição entre propagação guiada (circuitos) e propagação não-guiada (espaço). Antena Isotrópica Antenas Antena tansição ente popagação guiada (cicuitos) e popagação não-guiada (espaço). Antena tansmissoa: Antena eceptoa: tansfoma elétons em fótons; tansfoma fótons em elétons. Antena sotópica Fonte

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Unesp 2013) No dia 5 de junho de 2012, pôde-se obseva, de deteminadas egiões da Tea, o fenômeno celeste chamado tânsito de Vênus, cuja póxima ocoência se daá em 2117. Tal fenômeno só é possível poque

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang

Relatório Interno. Método de Calibração de Câmaras Proposto por Zhang LABORATÓRIO DE ÓPTICA E MECÂNICA EXPERIMENTAL Relatóio Inteno Método de Calibação de Câmaas Poposto po Zhang Maia Cândida F. S. P. Coelho João Manuel R. S. Tavaes Setembo de 23 Resumo O pesente elatóio

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material.

Fig. 8-8. Essas linhas partem do pólo norte para o pólo sul na parte externa do material, e do pólo sul para o pólo norte na região do material. Campo magnético Um ímã, com seus pólos note e sul, também pode poduzi movimentos em patículas, devido ao seu magnetismo. Contudo, essas patículas, paa sofeem esses deslocamentos, têm que te popiedades

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Cao cusista, Todas as dúvidas deste cuso podem se esclaecidas atavés do nosso plantão de atendimento ao cusista. Plantão de Atendimento Hoáio: quatas e quintas-feias das 14:00 às 15:30 MSN: lizado@if.uff.b

Leia mais

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY)

singular GEOMETRIA ANALÍTICA 2º E.M. Tarde Colégio Técnico Noturno Profª Liana (Lista de exercícios elaborada pelo professor DANRLEY) 1 singula GEOMETRIA ANALÍTICA 2º E.M. Tade Colégio Técnico Notuno Pofª Liana (Lista de eecícios elaboada pelo pofesso DANRLEY) SISTEMA CARTESIANO ORTOGONAL 2 1) Indique a que quadante petence cada ponto:

Leia mais

MATEMÁTICA PRIMEIRA ETAPA - 1999

MATEMÁTICA PRIMEIRA ETAPA - 1999 MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

física eletrodinâmica GERADORES

física eletrodinâmica GERADORES eletodinâmica GDOS 01. (Santa Casa) O gáfico abaixo epesenta um geado. Qual o endimento desse geado quando a intensidade da coente que o pecoe é de 1? 40 U(V) i() 0 4 Do gáfico, temos que = 40V (pois quando

Leia mais

Matemática / Física. Figura 1. Figura 2

Matemática / Física. Figura 1. Figura 2 Matemática / Fíica SÃO PAULO: CAPITAL DA VELOCIDADE Diveo título foam endo atibuído à cidade de São Paulo duante eu mai de 00 ano de fundação, como, po exemplo, A cidade que não pode paa, A capital da

Leia mais

Movimentos de satélites geoestacionários: características e aplicações destes satélites

Movimentos de satélites geoestacionários: características e aplicações destes satélites OK Necessito de ee esta página... Necessito de apoio paa compeende esta página... Moimentos de satélites geoestacionáios: caacteísticas e aplicações destes satélites Um dos tipos de moimento mais impotantes

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

TEORIA DA GRAVITAÇÃO UNIVERSAL

TEORIA DA GRAVITAÇÃO UNIVERSAL Aula 0 EORIA DA GRAVIAÇÃO UNIVERSAL MEA Mosta aos alunos a teoia da gavitação de Newton, peda de toque da Mecânica newtoniana, elemento fundamental da pimeia gande síntese da Física. OBJEIVOS Abi a pespectiva,

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009

Termodinâmica 1 - FMT 159 Noturno, segundo semestre de 2009 Temodinâmica - FMT 59 Notuno segundo semeste de 2009 Execícios em classe: máquinas témicas 30/0/2009 Há divesos tipos de motoes témicos que funcionam tanfeindo calo ente esevatóios témicos e ealizando

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSARÁ A 2 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSARÁ A 2 ạ SÉRIE DO ENSINO MÉDIO EM Disciplina: MATEMÁTICA Nome: N.º: Endeeço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2018 Disciplina: MATEMÁTICA Pova: DESAFIO NOTA: QUESTÃO 16 Uma costueia pagou R$ 135,00 po uma ceta

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

1ª Aula do Cap. 6 Forças e Movimento II

1ª Aula do Cap. 6 Forças e Movimento II ATRITO 1ª Aula do Cap. 6 Foças e Movimento II Foça de Atito e Foça Nomal. Atito e históia. Coeficientes de atito. Atito Dinâmico e Estático. Exemplos e Execícios. O efeito do atito ente duas supefícies

Leia mais

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB.

Nestas condições, determine a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. MATEMÁTICA 0 A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, ),

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Transformações geométricas

Transformações geométricas Instituto Politécnico de Bagança Escola upeio de Educação Tansfomações geométicas 1 Tanslações endo dado um vecto u, a tanslação associada a u é a aplicação que faz coesponde ao ponto M o ponto M tal que

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012

Física Geral I - F 128 Aula 8: Energia Potencial e Conservação de Energia. 2 o Semestre 2012 Física Geal I - F 18 Aula 8: Enegia Potencial e Consevação de Enegia o Semeste 1 Q1: Tabalho e foça Analise a seguinte afimação sobe um copo, que patindo do epouso, move-se de acodo com a foça mostada

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

32 m. Sabendo que a medida de sua altura é o dobro da medida de seu

32 m. Sabendo que a medida de sua altura é o dobro da medida de seu IST DE EXERCÍCIOS PR RECUPERÇÃO DE MTEMÁTIC PROFESSOR MOBI IST DE CIINDROS - 0 atua de um ciindo eto vae e o aio da ase mede Detemine a áea tota e o voume do ciindo O voume de um ciindo equiáteo vae 5

Leia mais

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON

PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Pofa Stela Maia de Cavalho Fenandes 1 PRINCÍPIOS DA DINÂMICA LEIS DE NEWTON Dinâmica estudo dos movimentos juntamente com as causas que os oiginam. As teoias da dinâmica são desenvolvidas com base no conceito

Leia mais

Aula ONDAS ELETROMAGNÉTICAS

Aula ONDAS ELETROMAGNÉTICAS ONDAS ELETROMAGNÉTICAS Aula 6 META Intoduzi aos alunos conceitos básicos das ondas eletomagnéticas: como elas são poduzidas, quais são suas caacteísticas físicas, e como desceve matematicamente sua popagação.

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Dinâmica Trabalho e Energia

Dinâmica Trabalho e Energia CELV Colégio Estadual Luiz Vianna Física 1 diano do Valle Pág. 1 Enegia Enegia está elacionada à capacidade de ealiza movimento. Um dos pincípios básicos da Física diz que a enegia pode se tansfomada ou

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA CONCURSO DE ADMISSÃO AO CFS B 2/2002 PROVA DE MATEMÁTICA FÍSICA QUÍMICA ESCOL DE ESPECILISTS DE ERONÁUTIC CONCURSO DE DMISSÃO O CS /00 PROV DE MTEMÁTIC ÍSIC QUÍMIC CÓDIGO D PROV 9 MRQUE NO CRTÃO DE RESPOSTS O CÓDIGO D PROV. s questões de 0 a 0 efeem se a Matemática 0 Se a

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO

ANÁLISE DA FIABILIDADE DA REDE DE TRANSPORTE E DISTRIBUIÇÃO NÁLIE D IBILIDDE D REDE DE TRNPORTE E DITRIBUIÇÃO. Maciel Babosa Janeio 03 nálise da iabilidade da Rede de Tanspote e Distibuição. Maciel Babosa nálise da iabilidade da Rede de Tanspote e Distibuição ÍNDICE

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA

DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA DESENVOLVIMENTO E APLICAÇÃO DE GERADOR DE INDUÇÃO TRIFÁSICO CONECTADO ASSINCRONAMENTE À REDE MONOFÁSICA LIMA, Nélio Neves; CUNHA, Ygho Peteson Socoo Alves MARRA, Enes Gonçalves. Escola de Engenhaia Elética

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ

LISTA de GRAVITAÇÃO PROFESSOR ANDRÉ LISA de GRAVIAÇÃO PROFESSOR ANDRÉ 1. (Ufgs 01) Em 6 de agosto de 01, o jipe Cuiosity" pousou em ate. Em um dos mais espetaculaes empeendimentos da ea espacial, o veículo foi colocado na supefície do planeta

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Prof. Dirceu Pereira

Prof. Dirceu Pereira Polícia odoviáia edeal Pof. Diceu Peeia ísica 3.4. OÇAS EM TAJETÓIAS CUILÍNEAS Se lançamos um copo hoizontalmente, póximo a supefície da Tea, com uma velocidade inicial de gande intensidade, da odem de

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico

Matemática e suas Tecnologias Matemática Alexmay Soares, Cleiton Albuquerque, Fabrício Maia, João Mendes e Thiago Pacífico Univesidade Abeta do Nodeste e Ensino a Distância são macas egistadas da Fundação Demócito Rocha É poibida a duplicação ou epodução deste fascículo Cópia não autoizada é Cime Matemática e suas Tecnologias

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

( ) =. GABARITO: LETRA A + ( ) =

( ) =. GABARITO: LETRA A + ( ) = ) Há 0 anos, em º de julho de 994, entrava em vigor o real, moeda que pôs fim à hiperinflação que assolava a população brasileira. Nesse novo sistema monetário, cada real valia uma URV (Unidade Real de

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA PROVA DE MATEMÁTICA EFOMM-008 1ª Questão: A figura acima representa uma caixa de presente de papelão que mede 16 por 30 centímetros. Ao cortarmos fora os quadrados do mesmo tamanho dos quatro cantos e

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da ea 1. Condiçõe de medição eodéica O intumento com que ão efectuada a mediçõe eodéica, obe a upefície da ea, etão ujeito à foça da avidade. Paa pode intepeta coectamente o eultado da mediçõe,

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais