RESOLUÇÃO Matemática APLICADA FGV Administração

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14"

Transcrição

1 FGV Administração VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 1:00 horas e 18:00 horas em um dia de semana normal, a velocidade registrada em um posto de pedágio é dada pela função f(x) = x 15x + x + 1 km/h, sendo x o número de horas após o meio-dia. Assim, por exemplo, f(0) expressa a velocidade ao meio-dia. O gráfico de f(x) está representado ao lado. a) Quais são a velocidade máxima e a velocidade mínima registradas entre 1:00 horas e 18:00 horas? 17 i 9 b) O número complexo é uma raiz da equação x 15x +x + 1 = 0. Quais são as outras duas raízes? a) Temos f(x) = x[x(x 15) + ] + 1 Os máximos relativos em [0, 6] são: f(1) = [ 1 + ] + 1 = 5 f(6) = 6[6( ) + ] + 1 = 6[6] + 1 = 77 O máximo absoluto em [0, 6] é 77. Os mínimos relativos são: f(0) = 1 e f() = [( 7) + ] + 1 = 5. O mínimo absoluto é i 9 b) Como os coeficientes são reais e ( 15) 15 A soma das raízes é: = 17 i 9 é raiz, o conjugado,, também é raiz. A outra raiz é: i 9 17 i 9 15 $ f + p = = = = 1 Respostas: a) A velocidade máxima é 77 km/h e a mínima é 5 km/h. 17 i 9 b) As outras raízes são e 1.

2 FGV Administração QUETÃO A figura mostra um Tangran chinês, que é um quadrado subdividido em sete figuras: dois triângulos retângulos grandes, um triângulo retângulo médio, dois triângulos retângulos pequenos, um paralelogramo e um quadrado pequeno. a) Comprove que a área do triângulo AOB é igual à soma das áreas dos dois triângulos pequenos mais a área do quadrado pequeno. b) Comprove que a área do paralelogramo mais a área do triângulo DEF é igual à área do triângulo COA. O quadrado fica dividido em 16 triângulos retângulos pequenos equivalentes. Adotando esses triângulos como unidade de medida de área (u), temos: a) AOB = u quadrado = u Logo, AOB = u + u = u + quadrado b) par = u DEF = u COA = u Logo, COA = par + DEF Respostas: a) Demonstração acima. b) Demonstração acima.

3 FGV Administração QUETÃO a) Ana, Marta e Pablo compraram selos. O número de selos que comprou Ana é um terço dos que comprou Marta e um quarto dos que comprou Pablo. Quantos selos comprou cada um? b) Ana, Marta e Pablo compraram 8 de outros tipos de selos, mais valiosos. Ana comprou um terço dos que comprou Marta. Cada um dos três comprou pelo menos 5 selos e Pablo foi o que mais selos comprou. Quantos selos pode ter comprado Pablo? a) A: número de selos comprados por Ana M: número de selos comprados por Marta P: número de selos comprados por Pablo A + M + P = M P A = = * & A = 750, M = 50, P = 000 Z M = A ] [ P = A ] A + A + A = 6000 \ b) Agora temos: Z ] A + M + P = 8 ] M A = & M = A [ ] A $ 5, M $ 5, P $ 5 ]( P > A e P > M) & P > A \ & A + A + P = 8 & P = 8 A 8 A > A & 7A < 8 & A < 7 8 A = 5 & (M = 15 e P = 8) A = 6 & (M = 18 e P = ) A N* & 5 # A # 6 A 5 Respostas: a) Ana comprou 750 selos; Marta, 50, e Pablo, 000 selos. b) Pablo pode ter comprado ou 8 selos. QUETÃO Para receber um montante de M reais daqui a x anos, o capital inicial C reais que a pessoa deve aplicar hoje é dado pela equação: C = M e 0,1x a) e ela aplicar hoje R$.600,00, quanto receberá de juro no período de 1 ano? b) e ela aplicar hoje R$.600,00, daqui a quanto tempo, aproximadamente, obterá um montante que será o dobro desse valor? e necessário, use as aproximações: e 0,1 = 1,1; ln = 0,7 a) C = M e 0,1x & M = C e 0,1x & M = 600 e 0,1 = 600 1,1 = 960. Juro: J = M C = = 60. b) M = C C = C e 0,1x & e 0,1x = & 0,1x = ln & x = Respostas: a) R$ 60,00 b) 7 anos 0, 7 7 0, 1

4 FGV Administração QUETÃO 5 Com estes quatro triângulos cujas medidas dos lados estão em centímetros, forma-se uma pirâmide triangular. Calcule: a) A área total da superfície da pirâmide. b) O volume da pirâmide. H + 5 = 1 & H = 1 $ 1 60 $ 5 a) A t = A t = b) 1 H + d n = 1 V = 1 1 H = V = $ $ 5 $ 07 $ $ V = $ Respostas: a) ( ) cm 5 07 b) cm

5 FGV Administração QUETÃO 6 A ecretaria de Transportes de certa cidade autoriza os táxis a fazerem as cobranças a seguir, que são registradas no taxímetro de cada veículo autorizado: bandeirada (valor inicial do taxímetro) = R$,70; bandeira I = R$ 1,70 por quilômetro rodado (de segunda a sábado, das 6h às 1h); bandeira II = R$,0 por quilômetro rodado (de segunda a sábado, das 1h às 6h; domingos e feriados em qualquer horário). a) Em porcentagem, quanto uma viagem de 6 km, em uma segunda-feira, às h, é mais cara do que a mesma viagem de 6 km, também em uma segunda-feira, às 8h? b) É possível que uma viagem de x km em uma segunda-feira, às h, custe 0% a mais do que uma viagem de x km, também em uma segunda-feira, às 8h? a) Custo da corrida às h de segunda-feira:,70 + 6,0 = 16,9 Custo da corrida às 8h de segunda-feira:, ,70 = 1,90 Diferença: 16,9 1,90 =,0 Relativamente ao preço da corrida às 8h, a diferença em porcentagem é:, 0 $ 0 %, 1, 76 % 1, 90 b),70 + x,0 = 1,(,70 + x 1,70) &,0x = 0,9 +,0x & 0 x = 0,9 Equação impossível. Respostas: a) 1,76% (aproximadamente). b) Não é possível.

6 FGV Administração QUETÃO 7 Nazareno é muito supersticioso e acha que placas de carro que contêm o algarismo 7 dão azar. Ele quer comprar um carro usado e, num certo dia, ele vê, no jornal, o anúncio de um carro que lhe agrada e, para conhecê-lo, agenda uma visita. Lembrando que placas de carro no Brasil têm quatro algarismos, qual a probabilidade de que a placa do carro que Nazareno vai conhecer não seja considerada por ele como fonte de azar? 1ª Admitindo que todos os algarismos da placa possam ser nulos. 1 A probabilidade de que o primeiro algarismo da placa seja o 7 é e a probabilidade de que não seja é 9. Assim também para o segundo, o terceiro e o quarto algarismos. Então, a probabilidade de que ne- nhum deles seja 7 é: $ $ $ f Resposta: 9 f p 9 p ª upondo que não existam placas com todos os algarismos nulos. Fixadas as letras, o total de placas é: 1 E as placas sem o algarismo 7 são: A probabilidade pedida é. 1 Observação: As respostas nas duas interpretações são números muito próximos um do outro (0,6561 e 0, ). 9 1 Resposta: 1

7 FGV Administração QUETÃO 8 Uma pulga com algum conhecimento matemático brinca, pulando sobre as doze marcas correspondentes aos números das horas de um relógio. Quando ela está sobre uma marca correspondente a um número não primo, ela pula para a primeira marca a seguir, no sentido horário. Quando ela está sobre a marca de um número primo, ela pula para a segunda marca a seguir, sempre no sentido horário. e a pulga começa na marca do número 1, onde ela estará após o 01º pulo? Do número 1 (não primo), a pulga pula para o número 1 (1º pulo). Do número 1 (não primo), pula para o número (º pulo). Do número (primo), para o número (º pulo). Do número (não primo), para o número 5 (º pulo). Do número 5 (primo), para o número 7 (5º pulo). Do número 7 (primo), para o número 9 (6º pulo). Do número 9 (não primo), para o número (7º pulo). Do número (não primo), para o número 11 (8º pulo). Do número 11 (primo), para o número 1 (9º pulo), voltando assim ao número que estava após o 1º pulo. Desse modo, as posições da pulga, após o 1º pulo, formam a sequência (1,,, 5, 7, 9,, 11, 1,,,...), cujos termos se repetem de 8 em 8. Como 01 = , após 01º pulo a pulga estará na mesma posição do 6º termo da sequência, portanto no 9. Resposta: No número 9.

8 FGV Administração QUETÃO 9 Considere a sequência 01, 01, 015,... em que cada termo a n, a partir do º termo, é calculado pela fórmula a n = a n + a n a n 1. Por exemplo, o º termo é = 01. Determine o 01º termo dessa sequência. Temos: a 5 = = 017 a 6 = = 0 a 7 = = 019 a 8 = = 008 A sequência obtida é: ( 01, 01, 015, 01, 017, 0, 019, 008,...). Como a a a a a a a a a k = a k + a k a k 1 a k = a k + a k (a k + a k a k ) a k = a k a k a k = a k + a k (k ), os termos de ordem par formam uma P.A. com 1º termo 01 e razão ( ). O 01º termo da sequência será o 1 007º termo da sequência dos termos de ordem par, isto é: a 01 = 01 + ( ) $ ( ) = = Resposta:.

9 FGV Administração QUETÃO Na equação x 01x + m = 0, onde m é real, uma das raízes é igual à soma das outras duas. a) Determine o valor de m. b) Resolva a equação. a) As raízes da equação são: α, β, e (α + β). Pelas relações de Girard: α + β + (α + β) = 0 & α + β = 0 & α + β = 0. α β ( α + β) = m & m = 0 0 b) Como m = 0, a equação fica x 01x = 0. Temos: x(x 01) = 0 & (x = 0 ou x = ± 01 ). Respostas: a) m = 0 b) = {0; ± 01 }

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas?

Matemática Aplicada. A Quais são a velocidade máxima e a velocidade mínima registradas entre 12:00 horas e 18:00 horas? Matemática Aplicada 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito em uma rodovia. A partir dos dados, é possível estimar que, por exemplo, entre 12:00 horas e 18:00 horas

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV PV O ursinho que Mais Aprova na GV FGV ADM 1/dez/01 MATEMÁTIA APLIADA 01. Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo

Leia mais

MATEMÁTICA UFRGS 2011

MATEMÁTICA UFRGS 2011 MATEMÁTICA UFRGS 2011 01. Uma torneira com vazamento pinga, de maneira constante, 25 gotas de água por minuto. Se cada gota contém 0,2 ml de água, então, em 24 horas o vazamento será de a) 0,072 L. b)

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm 1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Nível 1 IV FAPMAT 28/10/2007

Nível 1 IV FAPMAT 28/10/2007 1 Nível 1 IV FAPMAT 28/10/2007 1. Sabendo que o triângulo ABC é isósceles, calcule o perímetro do triângulo DEF. a ) 17,5 cm b ) 25 cm c ) 27,5 cm d ) 16,5 cm e ) 75 cm 2. Em viagem à Argentina, em julho

Leia mais

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas

Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo. Funções Exponenciais e Logarítmicas Progressões Matemáticas Métodos Quantitativos Prof. Ms. Osmar Pastore e Prof. Ms. Francisco Merlo Funções Exponenciais e Logarítmicas Progressões Matemáticas Funções Exponenciais e Logarítmicas. Progressões Matemáticas Objetivos

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase I 2014 1 2 Questão 1 Em uma biblioteca em cada estante existem 5 prateleiras, em uma destas estantes foram colocados 27 livros ao todo. Seis livros não foram colocados abaixo de nenhum outro livro. Cinco destes

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2014

Olimpíada Brasileira de Raciocínio Lógico Nível II Fase I 2014 1 2 Questão 1 Em uma biblioteca em cada estante existem 3 prateleiras, em uma destas estantes foram colocados 9 livros ao todo. Quatro livros não foram colocados abaixo de nenhum outro livro. Três destes

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE ANOS Duração: 60 minutos Nome: 1ª Parte Para cada uma das seguintes questões de escolha múltipla, seleccione a resposta correcta com um círculo de entre

Leia mais

Instruções para a Prova de MATEMÁTICA APLICADA:

Instruções para a Prova de MATEMÁTICA APLICADA: Instruções para a Prova de : Confira se seu nome e RG estão corretos. Não se esqueça de assinar a capa deste caderno, no local indicado, com caneta azul ou preta. A duração total do Módulo Discursivo é

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

Tanto neste nosso jogo de ler e escrever, leitor amigo, como em qualquer outro jogo, o melhor é sempre obedecer às regras.

Tanto neste nosso jogo de ler e escrever, leitor amigo, como em qualquer outro jogo, o melhor é sempre obedecer às regras. Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FASE 08 de novembro de 2008 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18

24/Abril/2013 Aula 19. Equação de Schrödinger. Aplicações: 1º partícula numa caixa de potencial. 22/Abr/2013 Aula 18 /Abr/013 Aula 18 Princípio de Incerteza de Heisenberg. Probabilidade de encontrar uma partícula numa certa região. Posição média de uma partícula. Partícula numa caixa de potencial: funções de onda e níveis

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS. Prof. Dr. Daniel Caetano 2012-1 LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA DISCUSSÃO DOS EXERCÍCIOS E CONSTRUÇÃO DE PROGRAMAS SEQUENCIAIS Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar as soluções para os exercícios propostos Exercitar

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE AVALIAÇÃO MATEMÁTICA Duração: 90 minutos Data: 3 maio de 0 8º C Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Aula 5 - Parte 1: Funções. Exercícios Propostos

Aula 5 - Parte 1: Funções. Exercícios Propostos Aula 5 - Parte 1: Funções Exercícios Propostos 1 Construção de Funções: a) Um grupo de amigos deseja alugar uma van, por um dia, para um passeio, ao custo de R$300,00. Um levantamento preliminar indicou

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2 ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ANO 2014 PROFESSOR (a) Elaine Cristina Francisco

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS

EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS EXERCÍCIOS DE RECUPERAÇÃO- MATEMÁTICA 6º ANO-PROFA. M.LUISA-2º BIMESTRE ALUNO: Nº TURMA: MÚLTIPLOS, DIVISORES, FATORAÇÃO, MDC.MMC,PROBLEMAS 1. Considere os números 2 000; 2 001; 2 002; 2 003; 2 004; 2

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

000 IT_005582 000 IT_007009

000 IT_005582 000 IT_007009 000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram então colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo, sem

Leia mais

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática

Colégio de Aplicação. Universidade Federal do Rio de Janeiro. são. 1 a série ensino médio. Matemática Colégio de Aplicação Universidade Federal do Rio de Janeiro Admissão são 2004 1 a série ensino médio Matemática ADMISSÃO2004 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009. PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Roteiro de Estudos do 1ª Trimestre 2ªSérie Disciplina: Matemática Professor: Hugo P.

Roteiro de Estudos do 1ª Trimestre 2ªSérie Disciplina: Matemática Professor: Hugo P. Roteiro de Estudos do 1ª Trimestre ªSérie Disciplina: Matemática Professor: Hugo P. Conteúdos para Avaliação Trimestral: Matrizes o Definição; lei de formação de uma Matriz; o Operações com matrizes (soma,

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada

Leia mais

Considerando o seguinte eixo de referência:

Considerando o seguinte eixo de referência: FORÇA É uma interacção que se estabelece entre dois corpos capaz de alterar o seu estado de movimento ou de repouso ou de lhes causar deformação. Podem ser interacções à distância ou interacções de contacto.

Leia mais

Questões resolvidas de Matemática

Questões resolvidas de Matemática 1 APOSTILA AMOSTRA Para adquirir a apostila de 1000 Questões Resolvidas de Acesse o site: www.odiferencialconcursos.com.br SUMÁRIO Apresentação...3 Álgebra...4 Conjuntos Numéricos...14 Equações, Inequações

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40)

RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40) ITEM 31 RACIOCÍNIO LÓGICO E NOÇÕES BÁSICAS DE MATEMÁTICA (Itens 31 a 40) O apartamento que Renato gostaria de comprar custava 40 mil reais em janeiro. Em fevereiro, o preço do apartamento teve um aumento

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 1ª Etapa 2014. Ano: 6º Turma: 6.1

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 1ª Etapa 2014. Ano: 6º Turma: 6.1 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 2014 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6º Turma: 6.1 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo

Exercícios de Aprofundamento 2015 Mat Permutação e Arranjo 1. (Uerj 015) Uma criança ganhou seis picolés de três sabores diferentes: baunilha, morango e chocolate, representados, respectivamente, pelas letras B, M e C. De segunda a sábado, a criança consome um

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

I. Cálculo Diferencial em R n

I. Cálculo Diferencial em R n Análise Matemática II Mestrado Integrado em Engenharia Electrotécnica e de Computadores Ano Lectivo 2010/2011 2 o Semestre Exercícios propostos para as aulas práticas I. Cálculo Diferencial em R n Departamento

Leia mais

Matemática A. Fevereiro de 2010

Matemática A. Fevereiro de 2010 Matemática A Fevereiro de 2010 Matemática A Itens 10.º Ano de Escolaridade No Teste intermédio, que se irá realizar no dia 5 de Maio de 2010, os itens de grau de dificuldade mais elevado poderão ser adaptações

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1.

QUANTIFICADORES. Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. LIÇÃO 4 QUANTIFICADORES Existem frases declarativas que não há como decidir se são verdadeiras ou falsas. Por exemplo: (a) Ele é um campeão da Fórmula 1. (b) x 2 2x + 1 = 0. (c) x é um país. (d) Ele e

Leia mais

Lista de Exercícios 02 Estrutura Condicional. 1) Escreva um programa que leia um número e o imprima caso ele seja maior que 20.

Lista de Exercícios 02 Estrutura Condicional. 1) Escreva um programa que leia um número e o imprima caso ele seja maior que 20. Lista de Exercícios 02 Estrutura Condicional 1) Escreva um programa que leia um número e o imprima caso ele seja maior que 20. 2) Construa um programa que leia dois valores numéricos inteiros e efetue

Leia mais

Simulado ENEM: Matemática

Simulado ENEM: Matemática Simulado ENEM: Matemática Questão 1 Cinco diretores de uma grande companhia, doutores Arnaldo, Bernardo, Cristiano, Denis e Eduardo, estão sentados em uma mesa redonda, em sentido horário, para uma reunião

Leia mais

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot.

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot. PROVA RESOLVDA DO CONCURSO DE FSCAL DO SS-SP ESTATÍSTCA- RACOCÍNO LÓGCO E MATEMÁTCA FNANCERA Questão 51. Uma pessoa necessita efetuar dois pagamentos, um de R$ 2.000,00 daqui a 6 meses e outro de R$ 2.382,88

Leia mais

Atividade de Recuperação- Física

Atividade de Recuperação- Física Atividade de Recuperação- Física 3º Ano- 1º Trimestre Prof. Sérgio Faro Orientação: Refazer os exemplos seguintes e resolver os demais exercícios no caderno e anotar eventuais dúvidas para esclarecimento

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

4. Tangentes e normais; orientabilidade

4. Tangentes e normais; orientabilidade 4. TANGENTES E NORMAIS; ORIENTABILIDADE 91 4. Tangentes e normais; orientabilidade Uma maneira natural de estudar uma superfície S consiste em considerar curvas γ cujas imagens estão contidas em S. Se

Leia mais

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO

Coordenadoria de Educação CADERNO DE REVISÃO-2011. Matemática Aluno (a) 5º ANO CADERNO DE REVISÃO-2011 Matemática Aluno (a) 5º ANO Caderno de revisão FICHA 1 COORDENADORIA DE EDUCAÇÃO examesqueiros Os Números gloriabrindes.com.br noticias.terra.com.br cidadesaopaulo.olx... displaypaineis.com.br

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Canguru Matemático sem Fronteiras 2011

Canguru Matemático sem Fronteiras 2011 http://www.mat.uc.pt/canguru/ Destinatários: alunos dos 5. e 6. anos de escolaridade Nome: Turma: Duração: 1h30min Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. As questões

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

Vestibular UFRGS 2015 Resolução da Prova de Matemática

Vestibular UFRGS 2015 Resolução da Prova de Matemática Vestibular UFRGS 015 Resolução da Prova de Matemática 6. Alternativa (D) (0,15) 15 1 15 8 1 15 [() ] 15 5 7. Alternativa (C) Algarismo da unidade de 9 99 é 9 Algarismo da unidade de é 6 9 6 8. Alternativa

Leia mais

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 9. Na maquete de uma casa, a réplica de uma caixa d água de 1000 litros tem 1 mililitro de capacidade. Se a garagem da maquete tem 3 centímetros de

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira:

Aluno (a): 1) O intervalo A de números reais é representado geometricamente da seguinte maneira: Educa teu filho no caminho que deve andar, e quando grande não se desviará dele Prov.22.6 Bateria de Exercícios Data: 24/03/2016 Turma: 1º Ano Área II Aluno (a): Prezado aluno caso prefira responder na

Leia mais

Operações com números racionais - adição, subtração, multiplicação e divisão.

Operações com números racionais - adição, subtração, multiplicação e divisão. Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luis Carlos e Matheus TER - Operações com números racionais - adição, subtração, multiplicação e divisão. EXPRESSÕES NUMÉRICAS Para resolver

Leia mais

Atividade Proporcionalidade (vídeo)

Atividade Proporcionalidade (vídeo) Atividade Proporcionalidade (vídeo) Atividade CNI/EM Presencial 1. Introdução O objetivo dessa atividade é estudar as relações de proporcionalidade (direta e inversa) entre grandezas. O material-base será

Leia mais

QUESTÃO 16 A figura abaixo exibe um retângulo ABCD decomposto em quatro quadrados.

QUESTÃO 16 A figura abaixo exibe um retângulo ABCD decomposto em quatro quadrados. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO DO ENSINO FUNDAMENTAL EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A figura abaixo exibe um retângulo ABCD

Leia mais

DEPUTADO SIMÃO SESSIM PP/RJ. seguinte discurso) Senhor presidente, senhoras e senhores. deputados, há poucos dias o próprio Governo Federal admitiu

DEPUTADO SIMÃO SESSIM PP/RJ. seguinte discurso) Senhor presidente, senhoras e senhores. deputados, há poucos dias o próprio Governo Federal admitiu DEPUTADO SIMÃO SESSIM PP/RJ D04102005 O SR. SIMÃO SESSIM (PP-RJ. Pronuncia o seguinte discurso) Senhor presidente, senhoras e senhores deputados, há poucos dias o próprio Governo Federal admitiu que quase

Leia mais