Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Tamanho: px
Começar a partir da página:

Download "Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015"

Transcrição

1 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda. Orçamento público. Conceitos e princípios orçamentários. Orçamento-programa: fundamentos e técnicas. Lei de Diretrizes Orçamentárias: conceito e função. Plano Plurianual: conceito e função. Lei Orçamentária Anual: conceito e função. Coletâneas de exercícios pertinentes

2 Apostilas OBJETIVA - Ano X - Concurso Público 05 RAZÃO Razão: é a relação entre duas grandezas. DEFINIÇÃO "Chama-se razão de duas grandezas da mesma espécie, ao quociente da divisão dos números que medem essas grandezas numa mesma unidade. Este quociente é obtido, dividindo-se o primeiro número pelo segundo". Conforme a definição, para determinarmos a razão entre duas grandezas é necessário que sejam da mesma espécie, e medidas com a mesma unidade. a A razão é representada sob a forma b ou a : b Na sala da ª B de um colégio há 0 rapazes e 5 moças. Encontre a razão entre o número de rapazes e o número de moças. (lembrando que razão é divisão) Indica que para cada rapazes existe 5 moças Voltando ao exercício anterior, vamos encontrar a razão entre o número de moças e rapazes. Lendo Razões: Lê-se, está para 5 ou para 5 lê-se, 8 está para 9 ou 8 para 9 Termos de uma Razão Grandezas Especiais Escala Escala, é a razão entre a medida no desenho e o correspondente na medida real.

3 Apostilas OBJETIVA - Ano X - Concurso Público 05 Exemplo : Em um mapa, a distância entre a cidade A e a cidade B é representada por um segmento de 7, cm. A distância real entre essas cidades é de 0km. Vamos calcular a escala deste mapa. As medidas devem estar na mesma unidade, logo 0km cm Exemplo : Em um mapa a distância entre duas cidades é de cm. Sabendo-se que a distância real entre as cidades é de 00 km, qual a escala utilizada no mapa? Comprimento do desenho: cm Comprimento real: 00 km (00 x ) cm cm Desenh o Escala Real R A escala utilizada foi de : Exemplo : Ao desenhar a sua sala de aula, Paula traçou um segmento de cm, que corresponde ao comprimento total da sala. Sabendo-se que a escala utilizada foi de :0, qual o comprimento real da sala? Desenho Escala Real x 70 cm 0 x Logo, o comprimento de cm no desenho corresponde a um comprimento de 70 cm ou 7, m do real. R O comprimento real desta sala é 7,m. Velocidade média Velocidade média, é a razão entre a distância a ser percorrida e o tempo gasto. (observe que neste caso as unidades são diferentes) Exemplo : Um carro percorre 0km em h. Determine a velocidade média deste carro. Significa que este carro anda em média 80km em hora. Exemplo : Vamos determinar a velocidade média de um trem que percorreu a distância de 5km em horas: d 5 Vm 75,5 km/h t R A velocidade média do trem foi de 75,5 km/h

4 Apostilas OBJETIVA - Ano X - Concurso Público 05 Densidade demográfica Densidade demográfica, é a razão entre o número de habitantes e a área. Uma ilha qualquer tem uma área de 8 0 km e uma população de habitantes. Dê a densidade demográfica do estado do Ceará. Significa que cada km é habitado por,7 pessoas. Vamos observar as seguintes razões. Razões Inversas Observe que o antecessor (5) da primeira é o consequente (5) da segunda. Observe que o consequente (8) da primeira é o antecessor (8) da segunda. O produto das duas razões é igual a, isto é, Dizemos que as razões são inversas. Exemplos: Exercícios Resolvidos ) Achar a razão entre dois segmentos de dm e 5cm respectivamente. Como é necessário medir as duas grandezas com a mesma unidade, vamos reduzir as duas medidas a cm, para obter a razão. 0cm Logo, simplificando-se ou : 5 5cm 5. Assim: dm 0cm

5 Apostilas OBJETIVA - Ano X - Concurso Público 05 ) Em uma competição esportiva participam 500 atletas, sendo 00 moças e 00 rapazes. a) Qual a razão do número de moças para o número de rapazes? b) Qual a razão do número de rapazes para o número de moças? a) Dividindo-se o número de moças pelo número de rapazes, encontramos a razão: b) 00 ) Determinar a razão entre e Exercícios para resolver Gabarito: no final da Coletânea de exercícios ) A soma de dois números é 5 e a razão 7/. Calcular os dois números. ) A diferença entre dois números é 5 e a razão 8/5. Calcular os dois números. ) Num ginásio há ao todo 50 alunos distribuídos em classes. A cada classe de 5 meninos corresponde uma classe de 0 meninas. Calcular o número de meninas do ginásio. ) A razão entre a base e a altura de um triângulo é de 5 para, e a área do triângulo é de 5m. Calcular a base e a altura. 5) Uma barra feita com uma liga de ouro/cobre tem a massa de 5g. Achar a massa de cada metal sabendo que estão na razão de para 8. ) Um trapézio é isósceles. A base menor está para a base maior na razão :5. Determine a área, sabendo que: º) A altura do trapézio vale cm. º) A altura está para a base maior na razão :5. 7) Qual a razão entre as áreas de dois círculos se o raio de um deles é o quádruplo do raio do outro. 8) Numa prova de matemática, um aluno acertou questões sobre 0 que foram dadas. Qual a razão entre o número de questões que ele acertou para o número de questões da prova? 9) Uma mercadoria acondicionada numa embalagem de papelão, possui 00g de peso líquido e 50g de peso bruto. Qual a razão entre o peso líquido e o peso bruto? 0) Um retângulo A tem 0cm e 5cm de dimensões, enquanto as dimensões de um retângulo B são 0cm e 0cm. Qual a razão entre a área do retângulo A e a área do retângulo B? ) A razão entre a altura de Tarcísio e sua sombra, em determinada hora do dia é de para. Se a sombra mede 5

6 Apostilas OBJETIVA - Ano X - Concurso Público 05,m, qual a altura de Tarcísio? ) A razão entre a velocidade de móveis, A e B é de /8. Encontre a velocidade do móvel A, quando a velocidade do móvel B for igual a 0m/s ) A razão entre as massas de enxofre e de ferro que se combinam para formar o sulfeto de ferro é de,7. Calcular: a) A massa de ferro que deve combinar com gramas de enxofre para formar o sulfeto de ferro. b) A massa de enxofre que se deve combinar com,g de ferro para formar o sulfeto de ferro. ) Para pintar uma parede, um pintor deve misturar tinta branca com tinta cinza na razão de 5 para. Se ele precisar de 5 litros dessa misturam, quantos litros de cada cor irá utilizar? 5) Qual é a escala de um desenho em que um comprimento de m está representado por um comprimento de 5cm? ) A largura de um automóvel é metros, uma miniatura desse automóvel foi construída de modo que essa largura fosse representada por 5cm. Qual foi a escala usada para construir a miniatura? 7) Em um mapa, a distância entre duas cidades é de cm. Sabendo-se que a distância real entre as cidades é de 00km. Qual a escala utilizada no mapa? 8) A distância entre São Paulo e Rio de Janeiro é de aproximadamente 08km. Qual é a escala de um mapa onde esta distância está representada por 0,cm? 9) Numa escala de :50, qual o comprimento real em metros, correspondente a 8cm. 0) Uma fotografia aérea mostra parte de uma região cuja área é 80m (área da parte fotografada). Sabendo que a foto tem 8cm por 5cm, qual foi a escala da foto. GABARITO ) e ) 0 e 5 ) ) 5m e m 5) 97g e g ) cm 7) 8) 5 9) 5 0) ),80 ) 7,5 m/s ) a) 5,00g b) 0,g ) 5 litros de tinta branca e 9 litros de tinta cinza 5) :0 ) :0 7) :

7 Apostilas OBJETIVA - Ano X - Concurso Público 05 8) : ) :000 0) :00 PROPORÇÃO INTRODUÇÃO Um posto de gasolina oferece um desconto de real para cada 0 litros completos de gasolina. Se uma pessoa colocar 50 litros de gasolina no carro, que desconto irá obter? Com os dados do problema, podemos montar uma tabela: Litros Descontos (em R$) O desconto será de R$ 5,00 Nesta tabela podemos destacar: * Razão entre desconto e litros: 0 5 * Razão entre desconto e litros: 50. Verificamos que as razões 0 e 50 5 são iguais (ou equivalentes). DEFINIÇÃO DE PROPORÇÃO "Proporção é a igualdade entre duas razões, ou seja, quando duas razões apresentam o mesmo quociente, sendo, portanto iguais". Quatro números racionais a, b, c, d, diferentes de zero, nessa ordem, formam uma proporção quando a razão do primeiro número para o segundo é igual a razão do terceiro para o quarto. a c b d Ou, ainda, podemos escrever: a : b c : d que se lê: "a está para b assim como c está para d" Os quatro termos que formam a proporção são denominados termos da proporção. O primeiro e o quarto termo são chamados extremos da proporção. O segundo e o terceiro são chamados meios. 7

8 Apostilas OBJETIVA - Ano X - Concurso Público 05 PROPRIEDADE FUNDAMENTAL DAS PROPORÇÕES "Em toda proporção o produto dos meios é igual ao produto dos extremos". a c a.d b.c b d 5 x 5 5 x RECÍPROCA DA PROPRIEDADE FUNDAMENTAL "Quando o produto de dois números é igual ao produto de dois outros, os quatro números formam uma proporção". Observação: Para verificar se quatro números formam uma proporção, efetuamos o produto do número maior pelo menor e verificamos se esse produto é igual aos outros dois. Assim, os quatro números,0, e 0 formam uma proporção, pois os produtos 0 e 0, tem como resultado 0. QUARTA PROPORCIONAL "Chama-se Quarta Proporcional a três números dados, um quarto número que forma com os mesmos uma proporção". Vamos encontrar a quarta proporcional aos números, e 8. Representando por x o termo procurado, veremos que o problema admite três soluções, correspondentes às proporções, pois a posição do número x é arbitrária. I-) x 8 x II-) x x 8 III-) x 8 x Só há três soluções porque em cada solução o produto de um dos números dados por x é igual ao produto dos outros dois. Em geral, considera-se a solução obtida, conservando na proporção a ordem dos números dados, e considerando como incógnita o último termo. PROPORÇÃO CONTÍNUA "Proporção contínua é aquela em que os meios e os extremos são iguais". (os meios são iguais) 9 8

9 Apostilas OBJETIVA - Ano X - Concurso Público 05 Na proporção contínua, o termo igual é denominado média proporcional ou geométrica, e qualquer um dos outros termos ( ou 9) é denominado terceira proporcional. No exemplo acima, é a terceira proporcional entre 9 e, sendo 9 a terceira proporcional entre e. ) Achar a terceira proporcional a 5, e 0,8. Exercícios Resolvidos Observando que, se a média não for previamente fixada, haverá duas soluções: O 5, 0,8. Modo: 5,x (0,8) x 0, 0,8 x O.Modo: 0,8 5, 0,8x (5,) x 7, 5, x Se, contudo, a média for previamente fixada, só haverá uma das resoluções. ) Achar a terceira proporcional a e 9, sendo 9 a média. 9 x 8 x 7 9 x PROPRIEDADES GERAIS DAS PROPORÇÕES PROPRIEDADE "Em uma proporção, a soma dos dois primeiros termos está para o primeiro termo, assim como a soma dos dois últimos termos está para o terceiro termo". a c a + b c + d b d a c PROPRIEDADE "Em uma proporção, a soma dos dois primeiros termos está para o segundo termo, assim como a soma dos dois últimos está para o quarto termo". a c a + b c + d b d b d PROPRIEDADE "Numa proporção, a diferença dos dois primeiros termos está para o primeiro termo, assim como a diferença dos dois últimos termos está para o terceiro termo". a c a b c d b d a c PROPRIEDADE "Numa proporção, a diferença dos dois primeiros termos está para o segundo termo, assim como a diferença dos dois últimos termos está para o quarto termo". 9

10 Apostilas OBJETIVA - Ano X - Concurso Público 05 a c a b c d b d b d PROPRIEDADE 5 "Numa proporção, a somados antecedentes está para a soma dos consequentes, assim como cada antecedente está para seu consequente". a c a + c a a + c c e b d b + d b b + d d PROPRIEDADE "Numa proporção, a diferença dos antecedentes está para a diferença dos consequentes, assim como cada antecedente está para seu consequente". a c b d a c b d a c e b d PROPRIEDADE 7 "Em toda proporção, o produto dos antecedentes está para o produto dos consequentes assim como o quadrado de qualquer antecedente está para o quadrado do respectivo consequente". a b c d a c a c a a c c e b d b d b b d d Exercícios Resolvidos º Exercício A diferença entre os antecedentes de uma proporção é 0 e os consequentes 9 e 7. Achar os antecedentes. Representando por a e b os antecedentes, formamos a proporção: diferença, vem que: a 9 b 7 aplicando-se a propriedade relativa à a b a a a 90 a 5 9 logo, b 5 Resposta: Os antecedentes são, respectivamente 5 e 5. º Exercício Resolver o sistema x + y 0 x y 7 Aplicando-se a propriedade relativa à soma, vem: 0

11 Apostilas OBJETIVA - Ano X - Concurso Público 05 x + + y x 7 logo, y 0 x x 0 Resposta: Os antecedentes procurados são respectivamente e. PROPORÇÃO PROLONGADA Proporção prolongada é a sucessão de três ou mais razões iguais. 8 PROPRIEDADE DAS PROPORÇÕES PROLONGADAS "Numa proporção prolongada, a soma dos antecedentes está para a soma dos consequentes, assim como qualquer antecedente está para seu consequente" Exercício Resolvido a b c ) Achar a, b, c na seguinte proporção sabendo-se que a soma é a + b + c. Aplicando-se a propriedade das proporções prolongadas temos: a b c a + b + c + + Logo, a a b b 8 c c Números Diretamente Proporcionais NÚMEROS PROPORCIONAIS "Duas sequências A e B de números reais, não nulos, são diretamente proporcionais se, e somente se, a razão dos termos correspondentes são todas iguais entre si". Sejam as sequências: (, 5,, 9) e (8, 0,, ). Essas sequências são diretamente proporcionais porque:

12 Apostilas OBJETIVA - Ano X - Concurso Público k 0 O valor comum das razões é k, uma constante não nula. "K é denominado fator constante ou coeficiente de proporcionalidade". Exercício Resolvido ) Dada as sequências proporcionais (, 5, 7, y) e (, 0, x, 8). Determine o coeficiente de proporcionalidade e os valores de x e y. Como: 5 7 y 0 x 8, logo o coeficiente de proporcionalidade é. Então: 7 x x y y 8 y 8 Resposta: O valor de x é e o valor de y é. O coeficiente de proporcionalidade é. Números Inversamente Proporcionais "Duas sequências A e B de números reais são inversamente proporcionais, quando o produto entre qualquer termo da primeira sequência e seu correspondente na segunda, é sempre uma constante k não nula". Sejam as sequências: (0, 5, 0, 50) e (0, 8, 5, ). Essas sequências apresentam números inversamente proporcionais porque o produto dos termos correspondentes é sempre 00. Observe: ; ; ; O produto k 00 denomina-se coeficiente de proporcionalidade. Podemos escrever esses produtos, também, da seguinte forma: k 0 8 5

13 Apostilas OBJETIVA - Ano X - Concurso Público 05 Logo 0, 5, 0, 50 são diretamente proporcionais aos números:,,, DIVISÃO PROPORCIONAL DIVISÃO ENTRE AS PARTES DIRETAMENTE PROPORCIONAIS Vamos dividir o número em parcelas que sejam diretamente proporcionais aos números, 5, 8. O problema consiste em encontrar três parcelas cuja soma seja, e que sejam proporcionais aos números, 5, 8. Chamamos essas parcelas de x, y e z temos: x + y + z e Pela propriedade da proporção: substituindo os valores: x y z 5 8 x y z x + y + z x x y y 0 5 z z 8 Exercício Resolvido ) Dividir 5 em partes diretamente proporcionais aos números e. Neste caso, o número 5 deve ser dividido em duas parcelas, x e y: x y x + y k Uma vez que encontramos o coeficiente de proporcionalidade:

14 Apostilas OBJETIVA - Ano X - Concurso Público 05 x 08 x.08 x 7 y 08 y 08 y 8 Resposta: Os números procurados são 7 e 8. DIVISÃO ENTRE AS PARTES INVERSAMENTE PROPORCIONAIS, e. Vamos dividir o número 7 em partes inversamente proporcionais a 7 O problema consiste em encontrar três parcelas cuja soma seja 7, e que sejam inversamente,,. proporcionais aos números 7 Chamamos essas parcelas de x, y e z temos: x + y + z 7 e note que invertemos os número, no denominador das razões. Pela propriedade da proporção: Substituindo os valores: x y z 7 x y z 7 x + y + z K x x 78 y y 0 z z 7. z 7 Exercícios para resolver Gabarito: no final da Coletânea de exercícios x y P ) Calcular x e y, na proporção 5, sabendo que x + y 5.

15 Apostilas OBJETIVA - Ano X - Concurso Público 05 x y P ) Calcular x e y, na proporção 5, sabendo que x - y. x y z P ) Calcular x, y e z na proporção sabendo que x + y + z 58. P ) Calcular x, y e z sabendo que xy xz yz e que x + y + z 8. P 5 ) Determinar o coeficiente de proporcionalidade entre os seguintes grupos de números proporcionais: 5, 5 8, 5, 7 P ) Verificar se as seguintes sequências (5, 0, 75) e (,, 5) são proporcionais. P 7 ) Achar x nas sucessões proporcionais (, 8, ) e (,, x). P 8 ) A grandeza x é diretamente proporcional a y. Quando a grandeza y tem o valor 8, x tem o valor 0. Determinar o valor da grandeza x, quando y vale 0. P 9 ) Em 8 gramas de água, há de hidrogênio e de oxigênio; em 5 gramas de água há 5 de hidrogênio e 0 de oxigênio. Verificar se há proporcionalidade entre as massas de água e hidrogênio, água e oxigênio, hidrogênio e oxigênio. Em caso afirmativo determinar os coeficientes de proporcionalidade. P 0 ) Dividir 80 em três partes, diretamente proporcionais a, e 5. P ) Três sócios querem dividir um lucro de R$.500,00. Sabendo que participaram da sociedade durante, 5 e 7 meses. Qual a parcela de lucro de cada um? P ) Um prêmio de R$ 5.000,00 será distribuído aos cinco participantes de um jogo de futebol de salão, de forma inversamente proporcional às faltas cometidas por cada jogador. Quanto caberá a cada um, se as faltas foram,,, e 5? P ) Distribuir o lucro de R$ 8.00,00 entre dois sócios de uma firma, sabendo que o primeiro aplicou R$ ,00 na sociedade durante 9 meses e que o segundo aplicou R$ 0.000,00 durante meses. P ) Um comerciante deseja premiar, no primeiro dia útil de cada mês, os três primeiros fregueses que chegarem ao seu estabelecimento com a quantia de R$ ,00 divididas em partes inversamente proporcionais a, e,. Nessas condições, qual o prêmio de menor valor a ser pago? P 5 ) Uma pessoa deseja repartir 5 balas para duas crianças, em partes que sejam ao mesmo tempo diretamente proporcionais a / e /7 e inversamente proporcionais a / e /. Quantas balas cada criança receberá? P ) Um pai distribuiu 8 bombons entre os filhos Hudson, Larissa e Carol, em partes diretamente proporcionais à nota de Matemática e inversamente proporcional a idade dos filhos. Calcule o número de bombons recebidos de acordo com os dados: Hudson: 0 anos e nota 7; Larissa: anos e nota 5; Carol: 8 anos e nota 0. 5

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005 CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA.701 DE 9/07/5 DOU 0/08/005 CURSO: Bacharelado em Química Disciplina: Matemática I Professor: Marcos José Ardenghi OBS: esta apostila é destinada

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida?

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida? LISTA DE EXERCÍCIOS FUNDAMENTOS DA MATEMÁTICA Prof. Marcos Calil REGRA DE TRÊS SIMPLES E PORCENTAGEM 1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de

Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de 1 Matemática Instrumental 2008.1 Aula 3 Grandezas Diretamente e Inversamente Proporcionais. Regra de Três. Objetivos: Conceituar grandezas diretamente e inversamente proporcionais. Aplicar os conceitos

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

FRAÇÕES DE UMA QUANTIDADE

FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4 AULA 0 REGRA DE TRÊS. Sabendo-se que y z 8 e que / y/ z/, calcule. Se / y/ z/, temos: y z, como desejamos saber o valor de, vamos isolar: y em função de : y y y z em função de : z z z z Agora que conhecemos

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica 2008 SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA

Leia mais

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A.

APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. CENTRO ESTADUAL DE EDUCAÇÃO PROFISSIONAL DE CURITIBA C.E.E.P CURITIBA APOSTILA DE MATEMÁTICA BÁSICA PARA E.J.A. Modalidades: Integrado Subseqüente Proeja Autor: Ronald Wykrota (wykrota@uol.com.br) Curitiba

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

Prof. Msc. Edmundo Tork Matemática Básica. + % a b

Prof. Msc. Edmundo Tork Matemática Básica. + % a b Prof. Msc. Edmundo Tork Matemática Básica π n x α φ + % a b χ β Sumário Números Inteiros... 0 Números Naturais... 0 Operações Fundamentais com Números Naturais... 0 Exercícios... 0 Mínimo Múltiplo Comum...

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples Disciplina: Matemática Ano / Série: 7 Professor (a): Rafael Machado Data: 11/2015 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio.

1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. 1. Matemática Básica: o razão, proporção, regra da sociedade; o conversão de moedas câmbio. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005 Matemática Técnico da ANTT/NCE-UFRJ/005 PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/005 Meu nome é Thiago Honório Lima Chaves e sou formado em Engenharia Mecânica e de Automóveis pelo

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

Desconto Simples Racional e Comercial - Parte 3... 30 Equivalência de descontos... 31 Equivalência de capitais - Parte 1... 32 Equivalência de

Desconto Simples Racional e Comercial - Parte 3... 30 Equivalência de descontos... 31 Equivalência de capitais - Parte 1... 32 Equivalência de 1 Sumário Razão... 4 Proporção - Parte 1... 4 Proporção - Parte 2... 5 Proporção - Parte 3... 6 Proporção - Parte 4... 6 Média Aritmética... 7 Média Aritmética Ponderada... 8 Grandezas Proporcionais...

Leia mais

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)...

APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... AULA DEMONSTRATIVA 1. APRESENTAÇÃO INICIAL... 2 CONSTANTE DE PROPORCIONALIDADE (K)... 3 2.1. EXERCÍCIOS RESOLVIDOS... 3 3. DIVISÃO PROPORCIONAL... 4 3.1. GRANDEZAS DIRETAMENTE PROPORCIONAIS... 4 4. REGRAS

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

Operação com Números racionais

Operação com Números racionais Operação com Números racionais 1 Significado das frações a) Parte do todo Exemplo 1: 3 = três partes de seis partes, onde seis 6 partes é o todo. Exemplo 8: a) b) b) Divisão Exemplo 2: 6 3 = 6 3 Exemplo

Leia mais

Conteúdo Programático Anual MATEMÁTICA

Conteúdo Programático Anual MATEMÁTICA MATEMÁTICA 1º BIMESTRE 5ª série (6º ano) CALCULANDO COM NÚMEROS NATURAIS 1. Idéias associadas à adição 2. Idéias associadas à subtração 3. Idéias associadas à multiplicação 4. Idéias associadas à divisão

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Atividade Proporcionalidade (vídeo)

Atividade Proporcionalidade (vídeo) Atividade Proporcionalidade (vídeo) Atividade CNI/EM Presencial 1. Introdução O objetivo dessa atividade é estudar as relações de proporcionalidade (direta e inversa) entre grandezas. O material-base será

Leia mais

04.1 Razão É a comparação entre duas grandezas, de mesma espécie, da forma

04.1 Razão É a comparação entre duas grandezas, de mesma espécie, da forma EXERCÍCIOS DE MATEMÁTICA Prof. Mário e-mail: marioffer@yahoo.com.br 04 Razão e Proporção 04. Razão É a comparação entre duas grandezas, de mesma espécie, da forma a ou a : b com b? 0 b Onde: a antecedente

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1

Profs. Alexandre Lima e Moraes Junior www.pontodosconcursos.com.br 1 Aula 12 Compreensão e elaboração da lógica das situações por meio de: raciocínio matemático (que envolvam, entre outros, conjuntos numéricos racionais e reais - operações, propriedades, problemas envolvendo

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira:

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira: Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Bateria de Exercícios Data: 24/03/2016 Turma: 1º Ano Área II Aluno (a): Prezado aluno caso prefira responder na

Leia mais

a c (com a, b, c e d 0) é chamada de a b c d

a c (com a, b, c e d 0) é chamada de a b c d PROFESSOR: Sebastião Geraldo Barbosa MARÇO - 304 M A T E M Á T I C A C O M E R C I A L. RAZÕES E PROPORÇÕES.. RAZÃO: Razão de dois números a e b (com b 0) é o quociente de a por b. Indica-se b a ou a :

Leia mais

CURSO FREE PMES PREPARATÓRIO JC

CURSO FREE PMES PREPARATÓRIO JC CURSO FREE PMES PREPARATÓRIO JC Geometria CÍRCULO Área A = π. r 2 π = 3,14 Perímetro P = 2. π. r RETANGULO Área A = b. h Perímetro P = 2b + 2h QUADRADO Área A = l. loua = l 2 Perímetro TRIÂNGULO P = 4l

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Prova Comentada. Matemática. A hora chegou! E ESTAMOS JUNTOS MAIS UMA VEZ. ES P EC I A L ENEM 2009 QUA S A LVA D O R 9 / 1 2 / 20 0 9

Prova Comentada. Matemática. A hora chegou! E ESTAMOS JUNTOS MAIS UMA VEZ. ES P EC I A L ENEM 2009 QUA S A LVA D O R 9 / 1 2 / 20 0 9 QUA S A LVA D O R 9 / 1 2 / 20 0 9 Prova Comentada ES P EC I A L ENEM 2009 Bruno Aziz Matemática Confira neste caderno as questões comentadas da prova de Matemática e suas Tecnologias do Enem - Exame Nacional

Leia mais

Lista de Exercícios MATEMÁTICA

Lista de Exercícios MATEMÁTICA Prefeitura de Juiz de Fora - PJF Seleção Competitiva Interna Lista de Exercícios MATEMÁTICA Regra de Três Simples Regra de Três Composta Porcentagem Tratamento da Informação Prof. Diego Gomes diegomedasilva@gmail.com

Leia mais

Banco do Brasil + BaCen

Banco do Brasil + BaCen 1. TAXA Taxa [ i ] é um valor numérico de referência, informado por uma das notações: Forma percentual, p.ex. 1%. Forma unitária, p.ex. 0,01 Forma fracionária centesimal, p.ex. 1/100. Ambos representam

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO Fala, FERA! Chegamos a nossa aula 11, lembrando que até o final do ano além das aulas, com as Pílulas Enem abordaremos todos os principais conteúdos abordados nos exames. Cinemática angular é um conteúdo

Leia mais

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão.

Duas grandezas são diretamente proporcionais quando, aumentando ou diminuindo uma delas, a outra grandeza aumenta ou diminui na mesma razão. Regra de três simples Introdução: São problemas onde relacionamos duas grandezas podendo ser diretamente ou inversamente proporcionais. Para a solução dos mesmos consiste em formar com três valores conhecidos

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo.

Lê-se como mais Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. O sinal - também denota um número negativo. MATEMÁTICA Prof. Pacher TRT-SC OPERADORES E SÍMBOLOS Símbolo Nome Significados e exemplos + adição Lê-se como "mais" Ex: 2 + 3 = 5, significa que se somarmos 2 e 3 o resultado é 5. - subtração / divisão

Leia mais

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012

TÉCNICO EM CONTABILIDADE MATEMÁTICA FINANCEIRA MÓDULO 1 ETEP TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 2012 2012-1 TÉCNICO EM CONTABILIDADE MÓDULO 1 MATEMÁTICA FINANCEIRA 1 Explicando o funcionamento da disciplina e a avaliação. Serão 2 aulas semanais onde os conteúdos serão abordados, explicados e exercitados.

Leia mais

I.MATEMÁTICA FINANCEIRA

I.MATEMÁTICA FINANCEIRA I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações

Leia mais

Lista de Exercícios 10 Matemática Financeira

Lista de Exercícios 10 Matemática Financeira Lista de Exercícios 10 Matemática Financeira Razão Chama-se de razão entre dois números racionais a e b, ao quociente entre eles. Indica-se a razão de a para b por a/b ou a:b. Exemplo: Na sala da 6ª B

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNDAMENTAL 7- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 7 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS Programa de Pós-Graduação em Ensino de Ciências e Matemática Mestrado Profissional. Produto da Dissertação

UNIVERSIDADE FEDERAL DE PELOTAS Programa de Pós-Graduação em Ensino de Ciências e Matemática Mestrado Profissional. Produto da Dissertação UNIVERSIDADE FEDERAL DE PELOTAS Programa de Pós-Graduação em Ensino de Ciências e Matemática Mestrado Profissional Produto da Dissertação Um estudo de caso sobre uma possibilidade para o ensino de Matemática

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

TEXTO 1964, PASSADO E PRESENTE

TEXTO 1964, PASSADO E PRESENTE LÍNGUA PORTUGUESA TEXTO 1964, PASSADO E PRESENTE Mundo, maio/2014 O golpe de 1964, que completou meio século, é passado e presente simultaneamente. Passado: o golpe se inscreve na geopolítica da Guerra

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

APLICAÇÕES TESTES CEF EXERCÍCIO RESOLVIDO. Isto significa que, 1 medida no desenho é igual 50 dessas medidas no real.

APLICAÇÕES TESTES CEF EXERCÍCIO RESOLVIDO. Isto significa que, 1 medida no desenho é igual 50 dessas medidas no real. NÚMEROS E GRANDEZAS PROPORCIONAIS RAZÃO. Existem várias maneiras de comparar duas grandezas, por exemplo, quando se escreve a>b ou a

Leia mais

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente.

O material com as atividades resolvidas deverá ser entregue em dia combinado posteriormente. Aluno (a): Disciplina MATEMÁTICA Professor ROLANDO Curso FUNDAMENTAL II ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 7º ANO Número: 1 - Conteúdo: Estudo de sistemas de equações do 1º grau Estudo da

Leia mais

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan

Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matéria: Matemática Assunto: Razão e Proporção Prof. Dudan Matemática Razão e Proporção Razão A palavra razão vem do latim ratio e significa a divisão ou o quociente entre dois números A e B, denotada

Leia mais

DISCURSIVAS SÉRIE AULA AULA 01

DISCURSIVAS SÉRIE AULA AULA 01 ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.

Leia mais

Universidade Nove de Julho UNINOVE

Universidade Nove de Julho UNINOVE Universidade Nove de Julho UNINOVE Material de apoio Material elaborado por: Professora Marcia Terezinha dos Reis Santos Professora Nadya Aparecida de Ávila Professor Paulo Sergio Pereira da Silva Professor

Leia mais

I.INTRODUÇÃO A MATEMÁTICA.

I.INTRODUÇÃO A MATEMÁTICA. I.INTRODUÇÃO A MATEMÁTICA. 1. HISTÓRIA DA MATEMÁTICA Matemática é uma ciência que foi criada a fim de contar e resolver problemas com uma razão de existirem, foi criada a partir dos primeiros seres racionais

Leia mais

Raciocínio Lógico Matemático Caderno 1

Raciocínio Lógico Matemático Caderno 1 Raciocínio Lógico Matemático Caderno 1 Índice Pg. Números Naturais... 02 Números Inteiros... 06 Números Racionais... 23 Números Decimais... - Dízimas Periódicas... - Expressões Numéricas... - Divisibilidade...

Leia mais

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%.

12- Gustavo comprou uma passagem aérea por R$ 1 600,00. No dia seguinte, o preço da passagem sofreu acréscimo de 22,5%. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES ÁLGEBRA 7º ANO ENSINO FUNDAMENTAL =========================================================================================== 0- Calcule a razão entre:

Leia mais

Grandezas proporcionais (II): regra de três composta

Grandezas proporcionais (II): regra de três composta Grandezas proporcionais (II): regra de três composta 1. Proporcionalidade composta Observe as figuras: A 4 2 B 5 A C 8 B 10 C Triângulo Base Altura Área 5 4 2 2 A = 5. 4 2 = 10 10 8 A = 10. 8 2 = 40 2

Leia mais

Matemática em Toda Parte II

Matemática em Toda Parte II Matemática em Toda Parte II Episódio: Matemática na Alimentação Resumo O episódio Matemática na Alimentação vai combinar os ambientes de restaurantes com ingredientes da Matemática para mostrar como diversos

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE

COLÉGIO MILITAR DE BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2007 / 200 PROVA DE MATEMÁTICA 6º ANO DO ENSINO FUNDAMENTAL CONCURSO DE ADMISSÃO À 6ª SÉRIE DO ENSINO FUNDAMENTAL CMBH 2007 PÁGINA: 2 RESPONDA AS

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais