Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Tamanho: px
Começar a partir da página:

Download "Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ"

Transcrição

1 Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês, e a conta vence no dia 15 de cada mês. No dia 15 de agosto, a dívida de João com o cartão de crédito era de R$1500,00, e nada foi pago nessa data. No dia 15 de setembro, João pagou R$750,00, e no dia 15 de outubro pagou mais R$750,00. Se nesse período ele não fez novas compras, João ainda ficou devendo ao cartão a quantia de: A) R$150,00 B) R$180,00 C) R$10,00 D) R$40,00 E) R$300,00 O Saldo Devedor de cada mês será dado por: Saldo Devedor do mês anterior + Juros Amortização (valor do pagamento). Como os Juros são de 10% ao mês, basta calcular 1/10 do Saldo Devedor do mês anterior. Podemos fazer uma tabela de amortizações: Mês Juros Amortização Saldo Devedor Agosto R$0,00 R$0,00 R$1.500,00 Setembro R$150,00 R$750,00 R$900,00 Outubro R$90,00 R$750,00 R$40,00 Gabarito: Letra D. 60. Os professores de uma escola combinaram almoçar juntos após a reunião geral do sábado seguinte pela manhã, e o transporte até o restaurante seria feito pelos automóveis de alguns professores que estavam no estacionamento da escola. Terminada a reunião, constatou-se que: Com 5 pessoas em cada carro, todos os professores podem ser transportados e carros podem permanecer no estacionamento. Se professores que não possuem carro desistirem, todos os carros podem transportar os professores restantes, com 4 pessoas em cada carro. O número total de professores na reunião era: A) 40 B) 45 C) 50 D) 55 E) 60 Vamos denominar o número de professores por P e o número de carros por C. Para a primeira informação dada no enunciado, teremos a seguinte equação: P = C ou P = 5C T37_SEFAZ_AFP-011.doc Pedro Bello Página 1

2 Para a segunda informação dada no enunciado, teremos a seguinte equação: P = 4C ou P = 4C +. Podemos estabelecer a igualdade entre as duas equações de P, logo: 5C 10 = 4C + 5C 4C = + 10 C = 1. Para encontrar o número de professores, basta substituir C por 1 em qualquer uma das duas equações. Portanto: P = (5 1) 10 = = 50 ou P = (4 1) + = 48 + = 50. Gabarito: Letra C. 61. As pessoas A, B e C são da mesma família. Examinando um álbum de fotos da família, verificou-se que: Toda foto em que A aparece, B também aparece. Toda foto em que C aparece, B não aparece. É correto concluir que: A) Se A aparece em uma foto, então C não aparece nessa foto. B) Se C não aparece em uma foto, então A aparece nessa foto. C) Se C não aparece em uma foto, então A também não aparece nessa foto. D) Se B aparece um uma foto, então A aparece, e C não aparece nessa foto. E) Se B não aparece em uma foto, então C aparece, e A não aparece nessa foto. Relembrando que, para um argumento lógico ser VÁLIDO, a conclusão terá de ser necessariamente VERDADEIRA sempre que as premissas forem verdadeiras. Fazendo um diagrama para a primeira premissa, vemos que todo A será B, mas nem todo B será A, ou seja, poderá haver fotos apenas com B, mas nunca somente com A pois conforme a primeira premissa, quando A aparece, B também aparece. A B Fazendo agora o diagrama da segunda premissa para analisar juntamente com o diagrama da primeira premissa: A B C Como B não aparece nas fotos em que C aparece, jamais teremos A e C juntos na mesma foto. Então uma conclusão necessariamente verdadeira é a da 1ª opção de resposta: Se A aparece em uma foto, então C não aparece nessa foto. T37_SEFAZ_AFP-011.doc Pedro Bello Página

3 Analisando as demais opções de resposta, vemos que: A ª opção de resposta não é necessariamente verdadeira, pois caso C não apareça na foto, A poderá aparecer ou não; Idem para a 3ª opção de resposta. A 4ª opção de resposta também não é necessariamente verdadeira, pois quando B aparece na foto, A pode aparecer ou não. Conforme explicação inicial para a primeira premissa, B tanto pode estar acompanhado de A como poderá estar sozinho. A 5ª opção de resposta também não é necessariamente verdadeira, pois se B não aparece na foto, C pode aparecer ou não. Gabarito: Letra A. 6. Uma prova tem três partes, cada uma com 4 questões. Cada questão respondida corretamente vale 1 ponto; questão respondida erradamente não vale nada; e não há pontuações intermediárias. Para ser classificado, um candidato deve responder corretamente a pelo menos questões de cada parte. Um candidato classificado fez 7 pontos. O número de maneiras diferentes de ter obtido essa pontuação é: A) 36 B) 7 C) 144 D) 16 E) 43 A prova tem 3 partes e o enunciado diz que: o candidato deve responder corretamente a pelo menos questões de cada parte. Diz ainda que: o candidato classificado fez 7 pontos. Então podemos ter 3 formas para o número de acertos de cada parte: 1ª parte ª parte 3ª parte Total 3 acertos acertos acertos = 7 pontos; ou acertos 3 acertos acertos = 7 pontos; ou acertos acertos 3 acertos = 7 pontos. Mas como são 4 questões, o número de ARRANJOS possíveis para ter 3 acertos em 4 questões será dado por: A 4,3 = 4; Para acertos em 4 questões será: A 4, = 6. Assim, os 7 pontos (sendo 3 numa parte, em outra e em outra), podem ser obtidos pela multiplicação de: A 4,3 A 4, A 4, = = 144. Mas, como são 3 formas possíveis de obter esse resultado de 7 pontos, multiplicaremos por 3 para obter: = 43. Gabarito: Letra E. T37_SEFAZ_AFP-011.doc Pedro Bello Página 3

4 63. Comemora-se no dia de abril o Descobrimento do Brasil e, 138 dias depois, a Independência do Brasil, em 7 de setembro. Certo ano, a data do descobrimento do Brasil caiu em um domingo. Nesse ano, a data comemorativa da Independência caiu na: A) segunda-feira B) terça-feira C) quarta-feira D) quinta-feira E) sexta-feira Como são 7 os dias da semana, se o número de dias decorridos for exatamente divisível por 7 (resto da divisão = zero) é porque trata-se do mesmo dia da semana. Se o resto da divisão por 7 for igual a 1, trata-se do dia seguinte. Se o resto for igual a, será o º dia após o dia inicial, e assim por diante. Já podemos raciocinar que: Quando o resto da divisão por 7 é: O dia da semana será: Domingo Segunda Terça Quarta Quinta Sexta Sábado Dividindo 138 por 7, teremos quociente 19 e resto 5. Portanto o dia da semana corresponderá a uma sexta-feira. Gabarito: Letra E. 64. Um fazendeiro disse: A quantidade de ração que tenho era suficiente para alimentar minhas 500 galinhas por 36 dias, porém, ontem, vendi 100 galinhas. Assim, a quantidade de ração que o fazendeiro tem será suficiente para alimentar as galinhas restantes por: A) 8 dias B) 40 dias C) 4 dias D) 45 dias E) 48 dias Trata-se de uma Regra de Três Simples. Para 500 galinhas a ração dura 36 dias e para 400 galinhas (100 a menos), dura X dias. Relacionando as grandezas fica: Galinhas Dias X As grandezas são inversamente proporcionais, pois se o número de galinhas diminuir, o número de dias de duração da ração aumentará (só esse raciocínio já eliminaria a opção da letra a). Então, invertendo os valores conhecidos da grandeza número de galinhas e aplicando o Processo da Cruz (ver livro Matemática Básica para Concursos, da Editora Ferreira), para descobrir o valor de X, fica: Galinhas Dias X T37_SEFAZ_AFP-011.doc Pedro Bello Página 4

5 Para descobrir o valor de X, basta fazer: X = X = 45 dias. 400 Gabarito: Letra D. produto dos números riscados X = e assim obter: produto dos números não riscados 65. Rosa e Margarida são primas, moram juntas e já estão bem avançadas em idade. Margarida tem o hábito de mentir em tudo o que diz nas segundas, quartas e sextas-feiras, mas diz a verdade nos outros dias da semana. Certo dia, ocorreu o seguinte diálogo entre elas: Rosa: Que dia é hoje? Margarida: Quarta-feira. Rosa: Que dia foi ontem? Margarida: Quinta-feira. O dia da semana em que esse diálogo ocorreu foi: A) domingo B) segunda-feira C) quinta-feira D) sexta-feira E) sábado Façamos uma tabela, de acordo com o enunciado, colocando F (falso) para os dias da semana em que Margarida mente e V (verdadeiro) para os dias em que fala a verdade. Segunda Terça Quarta Quinta Sexta Sábado Domingo F V F V F V V Analisando a resposta de Margarida para primeira pergunta de Rosa, vemos que essa resposta não pode ter sido dada numa Terça, numa Quinta, num Sábado ou num Domingo, pois nestes dias ela só fala a Verdade (V). Então já eliminaríamos essas possibilidades colocando um X logo abaixo destes dias: Segunda Terça Quarta Quinta Sexta Sábado Domingo Perguntas F V F V F V V 1ª X X X X Analisando agora para os dias em que mente, ou seja, a sua resposta é falsa (F), vemos que essa resposta não poderia ter sido dada numa Quarta-feira, pois neste dia ela mente e essa resposta seria verdadeira. Então só pode ter sido numa Segunda ou numa Sexta. Segunda Terça Quarta Quinta Sexta Sábado Domingo Perguntas F V F V F V V 1ª X X X X X Analisando agora a resposta de Margarida para segunda pergunta de Rosa, apenas para os únicos dias em que há possibilidades de ter acontecido ( ), eliminaremos a Sexta-feira, pois neste dia ela mente e essa resposta seria verdadeira. Assim, a tabela fica: Perguntas Segunda Terça Quarta Quinta Sexta Sábado Domingo F V F V F V V 1ª X X X X X ª X X X X X X Gabarito: Letra B. T37_SEFAZ_AFP-011.doc Pedro Bello Página 5

6 66. Uma variável aleatória discreta apresenta a distribuição de probabilidades da tabela abaixo, em que um dos valores que assume foi substituído por, e uma das probabilidades foi substituída por. X P(X) 0,30 4 0,15 0, ,10 Sabendo-se que a esperança dessa distribuição é igual a 6,30, o valor correspondente a e a probabilidade correspondente a serão, respectivamente: A) 5 e 0,15 B) 6 e 0,5 C) 7 e 0,5 D) 8 e 0,5 E) 9 e 0,15 Não é difícil encontrar o valor correspondente a. Basta saber que o somatório das probabilidades tem que ser igual a 1 e, portanto, só pode ser igual a 0,5, que é o quanto falta para que o somatório de P(X) seja igual a 1. Sabendo que a esperança de uma distribuição de probabilidades de uma variável aleatória discreta é dada por: E[X] = X P(X), podemos criar na tabela mais uma coluna para esse produto. Temos também a importante informação, dada no enunciado, que a esperança é igual a 6,30. Assim: X P(X) X P(X) 0,30 0,60 4 0,15 0,60 0,0 0,0 10 0,5,50 1 0,10 1,0 Σ 1,00 6,30 Temos então que: 0,60 + 0,60 + 0,0 +,50 + 1,0 = 6,30 0,0 = 6,30 4,90 0,0 = 1,40 = 7. Gabarito: Letra C. 67. Os pesos brutos das latas de certo produto alimentício distribuem-se segundo uma curva simétrica unimodal. Dessa distribuição, sabe-se também que: I. A variância é de 5.65 gramas ; II. O primeiro quartil é igual a 485 gramas; III. O coeficiente de variação é de 15% Com base nas informações I, II e III podemos afirmar que o terceiro quartil da distribuição será igual a: A) 485 gramas B) 500 gramas C) 515 gramas D) 530 gramas E) 560 gramas T37_SEFAZ_AFP-011.doc Pedro Bello Página 6

7 Do item I obtemos o desvio padrão (σ) = = 75 gramas Do item III obtemos a média, pois: CV = σ X σ X =. Logo: CV 75 X = X = 500 gramas. 0,15 Como a distribuição é simétrica e unimodal, a distância (ou amplitude) entre o 1º Quartil (485) e a média (500) será a mesma entre a média e o 3º Quartil. Assim, basta somar à média a diferença entre a média e o 1º Quartil, que será de: = 15. Portanto: 3º Quartil = = 515 gramas. Gabarito: Letra C. 68. Um conjunto numérico é constituído de elementos cuja composição é: metade destes elementos são iguais a /α e os outros elementos restantes são iguais a /β, sendo α e β constantes maiores do que zero. Assim, a média aritmética desse conjunto é igual a: A) α + β B) α + β C) 4α + 4β 4α + 4β D) α β E) α + β α β Se α e β são constantes, então /α e /β também serão constantes. E, pelas propriedades da média, a média de uma constante é a própria constante. Para encontrar a média do conjunto, basta somar as duas constantes e dividir por. Assim: + α β X = β + α X = α β ( α + β) ( β + α) 1 X =. α β Simplificando, fica: X =. Fórmula válida para qualquer número n (par) de elementos do α β conjunto e qualquer α e β positivos. Gabarito: Letra E. 69. O número mínimo de vezes que uma moeda honesta (não viciada), com faces cara e coroa, deve ser lançada para que a probabilidade de aparecer a face cara pelo menos uma vez, seja maior do que 95% é igual a: A) 4 vezes B) 5 vezes C) 6 vezes D) 7 vezes E) 8 vezes T37_SEFAZ_AFP-011.doc Pedro Bello Página 7

8 Denominando a face cara por K e considerando que, se a moeda é honesta, a probabilidade de ocorrer cara em um lançamento é igual à probabilidade de ocorrer coroa (igual a 0,50 ou 1/). Queremos que P(K 1) > 0,95, ou seja, a probabilidade da face cara acontecer 1 ou mais vezes em n lançamentos seja maior do que 95%. Essa probabilidade equivale a: 1 P(K = 0). Então, queremos: 1 P(K = 0) > 0,95. n x n x Usando a fórmula da Distribuição Binomial, dada por P(K = x) = p q para x = 0, fica: x 0 n 0 n P(K = 0) = 0, no que resulta n Portanto: 1 > 0, 95 1 n > 0, 05. P(K n = 0) =. n Multiplicando por 1 ambos os lados e invertendo a desigualdade fica: < 0, 05. Se n =, Se n = 3, = 3 = = 0,5. É maior do que 0,05 (NÃO SERVE); = 0,15. É maior do que 0,05 (NÃO SERVE); Se n = 4, 4 = 1 16 = 0,065. É maior do que 0,05 (NÃO SERVE); 5 Se n = 5, = 1 3 = 0,0315. É MENOR do que 0,05 (SERVE). Veja que n=6, n=7 ou n=8 também atendem, mas o enunciado é claro quando pede o NÚMERO MÍNIMO DE VEZES que a moeda deve ser lançada, para que a probabilidade de ocorrer ao menos uma cara seja maior do que 95%. Não é o número 4 (menor número das opções de resposta) porque com 4 lançamentos essa probabilidade ainda será de 93,75%. Gabarito: Letra B. 70. Um colégio irá oferecer, no ano seguinte, bolsa de estudo integral para 4% dos alunos que obtiverem as melhores notas finais na ª série do Ensino Médio. Sabendo que as notas dos alunos dessa turma tem distribuição normal com média igual a 64 e variância de 56, e que P(0 < z < 1,75) = 0,46, onde z é a variável normal padronizada, a nota final mínima que um aluno deverá ter para fazer jus à bolsa de estudos integral será de: A) 9 B) 90 C) 85 D) 80 E) 78 Até o ponto de abscissa em z = 0 (correspondente à média 64) teremos, debaixo da curva da Normal Padrão, 50% da distribuição. E no ponto de abscissa em z=1,75, mais 46%, o que totalizará 96%. O valor X correspondente a z=1,75, delimitará a fronteira para os 4% superiores. T37_SEFAZ_AFP-011.doc Pedro Bello Página 8

9 Então, basta substituir os dados do enunciado na fórmula de padronização, dada por: z = X μ, σ onde z é a abscissa da tabela normal padronizada, σ é o desvio padrão, μ é a média e X é o valor procurado que resultará numa abscissa em z=1,75. Lembrando que uma variância de 56 equivale a um desvio padrão de 16 ( 56 = 16 ), faremos: X = (1,75 16) + 64 X = X = 9. Gabarito: Letra A. X 64 1,75 =. Logo: Uma população normalmente distribuída tem desvio padrão igual a 5. Utilizando um nível de confiança de 95% para estimar a média μ dessa população, e considerando que P( 1,96<z<1,96) = 0,95, o tamanho mínimo de uma amostra aleatória simples para que o erro da estimativa não ultrapasse a 0,10 será de: A) B) C) 6.74 D) E).401 σ Queremos que o erro (ε) não ultrapasse a 0,10. E o erro ε é dado por: ε = z. n σ Podemos transformar para = z z σ n, ou ainda: n =. Substituindo, de acordo com as ε ε 1,96 5 informações do enunciado, fica: n = n 0,10 Gabarito: Letra A. 9,80 0,10 = ( 98) n = n = Um revendedor de automóveis usados fez um estudo dos preços de venda dos veículos (Y) em função dos seus quilômetros rodados (X), obtendo a equação: Ŷ = α 0,5X. Se a média obtida para os preços de venda é de R$ e a média das quilometragens é de Kms, o valor do intercepto α será de: A) 18.5 B) C) D) E) Aplicando, na equação de regressão, as propriedades da média, teremos: Y = α 0,5X. Substituindo, de acordo com as informações do enunciado, fica: = α (0, ) = α α = α = Gabarito: Letra D. T37_SEFAZ_AFP-011.doc Pedro Bello Página 9

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.

Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas. Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte

Leia mais

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial...

22.5.1. Data de Equivalência no Futuro... 22.5.2. Data de Equivalência no Passado... 2. 22.5. Equivalência de Capitais Desconto Comercial... Aula 22 Juros Simples. Montante e juros. Descontos Simples. Equivalência Simples de Capital. Taxa real e taxa efetiva. Taxas equivalentes. Capitais equivalentes. Descontos: Desconto racional simples e

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ

Resoluções comentadas das questões de Estatística da prova para. ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Resoluções comentadas das questões de Estatística da prova para ANALISTA DE GERENCIAMENTO DE PROJETOS E METAS da PREFEITURA/RJ Realizada pela Fundação João Goulart em 06/10/2013 41. A idade média de todos

Leia mais

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio

Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Análise e Resolução da prova de Analista do Tesouro Estadual SEFAZ/PI Disciplinas: Matemática Financeira e Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de ATE SEFAZ/PI

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

Matemática, Raciocínio Lógico e suas Tecnologias

Matemática, Raciocínio Lógico e suas Tecnologias Matemática, Raciocínio Lógico e suas Tecnologias 21. (UFAL 2008) Uma copiadora pratica os preços expressos na tabela a seguir: Número de cópias Preço unitário (em reais) 1 a 10 0,20 11 a 50 0,15 51 a 200

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

Aula 5 Distribuição amostral da média

Aula 5 Distribuição amostral da média Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento

Leia mais

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO

RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução resumida das questões de Raciocínio Lógico-Matemático da prova de Técnico de Atividade Judiciária do

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

3 - CONJUNTO DOS NÚMEROS RACIONAIS

3 - CONJUNTO DOS NÚMEROS RACIONAIS 3 - CONJUNTO DOS NÚMEROS RACIONAIS Introdução É o conjunto de todos os números que estão ou podem ser colocados em forma de fração. Fração Quando dividimos um todo em partes iguais e queremos representar

Leia mais

CURSO ON-LINE PROFESSOR GUILHERME NEVES

CURSO ON-LINE PROFESSOR GUILHERME NEVES Olá pessoal! Neste ponto resolverei a prova de Matemática Financeira e Estatística para APOFP/SEFAZ-SP/FCC/2010 realizada no último final de semana. A prova foi enviada por um aluno e o tipo é 005. Os

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Triângulo de Pascal Propostas de resolução Exercícios de exames e testes intermédios 1. A linha do triângulo de Pascal em que a soma dos dois primeiros elementos

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Veja dicas de estudo para a reta final do concurso do Banco do Brasil

Veja dicas de estudo para a reta final do concurso do Banco do Brasil Terça-feira, 28 de janeiro de 2014 Atualizado em 28/01/2014 07h00 Veja dicas de estudo para a reta final do concurso do Banco do Brasil BB aplica provas para escriturário no dia 9 de fevereiro. Lia Salgado

Leia mais

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02

CURSOS ON-LINE - ESTATÍSTICA BÁSICA CURSO REGULAR PROFESSOR SÉRGIO CARVALHO AULA 02 Olá, amigos! AULA 02 Tudo bem com vocês? E aí, revisaram a aula passada? Espero que sim. Bem como espero que tenham resolvido as questões que ficaram pendentes! A propósito, vamos iniciar nossa aula de

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Segunda Lista de Exercícios 01 de julho de 2013 1 Uma indústria fabrica peças, das quais 1 5 são defeituosas. Dois compradores, A e B, classificam os lotes de peças adquiridos em

Leia mais

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS

INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS Lista de Exercícios - Modelos Probabilísticos 1 INE 7002 LISTA DE EXERCÍCIOS MODELOS PROBABILÍSTICOS 35) Em um sistema de transmissão de dados existe uma probabilidade igual a 0,05 de um dado ser transmitido

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Frações. Números Racionais

Frações. Números Racionais Frações Números Racionais Consideremos a operação 4:5 =? onde o dividendo não é múltiplo do divisor. Vemos que não é possível determinar o quociente dessa divisão no conjunto dos números porque não há

Leia mais

01. Considere as seguintes proposições:

01. Considere as seguintes proposições: 01. Considere as seguintes proposições: p: O restaurante está fechado. q: O computador está ligado. A sentença O restaurante não está fechado e o computador não está ligado assume valor lógico verdadeiro

Leia mais

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015.

Resolução da Prova de Raciocínio Lógico do TCE/SP, aplicada em 06/12/2015. de Raciocínio Lógico do TCE/SP, aplicada em 6/12/215. Raciocínio Lógico p/ TCE-SP Na sequência, criada com um padrão lógico-matemático, (1; 2; 1; 4; 2; 12; 6; 48; 24;...) o quociente entre o 16º termo

Leia mais

PROBABILIDADE. Aula 5

PROBABILIDADE. Aula 5 Curso: Psicologia Disciplina: Métodos Quantitativos Profa. Valdinéia Data: 28/10/15 PROBABILIDADE Aula 5 Geralmente a cada experimento aparecem vários resultados possíveis. Por exemplo ao jogar uma moeda,

Leia mais

Banco do Brasil + BaCen

Banco do Brasil + BaCen 1. TAXA Taxa [ i ] é um valor numérico de referência, informado por uma das notações: Forma percentual, p.ex. 1%. Forma unitária, p.ex. 0,01 Forma fracionária centesimal, p.ex. 1/100. Ambos representam

Leia mais

QUESTÕES COMENTADAS E RESOLVIDAS

QUESTÕES COMENTADAS E RESOLVIDAS LENIMAR NUNES DE ANDRADE INTRODUÇÃO À ÁLGEBRA: QUESTÕES COMENTADAS E RESOLVIDAS 1 a edição ISBN 978-85-917238-0-5 João Pessoa Edição do Autor 2014 Prefácio Este texto foi elaborado para a disciplina Introdução

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Probabilidades Qual a probabilidade de eu passar no vestibular? Leandro Augusto Ferreira Centro de Divulgação Científica e Cultural Universidade de São Paulo São Carlos - Abril / 2009 Sumário

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA AUTORIA: Prof Edgar Abreu CONTEÚDOS DE MATEMÁTICA FINANCEIRA EDITAL 2010 DA CEF 1. Funções exponenciais e logarítmicas. 2. Noções de probabilidade e estatística. Juros simples e compostos:

Leia mais

Biotecnologia Ambiental

Biotecnologia Ambiental Ambiental 1º MÓDULO 27 28 29 (AGOSTO) Segunda-feira Terça-feira Quarta-feira Quinta-feira (27/08) Sexta-feira (28/08) Sábado (29/08) //Marco //Marco Ambiental 2º MÓDULO 17 18 19 (SETEMBRO) Segunda-feira

Leia mais

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT

RESOLUÇÃO DAS QUESTÕES OBJETIVAS DO EXAME NACIONAL DE SELEÇÃO PARA O PROFMAT UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA E ESTATÍSTICA (UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA) PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF.

Leia mais

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir.

Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Olá pessoal. Foram bem? Até que a prova não foi difícil! Vamos corrigir. Resolução Lembre-se das fórmulas: coeficiente de variação (x) = coeficiente de correlação (x, y) = desvio padrão (x) média (x) covariância

Leia mais

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano)

Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano) O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de álgebra para ensino fundamental ( º ao º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) Pré-IME, Pré-ITA,

Leia mais

Prova Escrita de Matemática Aplicada às Ciências Sociais

Prova Escrita de Matemática Aplicada às Ciências Sociais Exame Final Nacional do Ensino Secundário Prova Escrita de Matemática Aplicada às Ciências Sociais 11.º Ano de Escolaridade Decreto-Lei n.º 139/2012, de 5 de julho Prova 835/2.ª Fase 15 Páginas Duração

Leia mais

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova do ISS-Cuiabá Disciplina: Matemática Financeira Professor: Custódio Nascimento Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova do ISS-Cuiabá Neste artigo, farei a análise das questões de cobradas na prova do ISS-Cuiabá, pois é uma de minhas

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas

Distribuição Gaussiana. Modelo Probabilístico para Variáveis Contínuas Distribuição Gaussiana Modelo Probabilístico para Variáveis Contínuas Distribuição de Frequências do Peso, em gramas, de 10000 recém-nascidos Frequencia 0 500 1000 1500 2000 2500 3000 3500 1000 2000 3000

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Distribuição de probabilidades

Distribuição de probabilidades Luiz Carlos Terra Para que você possa compreender a parte da estatística que trata de estimação de valores, é necessário que tenha uma boa noção sobre o conceito de distribuição de probabilidades e curva

Leia mais

I.MATEMÁTICA FINANCEIRA

I.MATEMÁTICA FINANCEIRA I.MATEMÁTICA FINANCEIRA 1. CONCEITOS BÁSICOS Aplicações: no atual sistema econômico, como financiamentos de casa e carros, realizações de empréstimos, compras a crediário ou com cartão de crédito, aplicações

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS

PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE 23 ANOS PROVA DE MATEMÁTICA PARA OS CANDIDATOS MAIORES DE ANOS Duração: 60 minutos Nome: 1ª Parte Para cada uma das seguintes questões de escolha múltipla, seleccione a resposta correcta com um círculo de entre

Leia mais

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento

Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Matemática Financeira Professor: Custódio Nascimento Análise e Resolução da prova de Auditor Fiscal da Fazenda Estadual do Piauí Disciplina: Professor: Custódio Nascimento 1- Análise da prova Neste artigo, faremos a análise das questões de cobradas na prova

Leia mais

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO.

PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. PROVA RESOLVIDA E COMENTADA DO BANCO DO BRASIL - 2010 - FCC MATEMÁTICA E RACIOCÍNIO LÓGICO. Professor Joselias - http://professorjoselias.blogspot.com/. MATEMÁTICA 16. Segundo a Associação Brasileira de

Leia mais

Comentários da Prova de Raciocínio Lógico e Matemático (Nível Superior): EBSERH Professores Francisco e Sandro

Comentários da Prova de Raciocínio Lógico e Matemático (Nível Superior): EBSERH Professores Francisco e Sandro omentários da rova de (ível Superior): EBSERH rofessores Francisco e Sandro Questão 11 Existe apenas uma casa construída ocupando % de um lote cuja área não construída é de 3 m. Qual é a porcentagem da

Leia mais

SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015

SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 SIMULADO MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 Simulado Comentado Matemática e Raciocínio Lógico EBSERH 2015 Página 1 SIMULADO 01 MATEMÁTICA E RACIOCÍNIO LÓGICO PARA EBSERH 2015 Cargo: Todos

Leia mais

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009.

PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Professor Joselias Out- 2009. PROVA RESOLVIDA E COMENTADA DA POLÍCIA RODOVIÁRIA FEDERAL(PRF) - Oi Amigos, Como estou recebendo muitos pedidos da resolução da prova a PRF-2009. Elaborei os comentários das questões. Observe que foram

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot.

Provas resolvidas do ISS-SP Matemática Financeira Estatística Lógica Professor Joselias joselias@uol.com.br - http://professorjoselias.blogspot. PROVA RESOLVDA DO CONCURSO DE FSCAL DO SS-SP ESTATÍSTCA- RACOCÍNO LÓGCO E MATEMÁTCA FNANCERA Questão 51. Uma pessoa necessita efetuar dois pagamentos, um de R$ 2.000,00 daqui a 6 meses e outro de R$ 2.382,88

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz

Leia mais

Sérgio Carvalho Matemática Financeira

Sérgio Carvalho Matemática Financeira Sérgio Carvalho Matemática Financeira Resolução Matemática Financeira ICMS-RJ/2008 Parte 02 33. Uma rede de lojas, que atua na venda de eletrônicos, anuncia a venda de notebook da seguinte forma: - R$

Leia mais

Matemática Profª Valéria Lanna

Matemática Profª Valéria Lanna Matemática Profª Valéria Lanna Para responder a questão 01, utilize os dados da tabela abaixo, que apresenta as freqüências acumuladas das notas de 20 alunos entre 14 e 20 pontos. Notas (em pontos) Frequência

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Capítulo 3 Modelos Estatísticos

Capítulo 3 Modelos Estatísticos Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

RACIOCÍNIO LÓGICO MATEMÁTICO

RACIOCÍNIO LÓGICO MATEMÁTICO CONCURSO: Curso Regular Gratuito CARGO: Todos os níveis PROFESSOR: Bruno Leal Este curso é protegido por direitos autorais (copyright), nos termos da Lei n.º 9.610/1998, que altera, atualiza e consolida

Leia mais

Aula 00 Curso: Matemática Financeira Professor: Custódio Nascimento

Aula 00 Curso: Matemática Financeira Professor: Custódio Nascimento Prof. Ricardo Soncim - Aula 00 Aula 00 Curso: Matemática Financeira Professor: Custódio Nascimento APRESENTAÇÃO Curso: Matemática Financeira p/ ICMS RJ Futuros Auditores Fiscais da Receita Estadual do

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Raciocínio Lógico-Matemático para Banco do Brasil

Raciocínio Lógico-Matemático para Banco do Brasil Aula 00 Raciocínio Lógico-Matemático Professor: Guilherme Neves www.pontodosconcursos.com.br 1 Aula 00 Aula Demonstrativa Apresentação... 3 Juros Simples - Introdução... 5 Juros... 5 Formas de Representação

Leia mais

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS

MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS DISCRETAS Definições Variáveis Aleatórias Uma variável aleatória representa um valor numérico possível de um evento incerto. Variáveis aleatórias

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008

Universidade Federal de São Carlos Departamento de Matemática 083020 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/04/2008 Universidade Federal de São Carlos Departamento de Matemática 08300 - Curso de Cálculo Numérico - Turma E Resolução da Primeira Prova - 16/0/008 1. (0 pts.) Considere o sistema de ponto flutuante normalizado

Leia mais

Exercícios 1. Determinar x de modo que a matriz

Exercícios 1. Determinar x de modo que a matriz setor 08 080509 080509-SP Aula 35 MATRIZ INVERSA Uma matriz quadrada A de ordem n diz-se invertível, ou não singular, se, e somente se, existir uma matriz que indicamos por A, tal que: A A = A A = I n

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

RQ Edição Fevereiro 2014

RQ Edição Fevereiro 2014 RQ Edição Fevereiro 2014 18. Um noivo foi postar os convites de casamento nos Correios. Durante a pesagem das cartas, percebeu que todas tinham 0,045 kg, exceto uma, de 0,105 kg. Em um primeiro instante,

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

Vamos à prova: Analista Administrativo ANEEL 2006 ESAF

Vamos à prova: Analista Administrativo ANEEL 2006 ESAF Pessoal, hoje trago a prova que a ESAF realizou recentemente para o concurso de Analista da ANEEL. A prova é interessante, pois houve várias questões mal formuladas, mas que não foram anuladas pela Banca.

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES Caros concurseiros, Como havia prometido, seguem comentários sobre a prova de estatística do ICMS RS. Em cada questão vou fazer breves comentários, bem como indicar eventual possibilidade de recurso. Não

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

Comentário Geral: Prova dentro dos padrões da banca examinadora. Questões fáceis: 6 Questões medianas: 2 Questões difíceis: 0

Comentário Geral: Prova dentro dos padrões da banca examinadora. Questões fáceis: 6 Questões medianas: 2 Questões difíceis: 0 Comentário Geral: Prova dentro dos padrões da banca examinadora. Questão passível de anulação: 27 Porém, não acredito que a banca anulará, veja o comentário Questões fáceis: 6 Questões medianas: 2 Questões

Leia mais

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos.

elementos. Caso teremos: elementos. Também pode ocorrer o seguinte fato:. Falsa. Justificativa: Caso, elementos. Soluções dos Exercícios de Vestibular referentes ao Capítulo 1: 1) (UERJ, 2011) Uma máquina contém pequenas bolas de borracha de 10 cores diferentes, sendo 10 bolas de cada cor. Ao inserir uma moeda na

Leia mais

Coordenação Prof. Aurimenes Alves. 3º Domingo 24.8.14

Coordenação Prof. Aurimenes Alves. 3º Domingo 24.8.14 3º Domingo 24.8.14 01.(rl-f-14) Um dia da semana é sábado ou domingo se, e somente se, naquele dia, eu como churrasco e não assisto a um filme. Portanto, se ontem foi uma terça-feira, eu, ontem A) não

Leia mais

Matemática Financeira Módulo 2

Matemática Financeira Módulo 2 Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente

Leia mais

UMA INVESTIGAÇÃO SOBRE AS DIFICULDADES DOS ALUNOS DAS SÉRIES INICIAIS DO ENSINO MÉDIO ENVOLVENDO FRAÇÕES

UMA INVESTIGAÇÃO SOBRE AS DIFICULDADES DOS ALUNOS DAS SÉRIES INICIAIS DO ENSINO MÉDIO ENVOLVENDO FRAÇÕES UMA INVESTIGAÇÃO SOBRE AS DIFICULDADES DOS ALUNOS DAS SÉRIES INICIAIS DO ENSINO MÉDIO ENVOLVENDO FRAÇÕES Taciany da Silva Pereira¹, Nora Olinda Cabrera Zúñiga² ¹Universidade Federal de Minas Gerais / Departamento

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA

SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA SIMULADO COMENTADO DE MATEMÁTICA FINANCEIRA Prof. Quilelli 1 ) Uma dívida contraída à taxa de juros simples de 10% ao mês, deverá ser paga em duas parcelas, respectivamente iguais a R$ 126,00, daqui a

Leia mais

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada

Exercícios de Matemática para Concurso Público. Média Aritmética (simples) Média Ponderada Exercícios de Matemática para Concurso Público Média Aritmética (simples) Média Ponderada 1. (Uema 201) Em um seletivo para contratação de estagiários, foram aplicadas duas provas: uma de Conhecimentos

Leia mais

QUESTÃO 1 ALTERNATIVA B

QUESTÃO 1 ALTERNATIVA B 1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira

Leia mais

MATEMÁTICA FINANCEIRA BÁSICA

MATEMÁTICA FINANCEIRA BÁSICA UNIVERSIDADE ESTADUAL DE CAMPINAS - UNICAMP INSTITUTO DE FILOSOFIA E CIÊNCIAS HUMANAS - IFCH DEPARTAMENTO DE ECONOMIA E PLANEJAMENTO ECONÔMICO - DEPE CENTRO TÉCNICO ECONÔMICO DE ASSESSORIA EMPRESARIAL

Leia mais

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br

MATEMÁTICA PARA VENCER. Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA. Pré-Curso. www.laercio.com.br MATEMÁTICA PARA VENCER Apostilas complementares APOSTILA 09: PROVA CMBH SIMULADA Pré-Curso www.laercio.com.br APOSTILA 09 Colégio Militar 6º ano PROVA CMBH SIMULADA PRÉ-CURSO COLÉGIO MILITAR DE BELO HORIZONTE,

Leia mais

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal

Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti. Distribuição Normal Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Distribuição Normal 1. Introdução O mundo é normal! Acredite se quiser! Muitos dos fenômenos aleatórios que encontramos na

Leia mais

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: reitoria@uern.br ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005 Matemática Técnico da ANTT/NCE-UFRJ/005 PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/005 Meu nome é Thiago Honório Lima Chaves e sou formado em Engenharia Mecânica e de Automóveis pelo

Leia mais

Prof. Paulo Henrique Raciocínio Lógico

Prof. Paulo Henrique Raciocínio Lógico Prof. Paulo Henrique Raciocínio Lógico Comentário da prova de Agente Penitenciário Federal Funrio 01. Uma professora formou grupos de 2 e 3 alunos com o objetivo de conscientizar a população local sobre

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

Exemplos de Testes de Hipóteses para Médias Populacionais

Exemplos de Testes de Hipóteses para Médias Populacionais Exemplos de Testes de Hipóteses para Médias Populacionais Vamos considerar exemplos de testes de hipóteses para a média de uma população para os dois casos mais importantes na prática: O tamanho da amostra

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

Biotecnologia Agroalimentar/Agroindustrial

Biotecnologia Agroalimentar/Agroindustrial /Agroindustrial 1º MÓDULO 27 28 29 (AGOSTO) Segunda-feira Terça-feira Quarta-feira Quinta-feira (27/08) Sexta-feira (28/08) Sábado (29/08) II: II: /Agroindustrial 2º MÓDULO 17 18 19 (SETEMBRO) Segunda-feira

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 03 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais