Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015"

Transcrição

1 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda. Orçamento público. Conceitos e princípios orçamentários. Orçamento-programa: fundamentos e técnicas. Lei de Diretrizes Orçamentárias: conceito e função. Plano Plurianual: conceito e função. Lei Orçamentária Anual: conceito e função. Coletâneas de exercícios pertinentes

2 Apostilas OBJETIVA - Ano X - Concurso Público 05 RAZÃO Razão: é a relação entre duas grandezas. DEFINIÇÃO "Chama-se razão de duas grandezas da mesma espécie, ao quociente da divisão dos números que medem essas grandezas numa mesma unidade. Este quociente é obtido, dividindo-se o primeiro número pelo segundo". Conforme a definição, para determinarmos a razão entre duas grandezas é necessário que sejam da mesma espécie, e medidas com a mesma unidade. a A razão é representada sob a forma b ou a : b Na sala da ª B de um colégio há 0 rapazes e 5 moças. Encontre a razão entre o número de rapazes e o número de moças. (lembrando que razão é divisão) Indica que para cada rapazes existe 5 moças Voltando ao exercício anterior, vamos encontrar a razão entre o número de moças e rapazes. Lendo Razões: Lê-se, está para 5 ou para 5 lê-se, 8 está para 9 ou 8 para 9 Termos de uma Razão Grandezas Especiais Escala Escala, é a razão entre a medida no desenho e o correspondente na medida real.

3 Apostilas OBJETIVA - Ano X - Concurso Público 05 Exemplo : Em um mapa, a distância entre a cidade A e a cidade B é representada por um segmento de 7, cm. A distância real entre essas cidades é de 0km. Vamos calcular a escala deste mapa. As medidas devem estar na mesma unidade, logo 0km cm Exemplo : Em um mapa a distância entre duas cidades é de cm. Sabendo-se que a distância real entre as cidades é de 00 km, qual a escala utilizada no mapa? Comprimento do desenho: cm Comprimento real: 00 km (00 x ) cm cm Desenh o Escala Real R A escala utilizada foi de : Exemplo : Ao desenhar a sua sala de aula, Paula traçou um segmento de cm, que corresponde ao comprimento total da sala. Sabendo-se que a escala utilizada foi de :0, qual o comprimento real da sala? Desenho Escala Real x 70 cm 0 x Logo, o comprimento de cm no desenho corresponde a um comprimento de 70 cm ou 7, m do real. R O comprimento real desta sala é 7,m. Velocidade média Velocidade média, é a razão entre a distância a ser percorrida e o tempo gasto. (observe que neste caso as unidades são diferentes) Exemplo : Um carro percorre 0km em h. Determine a velocidade média deste carro. Significa que este carro anda em média 80km em hora. Exemplo : Vamos determinar a velocidade média de um trem que percorreu a distância de 5km em horas: d 5 Vm 75,5 km/h t R A velocidade média do trem foi de 75,5 km/h

4 Apostilas OBJETIVA - Ano X - Concurso Público 05 Densidade demográfica Densidade demográfica, é a razão entre o número de habitantes e a área. Uma ilha qualquer tem uma área de 8 0 km e uma população de habitantes. Dê a densidade demográfica do estado do Ceará. Significa que cada km é habitado por,7 pessoas. Vamos observar as seguintes razões. Razões Inversas Observe que o antecessor (5) da primeira é o consequente (5) da segunda. Observe que o consequente (8) da primeira é o antecessor (8) da segunda. O produto das duas razões é igual a, isto é, Dizemos que as razões são inversas. Exemplos: Exercícios Resolvidos ) Achar a razão entre dois segmentos de dm e 5cm respectivamente. Como é necessário medir as duas grandezas com a mesma unidade, vamos reduzir as duas medidas a cm, para obter a razão. 0cm Logo, simplificando-se ou : 5 5cm 5. Assim: dm 0cm

5 Apostilas OBJETIVA - Ano X - Concurso Público 05 ) Em uma competição esportiva participam 500 atletas, sendo 00 moças e 00 rapazes. a) Qual a razão do número de moças para o número de rapazes? b) Qual a razão do número de rapazes para o número de moças? a) Dividindo-se o número de moças pelo número de rapazes, encontramos a razão: b) 00 ) Determinar a razão entre e Exercícios para resolver Gabarito: no final da Coletânea de exercícios ) A soma de dois números é 5 e a razão 7/. Calcular os dois números. ) A diferença entre dois números é 5 e a razão 8/5. Calcular os dois números. ) Num ginásio há ao todo 50 alunos distribuídos em classes. A cada classe de 5 meninos corresponde uma classe de 0 meninas. Calcular o número de meninas do ginásio. ) A razão entre a base e a altura de um triângulo é de 5 para, e a área do triângulo é de 5m. Calcular a base e a altura. 5) Uma barra feita com uma liga de ouro/cobre tem a massa de 5g. Achar a massa de cada metal sabendo que estão na razão de para 8. ) Um trapézio é isósceles. A base menor está para a base maior na razão :5. Determine a área, sabendo que: º) A altura do trapézio vale cm. º) A altura está para a base maior na razão :5. 7) Qual a razão entre as áreas de dois círculos se o raio de um deles é o quádruplo do raio do outro. 8) Numa prova de matemática, um aluno acertou questões sobre 0 que foram dadas. Qual a razão entre o número de questões que ele acertou para o número de questões da prova? 9) Uma mercadoria acondicionada numa embalagem de papelão, possui 00g de peso líquido e 50g de peso bruto. Qual a razão entre o peso líquido e o peso bruto? 0) Um retângulo A tem 0cm e 5cm de dimensões, enquanto as dimensões de um retângulo B são 0cm e 0cm. Qual a razão entre a área do retângulo A e a área do retângulo B? ) A razão entre a altura de Tarcísio e sua sombra, em determinada hora do dia é de para. Se a sombra mede 5

6 Apostilas OBJETIVA - Ano X - Concurso Público 05,m, qual a altura de Tarcísio? ) A razão entre a velocidade de móveis, A e B é de /8. Encontre a velocidade do móvel A, quando a velocidade do móvel B for igual a 0m/s ) A razão entre as massas de enxofre e de ferro que se combinam para formar o sulfeto de ferro é de,7. Calcular: a) A massa de ferro que deve combinar com gramas de enxofre para formar o sulfeto de ferro. b) A massa de enxofre que se deve combinar com,g de ferro para formar o sulfeto de ferro. ) Para pintar uma parede, um pintor deve misturar tinta branca com tinta cinza na razão de 5 para. Se ele precisar de 5 litros dessa misturam, quantos litros de cada cor irá utilizar? 5) Qual é a escala de um desenho em que um comprimento de m está representado por um comprimento de 5cm? ) A largura de um automóvel é metros, uma miniatura desse automóvel foi construída de modo que essa largura fosse representada por 5cm. Qual foi a escala usada para construir a miniatura? 7) Em um mapa, a distância entre duas cidades é de cm. Sabendo-se que a distância real entre as cidades é de 00km. Qual a escala utilizada no mapa? 8) A distância entre São Paulo e Rio de Janeiro é de aproximadamente 08km. Qual é a escala de um mapa onde esta distância está representada por 0,cm? 9) Numa escala de :50, qual o comprimento real em metros, correspondente a 8cm. 0) Uma fotografia aérea mostra parte de uma região cuja área é 80m (área da parte fotografada). Sabendo que a foto tem 8cm por 5cm, qual foi a escala da foto. GABARITO ) e ) 0 e 5 ) ) 5m e m 5) 97g e g ) cm 7) 8) 5 9) 5 0) ),80 ) 7,5 m/s ) a) 5,00g b) 0,g ) 5 litros de tinta branca e 9 litros de tinta cinza 5) :0 ) :0 7) :

7 Apostilas OBJETIVA - Ano X - Concurso Público 05 8) : ) :000 0) :00 PROPORÇÃO INTRODUÇÃO Um posto de gasolina oferece um desconto de real para cada 0 litros completos de gasolina. Se uma pessoa colocar 50 litros de gasolina no carro, que desconto irá obter? Com os dados do problema, podemos montar uma tabela: Litros Descontos (em R$) O desconto será de R$ 5,00 Nesta tabela podemos destacar: * Razão entre desconto e litros: 0 5 * Razão entre desconto e litros: 50. Verificamos que as razões 0 e 50 5 são iguais (ou equivalentes). DEFINIÇÃO DE PROPORÇÃO "Proporção é a igualdade entre duas razões, ou seja, quando duas razões apresentam o mesmo quociente, sendo, portanto iguais". Quatro números racionais a, b, c, d, diferentes de zero, nessa ordem, formam uma proporção quando a razão do primeiro número para o segundo é igual a razão do terceiro para o quarto. a c b d Ou, ainda, podemos escrever: a : b c : d que se lê: "a está para b assim como c está para d" Os quatro termos que formam a proporção são denominados termos da proporção. O primeiro e o quarto termo são chamados extremos da proporção. O segundo e o terceiro são chamados meios. 7

8 Apostilas OBJETIVA - Ano X - Concurso Público 05 PROPRIEDADE FUNDAMENTAL DAS PROPORÇÕES "Em toda proporção o produto dos meios é igual ao produto dos extremos". a c a.d b.c b d 5 x 5 5 x RECÍPROCA DA PROPRIEDADE FUNDAMENTAL "Quando o produto de dois números é igual ao produto de dois outros, os quatro números formam uma proporção". Observação: Para verificar se quatro números formam uma proporção, efetuamos o produto do número maior pelo menor e verificamos se esse produto é igual aos outros dois. Assim, os quatro números,0, e 0 formam uma proporção, pois os produtos 0 e 0, tem como resultado 0. QUARTA PROPORCIONAL "Chama-se Quarta Proporcional a três números dados, um quarto número que forma com os mesmos uma proporção". Vamos encontrar a quarta proporcional aos números, e 8. Representando por x o termo procurado, veremos que o problema admite três soluções, correspondentes às proporções, pois a posição do número x é arbitrária. I-) x 8 x II-) x x 8 III-) x 8 x Só há três soluções porque em cada solução o produto de um dos números dados por x é igual ao produto dos outros dois. Em geral, considera-se a solução obtida, conservando na proporção a ordem dos números dados, e considerando como incógnita o último termo. PROPORÇÃO CONTÍNUA "Proporção contínua é aquela em que os meios e os extremos são iguais". (os meios são iguais) 9 8

9 Apostilas OBJETIVA - Ano X - Concurso Público 05 Na proporção contínua, o termo igual é denominado média proporcional ou geométrica, e qualquer um dos outros termos ( ou 9) é denominado terceira proporcional. No exemplo acima, é a terceira proporcional entre 9 e, sendo 9 a terceira proporcional entre e. ) Achar a terceira proporcional a 5, e 0,8. Exercícios Resolvidos Observando que, se a média não for previamente fixada, haverá duas soluções: O 5, 0,8. Modo: 5,x (0,8) x 0, 0,8 x O.Modo: 0,8 5, 0,8x (5,) x 7, 5, x Se, contudo, a média for previamente fixada, só haverá uma das resoluções. ) Achar a terceira proporcional a e 9, sendo 9 a média. 9 x 8 x 7 9 x PROPRIEDADES GERAIS DAS PROPORÇÕES PROPRIEDADE "Em uma proporção, a soma dos dois primeiros termos está para o primeiro termo, assim como a soma dos dois últimos termos está para o terceiro termo". a c a + b c + d b d a c PROPRIEDADE "Em uma proporção, a soma dos dois primeiros termos está para o segundo termo, assim como a soma dos dois últimos está para o quarto termo". a c a + b c + d b d b d PROPRIEDADE "Numa proporção, a diferença dos dois primeiros termos está para o primeiro termo, assim como a diferença dos dois últimos termos está para o terceiro termo". a c a b c d b d a c PROPRIEDADE "Numa proporção, a diferença dos dois primeiros termos está para o segundo termo, assim como a diferença dos dois últimos termos está para o quarto termo". 9

10 Apostilas OBJETIVA - Ano X - Concurso Público 05 a c a b c d b d b d PROPRIEDADE 5 "Numa proporção, a somados antecedentes está para a soma dos consequentes, assim como cada antecedente está para seu consequente". a c a + c a a + c c e b d b + d b b + d d PROPRIEDADE "Numa proporção, a diferença dos antecedentes está para a diferença dos consequentes, assim como cada antecedente está para seu consequente". a c b d a c b d a c e b d PROPRIEDADE 7 "Em toda proporção, o produto dos antecedentes está para o produto dos consequentes assim como o quadrado de qualquer antecedente está para o quadrado do respectivo consequente". a b c d a c a c a a c c e b d b d b b d d Exercícios Resolvidos º Exercício A diferença entre os antecedentes de uma proporção é 0 e os consequentes 9 e 7. Achar os antecedentes. Representando por a e b os antecedentes, formamos a proporção: diferença, vem que: a 9 b 7 aplicando-se a propriedade relativa à a b a a a 90 a 5 9 logo, b 5 Resposta: Os antecedentes são, respectivamente 5 e 5. º Exercício Resolver o sistema x + y 0 x y 7 Aplicando-se a propriedade relativa à soma, vem: 0

11 Apostilas OBJETIVA - Ano X - Concurso Público 05 x + + y x 7 logo, y 0 x x 0 Resposta: Os antecedentes procurados são respectivamente e. PROPORÇÃO PROLONGADA Proporção prolongada é a sucessão de três ou mais razões iguais. 8 PROPRIEDADE DAS PROPORÇÕES PROLONGADAS "Numa proporção prolongada, a soma dos antecedentes está para a soma dos consequentes, assim como qualquer antecedente está para seu consequente" Exercício Resolvido a b c ) Achar a, b, c na seguinte proporção sabendo-se que a soma é a + b + c. Aplicando-se a propriedade das proporções prolongadas temos: a b c a + b + c + + Logo, a a b b 8 c c Números Diretamente Proporcionais NÚMEROS PROPORCIONAIS "Duas sequências A e B de números reais, não nulos, são diretamente proporcionais se, e somente se, a razão dos termos correspondentes são todas iguais entre si". Sejam as sequências: (, 5,, 9) e (8, 0,, ). Essas sequências são diretamente proporcionais porque:

12 Apostilas OBJETIVA - Ano X - Concurso Público k 0 O valor comum das razões é k, uma constante não nula. "K é denominado fator constante ou coeficiente de proporcionalidade". Exercício Resolvido ) Dada as sequências proporcionais (, 5, 7, y) e (, 0, x, 8). Determine o coeficiente de proporcionalidade e os valores de x e y. Como: 5 7 y 0 x 8, logo o coeficiente de proporcionalidade é. Então: 7 x x y y 8 y 8 Resposta: O valor de x é e o valor de y é. O coeficiente de proporcionalidade é. Números Inversamente Proporcionais "Duas sequências A e B de números reais são inversamente proporcionais, quando o produto entre qualquer termo da primeira sequência e seu correspondente na segunda, é sempre uma constante k não nula". Sejam as sequências: (0, 5, 0, 50) e (0, 8, 5, ). Essas sequências apresentam números inversamente proporcionais porque o produto dos termos correspondentes é sempre 00. Observe: ; ; ; O produto k 00 denomina-se coeficiente de proporcionalidade. Podemos escrever esses produtos, também, da seguinte forma: k 0 8 5

13 Apostilas OBJETIVA - Ano X - Concurso Público 05 Logo 0, 5, 0, 50 são diretamente proporcionais aos números:,,, DIVISÃO PROPORCIONAL DIVISÃO ENTRE AS PARTES DIRETAMENTE PROPORCIONAIS Vamos dividir o número em parcelas que sejam diretamente proporcionais aos números, 5, 8. O problema consiste em encontrar três parcelas cuja soma seja, e que sejam proporcionais aos números, 5, 8. Chamamos essas parcelas de x, y e z temos: x + y + z e Pela propriedade da proporção: substituindo os valores: x y z 5 8 x y z x + y + z x x y y 0 5 z z 8 Exercício Resolvido ) Dividir 5 em partes diretamente proporcionais aos números e. Neste caso, o número 5 deve ser dividido em duas parcelas, x e y: x y x + y k Uma vez que encontramos o coeficiente de proporcionalidade:

14 Apostilas OBJETIVA - Ano X - Concurso Público 05 x 08 x.08 x 7 y 08 y 08 y 8 Resposta: Os números procurados são 7 e 8. DIVISÃO ENTRE AS PARTES INVERSAMENTE PROPORCIONAIS, e. Vamos dividir o número 7 em partes inversamente proporcionais a 7 O problema consiste em encontrar três parcelas cuja soma seja 7, e que sejam inversamente,,. proporcionais aos números 7 Chamamos essas parcelas de x, y e z temos: x + y + z 7 e note que invertemos os número, no denominador das razões. Pela propriedade da proporção: Substituindo os valores: x y z 7 x y z 7 x + y + z K x x 78 y y 0 z z 7. z 7 Exercícios para resolver Gabarito: no final da Coletânea de exercícios x y P ) Calcular x e y, na proporção 5, sabendo que x + y 5.

15 Apostilas OBJETIVA - Ano X - Concurso Público 05 x y P ) Calcular x e y, na proporção 5, sabendo que x - y. x y z P ) Calcular x, y e z na proporção sabendo que x + y + z 58. P ) Calcular x, y e z sabendo que xy xz yz e que x + y + z 8. P 5 ) Determinar o coeficiente de proporcionalidade entre os seguintes grupos de números proporcionais: 5, 5 8, 5, 7 P ) Verificar se as seguintes sequências (5, 0, 75) e (,, 5) são proporcionais. P 7 ) Achar x nas sucessões proporcionais (, 8, ) e (,, x). P 8 ) A grandeza x é diretamente proporcional a y. Quando a grandeza y tem o valor 8, x tem o valor 0. Determinar o valor da grandeza x, quando y vale 0. P 9 ) Em 8 gramas de água, há de hidrogênio e de oxigênio; em 5 gramas de água há 5 de hidrogênio e 0 de oxigênio. Verificar se há proporcionalidade entre as massas de água e hidrogênio, água e oxigênio, hidrogênio e oxigênio. Em caso afirmativo determinar os coeficientes de proporcionalidade. P 0 ) Dividir 80 em três partes, diretamente proporcionais a, e 5. P ) Três sócios querem dividir um lucro de R$.500,00. Sabendo que participaram da sociedade durante, 5 e 7 meses. Qual a parcela de lucro de cada um? P ) Um prêmio de R$ 5.000,00 será distribuído aos cinco participantes de um jogo de futebol de salão, de forma inversamente proporcional às faltas cometidas por cada jogador. Quanto caberá a cada um, se as faltas foram,,, e 5? P ) Distribuir o lucro de R$ 8.00,00 entre dois sócios de uma firma, sabendo que o primeiro aplicou R$ ,00 na sociedade durante 9 meses e que o segundo aplicou R$ 0.000,00 durante meses. P ) Um comerciante deseja premiar, no primeiro dia útil de cada mês, os três primeiros fregueses que chegarem ao seu estabelecimento com a quantia de R$ ,00 divididas em partes inversamente proporcionais a, e,. Nessas condições, qual o prêmio de menor valor a ser pago? P 5 ) Uma pessoa deseja repartir 5 balas para duas crianças, em partes que sejam ao mesmo tempo diretamente proporcionais a / e /7 e inversamente proporcionais a / e /. Quantas balas cada criança receberá? P ) Um pai distribuiu 8 bombons entre os filhos Hudson, Larissa e Carol, em partes diretamente proporcionais à nota de Matemática e inversamente proporcional a idade dos filhos. Calcule o número de bombons recebidos de acordo com os dados: Hudson: 0 anos e nota 7; Larissa: anos e nota 5; Carol: 8 anos e nota 0. 5

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005 CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA.701 DE 9/07/5 DOU 0/08/005 CURSO: Bacharelado em Química Disciplina: Matemática I Professor: Marcos José Ardenghi OBS: esta apostila é destinada

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA Razão, Proporção,Regra de, Porcentagem e Juros PROF. CARLINHOS NOME: N O : 1 RAZÃO, PROPORÇÃO E GRANDEZAS Razão é o quociente entre dois números não nulos

Leia mais

FRAÇÕES DE UMA QUANTIDADE

FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE FRAÇÕES DE UMA QUANTIDADE PREPARANDO O BOLO DICAS Helena comprou 4 ovos. Ela precisa de dessa quantidade para fazer o bolo de aniversário de Mariana. De quantos ovos Helena vai

Leia mais

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida?

1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa mensal proporcional a taxa oferecida? LISTA DE EXERCÍCIOS FUNDAMENTOS DA MATEMÁTICA Prof. Marcos Calil REGRA DE TRÊS SIMPLES E PORCENTAGEM 1. Vou fazer uma aplicação a juros simples, sabendo que a taxa oferecida é de 24% ao ano. Qual a taxa

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L10) a Colocarei aqui algumas explicações e exemplos de exercícios para que você possa fazer todos com segurança e tranquilidade, no entanto,

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { }

Conjuntos Numéricos. É um subconjunto de números naturais que possuem exatamente dois divisores: o número 1 e ele mesmo. { } CURSO: ASTRONOMIA APLICADA À NAVEGAÇÃO PROFESSOR: ALEXANDRE RIBEIRO ANDRADE MÓDULO 1: MATEMÁTICA APLICADA NA ASTRONOMIA NÁUTICA Apostila 1: Sistema de Unidades utilizadas na Navegação e na Astronomia,

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples

Grandezas direta e inversamente proporcionais, regra de três, porcentagem e juros simples Disciplina: Matemática Ano / Série: 7 Professor (a): Rafael Machado Data: 11/2015 Nome: ----------------------------------------------------------------------------------------------------------------------------------------------

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4

AULA 10 REGRA DE TRÊS. 1. Sabendo-se que x + y + z = 18 e que x/2 = y/3 = z/4, calcule x. x 2. y 3. x 2. z 4 AULA 0 REGRA DE TRÊS. Sabendo-se que y z 8 e que / y/ z/, calcule. Se / y/ z/, temos: y z, como desejamos saber o valor de, vamos isolar: y em função de : y y y z em função de : z z z z Agora que conhecemos

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

COMPLEMENTO MATEMÁTICO

COMPLEMENTO MATEMÁTICO COMPLEMENTO MATEMÁTICO Caro aluno, A seguir serão trabalhados os conceitos de razão e proporção que são conteúdos matemáticos que devem auxiliar o entendimento e compreensão dos conteúdos de Química. Os

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas:

REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: ÁLGEBRA Nivelamento CAPÍTULO VI REGRA DE TRÊS REGRA DE TRÊS Este assunto é muito útil para resolver os seguintes tipos de problemas: 1) Num acampamento, há 48 pessoas e alimento suficiente para um mês.

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

PORCENTAGENS www.aplicms.com.br PROF. PEDRO A. SILVA

PORCENTAGENS www.aplicms.com.br PROF. PEDRO A. SILVA PORCENTAGENS Razão centesimal Chamamos de razão centesimal a toda razão cujo conseqüente (denominador) seja igual a. 6 270 2, 5 ; e Outros nomes usamos para uma razão centesimal são razão porcentual e

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

Atividade Proporcionalidade (vídeo)

Atividade Proporcionalidade (vídeo) Atividade Proporcionalidade (vídeo) Atividade CNI/EM Presencial 1. Introdução O objetivo dessa atividade é estudar as relações de proporcionalidade (direta e inversa) entre grandezas. O material-base será

Leia mais

Lista de Exercícios MATEMÁTICA

Lista de Exercícios MATEMÁTICA Prefeitura de Juiz de Fora - PJF Seleção Competitiva Interna Lista de Exercícios MATEMÁTICA Regra de Três Simples Regra de Três Composta Porcentagem Tratamento da Informação Prof. Diego Gomes diegomedasilva@gmail.com

Leia mais

Módulo Frações, o Primeiro Contato. 6 o ano/e.f.

Módulo Frações, o Primeiro Contato. 6 o ano/e.f. Módulo Frações, o Primeiro Contato Frações e suas Operações. o ano/e.f. Frações, o Primeiro Contato Frações e suas Operações. Exercícios Introdutórios Exercício. Simplifique as frações abaixo até obter

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12

Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/ 9 Porcentagem 10. 10 Juros Simples 12 Matemática Essencial Proporções: Aplicações Matemática - UEL - 2010 - Compilada em 25 de Março de 2010. Prof. Ulysses Sodré - E-mail: ulysses@uel.br Matemática Essencial: http://www.mat.uel.br/matessencial/

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Matemática. Apostila. Prof. Pedro. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Matemática Apostila Prof. Pedro UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA ALUNOS

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

Banco do Brasil + BaCen

Banco do Brasil + BaCen 1. TAXA Taxa [ i ] é um valor numérico de referência, informado por uma das notações: Forma percentual, p.ex. 1%. Forma unitária, p.ex. 0,01 Forma fracionária centesimal, p.ex. 1/100. Ambos representam

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES

COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES COLÉGIO ETIP NIVELAMENTO BÁSICO DE MATEMÁTICA ENSINO MÉDIO INTEGRADO À INFORMÁTICA PROFESSOR RUBENS SOARES SANTO ANDRÉ 2012 MEDIDAS DE SUPERFÍCIES (ÁREA): No sistema métrico decimal, devemos lembrar que,

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades.

1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. 1. Encontra o local onde se deve construir uma clínica médica de modo a ficar à mesma distância das três localidades. Braga Porto 2. Onde está a casa do Joaquim se esta dista exatamente 3 km da casa da

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm 1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias

Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias 1. Tendo em vista o alto preço da gasolina, os motoristas estão preocupados com a quilometragem percorrida por seus automóveis. Um motorista

Leia mais

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica

Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II. O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica Versão Online ISBN 978-85-8015-040-7 Cadernos PDE VOLUME II O PROFESSOR PDE E OS DESAFIOS DA ESCOLA PÚBLICA PARANAENSE Produção Didático-Pedagógica 2008 SECRETARIA DE ESTADO DA EDUCAÇÃO SUPERINTENDÊNCIA

Leia mais

Processo Seletivo 2009-2

Processo Seletivo 2009-2 Processo Seletivo 2009-2 GRUPO 2 UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO CENTRO DE SELEÇÃO UFG CADERNO DE QUESTÕES 14/06/2009 Matemática SÓ ABRA QUANDO AUTORIZADO LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1 LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar as soluções para os exercícios propostos Exercitar

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 25 DE OUTUBRO DE 2003 DURAÇÃO: 120 MINUTOS CONCURSO DE ADMISSÃO 2003 / 2004 PROVA DE MATEMÁTICA 5ª SÉRIE DO ENSINO FUNDAMENTAL IDENTIFICAÇÃO NÚMERO DE

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIREÇÃO-GERAL DIRETORIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS PROVA DE MATEMÁTICA 2011

MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIREÇÃO-GERAL DIRETORIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS PROVA DE MATEMÁTICA 2011 MINISTÉRIO DA EDUCAÇÃO COLÉGIO PEDRO II DIREÇÃO-GERAL DIRETORIA DE ENSINO EXAME DE SELEÇÃO E CLASSIFICAÇÃO DE CANDIDATOS À MATRÍCULA NA 1ª SÉRIE DO ENSINO MÉDIO REGULAR NOTURNO PROVA DE MATEMÁTICA 2011

Leia mais

A Matemática do ENEM em Bizus

A Matemática do ENEM em Bizus A Matemática do ENEM em Bizus Neste primeiro artigo sobre a Matemática do ENEM, eu quero abordar a estratégia do conteúdo, tendo por base as provas anteriores e as tendências de abordagem. Quando confrontamos

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabaritos... 11 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://www.unemat.br/eugenio DESCONTOS CONCEITO A chamada operação de desconto normalmente é realizada quando se conhece o valor futuro de um título (valor nominal, valor de face ou valor de resgate) e

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

Estatística e probabilidade em situações do cotidiano. Aplicar corretamente em suas pesquisas os conceitos estudados previamente.

Estatística e probabilidade em situações do cotidiano. Aplicar corretamente em suas pesquisas os conceitos estudados previamente. As atividades propostas têm como objetivo fazer o aluno compreender de forma prática a aplicação da estatística e da probabilidade. le deverá ser capaz de efetuar pesquisas, organizando-as em tabelas de

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

ESCALAS Luana Sloboda, M.Eng. luana@ippuc.org.br

ESCALAS Luana Sloboda, M.Eng. luana@ippuc.org.br ESCALAS Luana Sloboda, M.Eng. luana@ippuc.org.br ESCALA: É a relação matemática entre o comprimento ou a distância medida sobre um mapa e a sua medida real na superfície terrestre. Esta razão é adimensional

Leia mais

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas

Leia mais

Velocidade Média. Se um

Velocidade Média. Se um Velocidade Média 1. (Unicamp 2013) Para fins de registros de recordes mundiais, nas provas de 100 metros rasos não são consideradas as marcas em competições em que houver vento favorável (mesmo sentido

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

ESTATÍSTICA ORGANIZAÇÃO E REPRESENTAÇÃO DE DADOS. Tabelas. Frequência absoluta. Frequência relativa

ESTATÍSTICA ORGANIZAÇÃO E REPRESENTAÇÃO DE DADOS. Tabelas. Frequência absoluta. Frequência relativa Tabelas. Frequência absoluta. Frequência relativa Com a análise de uma turma, elaborou as seguintes Tabelas: Tabelas. Frequência absoluta. Frequência relativa Perguntou-se a cada aluno a altura e obteve-se

Leia mais