CPV 82% de aprovação na ESPM

Tamanho: px
Começar a partir da página:

Download "CPV 82% de aprovação na ESPM"

Transcrição

1 CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x y + x x 1 + y 1 + x y xy = = = xy 1 yx 1 x y x y y x xy x + y = + = 1 ( x y) ( x y) x y = = = = = 4,, 0 0, para x =, e Alternativa E. Duas lojas A e B vendem um mesmo produto pelo mesmo preço unitário. A primeira oferece uma promoção pague e leve enquanto a promoção da segunda é pague e leve 4. Uma consumidora, aproveitando a promoção da loja B, comprou 1 unidades desse produto e pagou R$ 6,00. Se tivesse comprado essa mesma quantidade de produto na loja A, teria pago: a) R$,00 b) R$ 8,00 c) R$ 0,00 d) R$ 4,00 e) R$,00 Na loja B, a consumidora comprou 1 unidades e pagou por 9 unidades. 6, 00 Preço por unidade: R$ = R$ 4,00 9 Na loja A, comprando 1 unidades, pagaria por 8 unidades. Preço total: 8. R$ 4,00 = R$,00. Alternativa E 1

2 espm 04/07/010 cpv especializado na espm. O preço de uma geladeira era igual a 60% do preço de uma TV. No último mês, esses produtos tiveram aumentos de 0% e 0%, respectivamente. A razão entre os novos preços da geladeira e da TV passou a ser de: a) 6% b) 6% c) 64% d) 6% e) 66% Sejam : g: preço inicial da geladeira t: preço inicial da TV g g = 0,6t Þ = 0,6 t Aumentando os preços, teremos a nova razão: 1, g 1 g 1 =. =. 0,6 = 0,6 = 6% 1, t 1 t 1 4. Três números positivos formam uma PA de razão 16. A média geométrica entre os dois menores é 6. A média aritmética entre os dois maiores é igual a: a) 6 b) 4 c) d) 0 e) 18 Seja a P.A (x 16; x; x + 16). Como a média geométrica dos menores termos é 6, temos: ( x - 16 ). x = 6 Þ x 16x 6 = 0 Þ x = 18 ou x = (não convém). Logo, a média aritmética entre os dois maiores termos desta P.A é ( x) + ( x + 16) = x + 8 = 6. Alternativa D Alternativa A

3 cpv especializado na espm espm 04/07/010. O Sr. Antônio planeja fazer uma viagem de 900 km, partindo da cidade A e fazendo uma única parada para descanso e abastecimento na cidade B, situada exatamente no meio do caminho. Ele sabe que o consumo do seu automóvel flex é de 1 km/ se usar gasolina e 10 km/ se usar álcool. Os preços desses combustíveis nas duas cidades são dados na tabela abaixo. Sabendo-se que a capacidade do tanque de combustível do automóvel é de 0 litros, que está inicialmente vazio e que ele pretende abastecer somente nessas duas cidades, o menor gasto com combustível que ele poderá ter, na hipótese de usar apenas álcool ou apenas gasolina para a viagem toda, será de: a) R$ 10,00 b) R$ 1,00 c) R$ 14,00 d) R$ 1,00 e) R$ 14,00 Álcool Gasolina A R$ 1,60 R$,0 B R$ 1,40 R$,70 6. Um escritório possui duas salas quadradas cujos lados medem números inteiros de metros. Se a diferença entre suas áreas é de 11 m, a soma dessas áreas é igual a: a) 7 m b) 9 m c) 61 m d) 6 m e) 6 m Tomemos quadrados cujos lados medem x e y, respectivamente. Temos: x y = 11 Þ (x + y) (x y) = 11 Como x e y são inteiros, temos: x + y= 11 x y = 1 Þ x = 6 e y = Então, a soma das áreas dos quadrados é x + y = 6 + = 61 m Se o carro for abastecido com álcool, é mais vantajoso comprar o máximo de combustível possível na cidade B. Em A será comprado apenas o suficiente para a metade da viagem, ou seja, 40km. Alternativa C 40km = 4, assim 10km / Em A e B serão comprados 4 de álcool. Total em reais: 4. 1, ,40 = 1 Se o carro for abastecido com gasolina, é mais vantajoso comprar o máximo de combustível na cidade A. Seriam necessários 900km = 60 de gasolina, assim, 0 em A e 10 em B. 1km / Total em reais: 0., ,70 = 14 Portanto, o menor gasto seria R$ 1,00. Alternativa B

4 4 espm 04/07/010 cpv especializado na espm 7. Uma campanha de ajuda comunitária arrecadou, no 1 o dia, a importância de 10 mil reais; no o dia, 160 mil reais; no o dia, 00 mil reais e assim por diante, sempre aumentando 40 mil reais a cada dia. O montante da arrecadação atingiu 10 milhões de reais no: a) 1 o dia b) 1 o dia c) 18 o dia d) 0 o dia e) o dia Considere que o montante da arrecadação atingiu 10 milhões de reais no n-ésimo dia. Desta forma, como as importâncias arrecadadas em cada dia formam um P.A. de razão 40 mil reais, devemos ter: ( a1 + an ). n = Þ Þ [ ( n 1) ]. n = Þ n + n 00 = 0 Þ n = 0 ou n = (não convém) Alternativa D 8. Uma importância de R$ ,00 foi aplicada a juros compostos de 4% ao mês durante 10 meses. Sabendo-se que log 1,04 = 0,017 e log 1,48 = 0,17, podemos concluir que os juros obtidos nessa aplicação foram de: a) R$ 00,00 b) R$ 600,00 c) R$ 800,00 d) R$ 4 00,00 e) R$ 4 800,00 log 1,04 = 0,017 Þ 10 0,017 = 1,04 log 1,48 = 0,17 Þ 10 0,17 = 1,48 Aplicando a fórmula de juros compostos, M = C + J Þ J = M C Þ J = C (1 + i) n C Þ J = C [(1 + i) n 1] = [(1 + 0,04) 10 1] = = [(1, ] = = [(10 0,017 ) 10 1] = = (10 0,17 1] = = (1,48 1) = 4800 Alternativa E

5 cpv especializado na espm espm 04/07/ Num plano cartesiano, toma-se uma série de infinitos triângulos retângulos isósceles, o primeiro com catetos medindo 4, o segundo com catetos medindo e assim por diante, representados na cor escura na figura abaixo. A soma das áreas de todos esses triângulos é igual a: a) b) 1 c) 4 4 d) 10 e) 4 O primeiro triângulo tem área 4. 4 = 8; O segundo triângulo tem área. = ; O terceiro triângulo tem área =, e assim sucessivamente. Portanto, as áreas desses triângulos formam uma P.G. infinita de razão 1 e sua soma é dada por 4 0. O triângulo de vértices A(0, 4), B(, 0) e C(x, 0) é isósceles de base AB. Sua área mede: a) 8 b) 10 c) 1 d) 14 e) 16 Se o triângulo é isósceles de base AB, temos: CA = CB ( x 0) + ( 0 4) = ( x ) + ( 0 0) Þ x + 16 = x 4x + 4 Þ 4x = 1 Þ x = A área do triângulo é: A = = = 10 Alternativa B a1 8 1 q = = Alternativa A

6 6 espm 04/07/010 cpv especializado na espm 1. O coeficiente de Gini é utilizado para calcular a desigualdade da distribuição de renda numa população. Ele varia de 0 (distribuição da renda perfeitamente igual) até 1 (concentração total da renda em uma só pessoa). Num gráfico cartesiano, onde o eixo das abscissas representa a renda e o eixo das ordenadas o número de pessoas (ver figura abaixo), a diagonal OP representa a igualdade perfeita de renda e a curva abaixo dela, a distribuição em questão.. A produção de energia elétrica no Brasil depende quase totalmente das usinas hidrelétricas. A tabela 1 mostra a quantidade média de litros de água que devem passar pelas turbinas das hidrelétricas para o funcionamento de alguns aparelhos domésticos. A tabela mostra o tempo médio diário de uso desses aparelhos nas residências brasileiras. A O índice de Gini é calculado pela razão A + B, em pontos percentuais, onde A e B são as áreas das regiões indicadas no gráfico. Atualmente o Brasil apresenta um índice de 4,4% (alta concentração de renda). Para um país onde o gráfico se constitui num quadrado e num arco de círculo de centro em Q e raio QP, o índice de Gini será aproximadamente igual a: a) 81% b) 7% c) 49% d) 7% e) 6% Temos: A = πr r r r. = (p ) 4 4 A + B = r r A B Então, o índice de Gini será: r r A ( π ) A + B = 4 π 0,7 = 7% r r r De acordo com os dados apresentados, podemos concluir que a quantidade de água utilizada na produção de energia elétrica para o funcionamento daqueles aparelhos durante 1 dia, apenas numa residência, é aproximadamente igual a: a) litros b) 1600 litros c) 00 litros d) 9800 litros e) 1000 litros Basta multiplicarmos os valores respectivos das duas tabelas e somarmos os resultados obtidos: = 1 60 litros Alternativa B Alternativa D

7 cpv especializado na espm espm 04/07/ Num certo jogo, a cada jogada, se você r, a banca lhe paga R$ 100,00 e, se r, você paga metade do que tem para a banca. Considerando que você entra no jogo com R$ 00,00, a probabilidade de, ao fim de jogadas, você sair ndo é: a) 1 b) 4 c) 8 De acordo com as regras do jogo, podemos montar o seguinte diagrama de árvore: d) 8 e) As distâncias entre 4 cidades de um mapa são dadas, em centímetros, pelas tabelas abaixo. Sabendo-se que a escala do mapa é 1: , podemos afirmar que a distância real entre as cidades B e C é de: a) 10 km b) 116 km c) 100 km d) 1 km e) 108 km Verificando as distâncias apresentadas na tabela, temos AD = AB + BD e AD = AC + CD. Concluímos que A, B, C e D estão alinhados. 8, 11,4 A,8 B C, D 8,6 Então BC = 11,4,,8 =,4 cm no mapa. Utilizando a escala 1 : , temos: BC real =, = cm = 108 km Alternativa E 8 Das 8 maneiras de se terminar o jogo após rodadas, apenas nas situações 1, e o jogador sai ndo. Logo, a probabilidade pedida é 8 Alternativa D

8 8 espm 04/07/010 cpv especializado na espm. A figura representa uma lata de refrigerante e um copo, ambos cilíndricos. A razão entre os raios internos da lata e do copo é :1. Estando a lata completamente cheia, seu conteúdo é transferido para o copo até que as superfícies dos líquidos fiquem na mesma altura de 1 cm. Podemos concluir que a altura x da lata é: 6. Para a confecção de brindes promocionais, num prazo de 1 dias, uma empresa contratou funcionários trabalhando 6 horas por dia. Ao final do 8 o dia, um dos funcionários pediu demissão. Para que se possa cumprir o contrato no prazo estipulado, os funcionários restantes deverão trabalhar: a) 8 h/dia b) 10 h/dia c) 7, h/dia d) 9 h/dia e) 8, h/dia a) 1 cm b) 18 cm c) 0 cm d) cm e) 4 cm (x 1) 1 Como 8 dias =. 1 dias, ao final do 8o dia foram feitos dos brindes, ou seja, brindes (direta) (inversa) (inversa) brindes dias funcionário horas / dia x Fazendo a tabela da regra de três composta, obtemos: =.. x = x = 7, Alternativa C lata r r copo O volume vazio na lata é equivalente ao volume ocupado no copo. Daí: p(r). (x 1) = pr. 1 x 1 = x = 1 cm Alternativa A

9 cpv especializado na espm espm 04/07/ Uma ferrovia será construída ligando as cidades A e B cujas coordenadas geográficas são respectivamente (1 40 ; ) e (4 04 ; 6 ). Sabendo-se que, nessa região, cada grau geográfico corresponde a aproximadamente 11, km, o comprimento mínimo que essa ferrovia poderá ter é: a) 80 km b) 40 km c) 40 km d) 480 km e) 0 km 8. Um poste de energia elétrica com 1 m de comprimento sofreu uma inclinação de 1 em relação à vertical, ficando ameaçado de cair. Para corrigir sua inclinação, foi amarrado um cabo de aço a 1 m do seu topo, que será tracionado por um guincho situado a 11 m de sua base, como mostra a figura. O comprimento inicial desse cabo é de aproximadamente: a) 17 m b) 19 m c) 1 m d) m e) 6 m B (4º04 ; 6º ) º1 (4º04 ; º ) A (1º40 ; º ) º4 A diferença entre as coordenadas latitudinais é 6º º = º1 que equivale a 60 km. Da mesma maneira, a diferença entre as coordenadas longitudinais é 4º04 1º40 = º4 que equivale a 70 km. A figura acima consolida: 9º x/ 1º 9º 11 m Então, se aplicarmos o Teorema de Pitágoras no triângulo acima, temos: AB = ( 60) + ( 70) = 40 km Alternativa C cos 9º = 0,777 = x 11 x x = 17,094 m Alternativa A

10 10 espm 04/07/010 cpv especializado na espm 9. Sendo f (x) uma função tal que. f (x) x. f (x 1) = 10 para qualquer x real, o valor de f (1) é: a) 7 b) 1 c) - d) e) 0 Sendo. f(x) x. f(x 1) = 10 para x Î R, temos:. f ( 0) 0. f ( 1) = 10 f ( 0) =. f ( 1) 1. f ( 0) = 10. f ( 1) = 10 Þ f(1) = 1 Alternativa B 40. Para velocidades entre 0 km/h e 70 km/h, estima-se que a probabilidade de um atropelamento resultar em óbito é aproximadamente descrita pela função P =,. V 7, onde V é a velocidade em km/h e P é a probabilidade em %. Abaixo de 0 km/h considera-se P = 0% e acima de 70 km/h considera-se P = 100%. Tomando-se dois casos isolados de atropelamento, um a 40km/h e o outro a 6 km/h, a probabilidade de que os dois sobrevivam é igual a: a) 10% b) 1% c) 1% d) 0% e) % Temos que a probabilidade de o primeiro sobreviver é: 1 [,. 40 7] = 7% e a probabilidade de o segundo sobreviver é: 1 [,. 6 7] = 0%. Logo, a probabilidade de os dois sobreviverem é de: 7%. 0% = 1%. Alternativa C comentário do CPV A prova de Matemática da ESPM (julho/010) manteve a tendência de tornar-se mais acessível aos seus candidatos. Percebemos uma escolha de assuntos adequada às necessidades de seus cursos e, dentro dela, uma distribuição homogênea. Acreditamos que a prova conseguiu selecionar os candidatos mais bem preparados, atendendo aos objetivos da banca examinadora.

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

Nível 3 IV FAPMAT 28/10/2007

Nível 3 IV FAPMAT 28/10/2007 1 Nível 3 IV FAPMAT 8/10/007 1. A figura abaixo representa a área de um paralelepípedo planificado. A que intervalo de valores, x deve pertencer de modo que a área da planificação seja maior que 184cm

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004

FGV-EAESP PROVA DE RACIOCÍNIO MATEMÁTICO CURSO DE GRADUAÇÃO AGOSTO/2004 QUESTÃO 1. Numa cidade do interior do estado de São Paulo, uma prévia eleitoral entre 2.000 filiados revelou as seguintes informações a respeito de três candidatos A, B, e C, do Partido da Esperança (PE)

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível?

Solução. a) Qual deve ser o preço de venda de cada versão, de modo que a quantidade de livros vendida seja a maior possível? 1 A Editora Progresso decidiu promover o lançamento do livro Descobrindo o Pantanal em uma Feira Internacional de Livros, em 01. Uma pesquisa feita pelo departamento de Marketing estimou a quantidade de

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM NOVEMBRO/009 Prova E matemática x + y y x 1. O valor da expressão + 6 : x + y para x 4 e y 0,15 é: a) 0 b) 1 c) d) e) 4 Temos x + y y x + 6 : x + y. Uma costureira pagou

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D

Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. ver comentário. alternativa D Questão Considere a seqüência abaixo, conhecida como seqüência de Fibonacci Ela é definida de tal forma que cada termo, a partir do terceiro, é obtido pela soma dos dois imediatamente teriores a i :,,,

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Edital nº 01, de 06 de janeiro de 2016.

Edital nº 01, de 06 de janeiro de 2016. COMISSÃO PERMANENTE DE SELEÇÃO COPESE Edital nº 01, de 06 de janeiro de 016. PROVA OBJETIVA - PROFESSOR DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO ÁREA DE CONHECIMENTO MATEMÁTICA/ DESENHO GEOMÉTRICO INSTRUÇÕES

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

É permitida a reprodução parcial ou total deste Caderno de Provas apenas para fins didáticos, desde que citada a fonte. VESTIBULAR.

É permitida a reprodução parcial ou total deste Caderno de Provas apenas para fins didáticos, desde que citada a fonte. VESTIBULAR. VESTIBULAR 1º semestre 2014 Transferência de Curso de Graduação Administração Matemá ca Nome do candidato Por favor, abra somente quando autorizado. O CEFET-MG é parceiro da Coleta Seletiva Solidária e

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003

ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 ESPM VESTIBULAR 2004_1 NOVEMBRO DE 2003 PROVA DE MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO POR: PROFA. MARIA ANTÔNIA GOUVEIA QUESTÃO 21 ; O valor da expressão ( )( ; ; ) ; para x 101 é: a) 100; b) 10; c) 10,1;

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ

Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/12/2011 pelo CEPERJ Resoluções comentadas de Raciocínio Lógico e Estatística SEFAZ - Analista em Finanças Públicas Prova realizada em 04/1/011 pelo CEPERJ 59. O cartão de crédito que João utiliza cobra 10% de juros ao mês,

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1

FÍSICA. Exatas/Tarde Física e Matemática Prova A Página 1 FÍSICA 01 - A figura a seguir representa um eletroímã e um pêndulo, cuja massa presa à extremidade é um pequeno imã. Ao fechar a chave C, é correto afirmar que C N S (001) o imã do pêndulo será repelido

Leia mais

Simulado ENEM: Matemática

Simulado ENEM: Matemática Simulado ENEM: Matemática Questão 1 Cinco diretores de uma grande companhia, doutores Arnaldo, Bernardo, Cristiano, Denis e Eduardo, estão sentados em uma mesa redonda, em sentido horário, para uma reunião

Leia mais

2. Noções de Matemática Elementar

2. Noções de Matemática Elementar 2. Noções de Matemática Elementar 1 Notação cientíca Para escrever números muito grandes ou muito pequenos é mais cómodo usar a notação cientíca, que consiste em escrever um número na forma n é o expoente

Leia mais

5º MATERIAL EXTRA 3º ANO PROF. PASTANA

5º MATERIAL EXTRA 3º ANO PROF. PASTANA 5º MATERIAL EXTRA 3º ANO PROF. PASTANA RESOLUÇÃO DOS DESAFIOS 1º Material Extra Ex. 10 E h D 45 0 60 0 45 0 6 C A 6 B plano que passa pelo ponto D Seja h a altura da torre. DÊB = 45 0 O EDB é retângulo

Leia mais

Universidade Federal de Goiás Instituto de Informática

Universidade Federal de Goiás Instituto de Informática Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

Questão 1. Questão 2. Resposta

Questão 1. Questão 2. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, se for o caso. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

Você sabe a regra de três?

Você sabe a regra de três? Universidade Estadual de Maringá - Departamento de Matemática Cálculo Diferencial e Integral: um KIT de Sobrevivência c Publicação Eletrônica do KIT http://www.dma.uem.br/kit Você sabe a regra de três?

Leia mais

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005

PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/2005 Matemática Técnico da ANTT/NCE-UFRJ/005 PROVA DE MATEMÁTICA COMENTADA CARGO: TÉCNICO DA ANTT. BANCA NCE/005 Meu nome é Thiago Honório Lima Chaves e sou formado em Engenharia Mecânica e de Automóveis pelo

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

EXAMES SUPLETIVOS DO ENSINO MÉDIO 1º SEMESTRE / 2010 FOLHA DE RESPOSTAS

EXAMES SUPLETIVOS DO ENSINO MÉDIO 1º SEMESTRE / 2010 FOLHA DE RESPOSTAS LIBERTAS QUAE ESTAD O SECRETARIA DE ESTADO DE EDUCAÇÃO DE MINAS GERAIS SUBSECRETARIA DE DESENVOLVIMENTO DA EDUCAÇÃO BÁSICA SUPERINTENDÊNCIA DE MODALIDADES E TEMÁTICAS ESPECIAIS DE ENSINO DIRETORIA DE EDUCAÇÃO

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. UFMG 2007 RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR UFMG_ ANO 2007 PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0 Francisco resolveu comprar um pacote de viagem que custava R$ 4 200,00, já incluídos R$ 20,00

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005

CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA 2.701 DE 29/07/5 DOU 02/08/2005 CENTRO UNIVERSITÁRIO CATÓLICO SALESIANO AUXILIUM PORTARIA.701 DE 9/07/5 DOU 0/08/005 CURSO: Bacharelado em Química Disciplina: Matemática I Professor: Marcos José Ardenghi OBS: esta apostila é destinada

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

Equacionando problemas

Equacionando problemas Reforço escolar M ate mática Equacionando problemas Dinâmica 2 1º Série 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Algébrico Simbólico Função polinomial do 1 grau Aluno

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UNESP 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. Questão 84 A taxa de analfabetismo representa a porcentagem da população com idade de anos ou mais que é

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PR QUEM CURS 2 ạ SÉRIE DO ENSINO MÉDIO EM 2015 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Um comerciante lançou uma cesta de Natal no formato

Leia mais

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso

UFRN 2013 Matemática Álgebra 3º ano Prof. Afonso UFRN 203 Matemática Álgebra 3º ano Prof. Afonso 3 2. (Ufrn 203) Considere a função polinomial f ( x) = x 3x x + 3. a) Calcule os valores de f ( ), f ( ) e f ( 3 ). b) Fatore a função dada. c) Determine

Leia mais

Prova Comentada. Matemática. A hora chegou! E ESTAMOS JUNTOS MAIS UMA VEZ. ES P EC I A L ENEM 2009 QUA S A LVA D O R 9 / 1 2 / 20 0 9

Prova Comentada. Matemática. A hora chegou! E ESTAMOS JUNTOS MAIS UMA VEZ. ES P EC I A L ENEM 2009 QUA S A LVA D O R 9 / 1 2 / 20 0 9 QUA S A LVA D O R 9 / 1 2 / 20 0 9 Prova Comentada ES P EC I A L ENEM 2009 Bruno Aziz Matemática Confira neste caderno as questões comentadas da prova de Matemática e suas Tecnologias do Enem - Exame Nacional

Leia mais

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Atividades Atividade 1 1) (Vunesp-SP) Uma escada apoiada

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 01.06.14 FGV Administração - 01.06.1 VETIBULAR FGV 01 01/06/01 REOLUÇÃO DA QUETÕE DE MATEMÁTICA DA PROVA DA TARDE - MÓDULO DICURIVO QUETÃO 1 Em certo mês, o Departamento de Estradas registrou a velocidade do trânsito

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14)

= volume do cone => Vc. 48.000 80 N = 25, 47 (se π 3,14) ) Fernando utiliza um recipiente, em forma de um cone circular reto, para encher com água um aquário em forma de um paralelepípedo retângulo. As dimensões do cone são: 0 cm de diâmetro de base e 0 cm de

Leia mais

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos. PROVA FINAL DO 3.º CICLO DO ENSINO BÁSICO Matemática/Prova 92/1.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

CONCURSO DE BOLSAS MATEMÁTICA 6º ANO DO FUNDAMENTAL Como funciona a energia solar?

CONCURSO DE BOLSAS MATEMÁTICA 6º ANO DO FUNDAMENTAL Como funciona a energia solar? CONCURSO DE BOLSAS MATEMÁTICA 6º ANO DO FUNDAMENTAL Como funciona a energia solar? Eliza Kobayashi (novaescola@fvc.org.br) Protótipo do Solar Impulse HB-SIA, avião movido a energia solar. Foto: Divulgação

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA PROVA DE MATEMÁTICA EFOMM-008 1ª Questão: A figura acima representa uma caixa de presente de papelão que mede 16 por 30 centímetros. Ao cortarmos fora os quadrados do mesmo tamanho dos quatro cantos e

Leia mais

Problemas do 1º grau 2016

Problemas do 1º grau 2016 Problemas do º grau 06. (Unicamp 06) O gráfico abaixo exibe o lucro líquido (em milhares de reais) de tręs pequenas empresas A, B e C, nos anos de 03 e 04. Com relaçăo ao lucro líquido, podemos afirmar

Leia mais