CPV O Cursinho que Mais Aprova na GV

Tamanho: px
Começar a partir da página:

Download "CPV O Cursinho que Mais Aprova na GV"

Transcrição

1 CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama, integram eatamente das organizações apenas a) 4 b) 5 c) 6 d) 7 e) 8 Integram eatamente das organizações apenas 7 países. Alternativa D CPV fgveconov014_1f Países Organizações Argentina Bolívia 4 Brasil 4 Chile 1 Colômbia Equador Guiana Paraguai Peru Suriname Uruguai Venezuela 0. Sendo, y e z números reais tais que y = 7 e y =, o valor de a) b) c) d) e) y z = 7 Þ y = y y z Þ y y z. z y = 1 é igual a y z z y y = = 1 1 Þ Þ y y z. 1 7 = 1 y z z y y = 6 = Þ y y z = 7 Alternativa E 1

2 CPV o Cursinho que Mais Aprova na GV 0. Se m n é a fração irredutível que é solução da equação eponencial = 1944, então m n é igual a a) b) c) 4 d) 5 e) Um álbum de figurinhas possui 5 páginas, cada uma com 5 figurinhas, distribuídas em 5 linhas e 5 colunas. As figurinhas estão ordenadas e numeradas de 1 até 875. Nesse álbum, são consideradas figurinhas especiais a 7 a, a 14 a, a 1 a, a 8 a e assim sucessivamente. A figura ilustra a primeira página desse álbum = 1944 Þ 9 ( ) = 1944 Þ Þ = 1944 Þ = 7 Þ = 7 Logo: m n = 7 e m n = 5 Alternativa D Depois que o álbum for completado com todas as figurinhas, a última página que se iniciará com uma figurinha especial é a de número a) 7 b) 8 c) d) e) 4 Temos duas P.A. com razões iguais a 5 e 7. A primeira possui último termo 851 (1 a figura da última página). A segunda possui último termo 875. Escrevendo em ordem decrescente, temos: 1 a (851; 86; 801; 776; 751; 76; 701; 676;...) a (875; 868; 861; 854; 847; 840; 85; 86;...) O último termo encontra-se na penúltima página, ou seja, 4. Alternativa E CPV fgveconov014_1f

3 CPV o Cursinho que Mais Aprova na GV 05. O gráfico representa a função f. 06. As coordenadas (, y) de cada ponto do segmento AB, descrito na figura, representam o comprimento () e a largura (y) de um retângulo, ambos em centímetros. Por eemplo, o ponto de coordenadas (4, 18) representa um retângulo de comprimento 4 cm e largura 18 cm. Considerando, o conjunto solução da equação f ( + ) = f () + 1 possui a) um único elemento. b) apenas dois elementos. c) apenas três elementos. d) apenas quatro elementos. e) infinitos elementos. Do gráfico abaio, concluimos que f( + ) = f() + 1. Para, há apenas elementos no Conjunto Solução. f() + 1 P 1 P f() Dentre os infinitos retângulos descritos dessa forma, aquele que possui área máima tem perímetro, em cm, igual a a) 0 b) 8 c) 40 d) 45 e) 48 f( + ) Alternativa B A reta suporte do segmento AB é dada por: 1 0 y = ( 6 0 ) + 0 Þ y = + 0 Logo, as coordenadas (; y) que estão sobre o segmento AB são: (; + 0). As áreas dos retângulos procurados são dadas por: S = ( + 0) = + 0. O retângulo da área máima tem abscissa = 0 = 5 e ordenada y = = O perímetro do retângulo de área máima é dado por. (5 + 15) = 40 Alternativa C fgveconov014_1f CPV

4 4 CPV o Cursinho que Mais Aprova na GV 07. Dos animais de uma fazenda, 40% são bois, 0% vacas, e os demais são caprinos. Se o dono da fazenda vende 0% dos bois e 70% das vacas, o total de animais da fazenda se reduz em a) 0% b) % c) 45% d) 60% e) 66% Do total de animais da fazenda, temos: 0% 40% Bois 70% Total Caprinos 0% Vacas Houve uma redução de 40%. 0% + 0%. 70% 1% + 1% = % 0% 70% 0% Venda Restante Venda Restante Alternativa B 08. Três números estão em progressão geométrica de razão. Diminuindo 5 unidades do terceiro número da progressão geométrica, ela se transforma em progressão aritmética. Sendo k o primeiro dos três números inicialmente em progressão geométrica, então log k é igual à soma de 1 com a) log b) log c) log 4 d) log 5 e) log 6 A partir do enuncinado, temos: k; k ; 9k 4 P.G. k; k ; 9k 4 5 P.A. Pela média aritmética, temos:. k = k + 9k 4 5 Þ k = 0 Assim: log k = log 0 = log 10 + log log k = 1 + log Alternativa A CPV fgveconov014_1f

5 CPV o Cursinho que Mais Aprova na GV Conforme indica a figura, uma caia contém 6 letras F azuis e 5 brancas, a outra contém 4 letras G azuis e 7 brancas, e a última caia contém 6 letras V azuis e 6 brancas. Em um jogo, uma pessoa vai retirando letras das caias, uma a uma, até que forme a sigla FGV com todas as letras da mesma cor. A pessoa pode escolher a caia da qual fará cada retirada, mas só identifica a cor da letra após a retirada. Usando uma estratégia conveniente, o número mínimo de letras que ela deverá retirar para que possa cumprir a tarefa com toda certeza é a) 14 b) 15 c) 16 d) 17 e) 18 Para cumprir a tarefa, vamos adotar a seguinte estratégia: retirar de urnas uma letra de cada cor; retirar da a urna uma única que combine com as outras. Para garantir a certeza de sair duas letras da mesma cor de cada urna, deve-se retirar da caia F, G e V respectivamente 7, 1 e 7 letras. Por conveniência, deve-se escolher as caias F, V e, por último, G. Assim, o mínimo de letras será: = 15 Alternativa B 10. Um código numérico tem a forma ABC - DEF - GHIJ, sendo que cada letra representa um algarismo diferente. Em cada uma das três partes do código, os algarismos estão em ordem decrescente, ou seja, A > B > C, D > E > F e G > H > I > J. Sabe-se ainda que D, E e F são números pares consecutivos, e que G, H, I e J são números ímpares consecutivos. Se A + B + C = 17, então C é igual a a) 9 b) 8 c) 6 d) e) 0 Conforme o enunciado temos: DEF GHIJ ABC Þ C = 0 A + B + C 17 Alternativa E fgveconov014_1f CPV

6 6 CPV o Cursinho que Mais Aprova na GV 11. A figura representa um triângulo ABC, com E e D sendo pontos sobre AC. Sabe-se que AB = AD, CB = CE e que EB^ D mede 9º. Nessas condições, a medida de AB^ C é a) 10º b) 108º c) 111º d) 115º e) 117º Sendo AB = AD e CB = CE, temos a figura: A No ΔBED, + 9º + y º = 180º Þ + y = 6º Portanto: med(a^bc) = + y + 9º = 10º E B 9º y y + 9º + 9º D C Alternativa A 1. Dois dados convencionais e honestos são lançados simultaneamente. A probabilidade de que a soma dos números das faces seja maior que 4, ou igual a, é a) b) c) d) e) Na tabela, marcamos com as situações nas quais a soma é maior que 4 ou igual a. 6 X X X X X X 5 X X X X X X 4 X X X X X X X X X X X X X X X X 1 X X X X dado dado Assim, a probabilidade pedida é P = 6 = 8 9 Alternativa D CPV fgveconov014_1f

7 CPV o Cursinho que Mais Aprova na GV 7 1. A raiz quadrada da diferença entre a dízima periódica 10 vezes 0, e o decimal de representação finita 0, é igual a 1 dividido por 14. A figura representa um trapézio isósceles ABCD, com AD = BC = 4 cm. M é o ponto médio de AD, e o ângulo BM^ C é reto. a) b) c) d) e) A fração geratriz da dízima 0, é , = 1 0,0000 = 1 \ = portanto: Alternativa C Figura fora de escala O perímetro do trapézio ABCD, em cm, é igual a a) 8 b) 10 c) 1 d) 14 e) 15 Na figura, o ponto N, médio de BC, é o circuncentro do triângulo retângulo BCM. Logo, MN é o raio do círculo circunscrito e portanto MN = cm. N Ao mesmo tempo, MN é base média do trapézio. AB + CD Assim, MN = Þ AB + CD = 4. O perímetro do trapézio ABCD é AB + CD + AD + BC = = 1 cm. Alternativa C fgveconov014_1f CPV

8 8 CPV o Cursinho que 15. Um dispositivo fará com que uma lâmpada acesa se desloque verticalmente em relação ao solo em centímetros. Quando a lâmpada se desloca, o comprimento y, em cm, da sombra de um lápis, projetada no solo, também deverá variar. Mais A prova na GV Para um valor de igual ou menor que a altura do lápis, não haverá sombra, ou seja, y = 0. Para um valor de pouco maior que a altura do lápis, começará a formar uma sombra em um horizonte bem distante e y > > > 0. Conforme a fonte luminosa sobe, a sombra diminuirá, tendendo a zero. Assim, o gráfico correspondente será: y Alternativa C Admitindo a lâmpada como uma fonte pontual, dos gráficos indicados, aquele que melhor representa y em função de é a) b) c) d) e) CPV fgveconov014_1f

9 CPV o Cursinho que Mais Aprova na GV Sueli colocou 40 ml de café em uma ícara vazia de 80 ml, e 40 ml de leite em outra ícara vazia de mesmo tamanho. Em seguida, Sueli transferiu metade do conteúdo da primeira ícara para a segunda e, depois de misturar bem, transferiu metade do novo conteúdo da segunda ícara de volta para a primeira. Do conteúdo final da primeira ícara, a fração correspondente ao leite é a) 1 4 b) 1 c) 8 d) 5 e) 1 O problema pode ser resolvido passo a passo. Xícara 1 Xícara ß ß 40 ml de café 40 ml de leite 0 ml de café 0 ml de café + 0 ml de leite + 10 ml de café 0 ml de café + 40 ml de leite 10 ml de café + 0 ml de leite Portanto o volume total da ícara 1 é 50 ml. Desse total, 0 ml corresponde ao leite. Então 0 50 = 5. ß ß Alternativa D 17. Uma editora tem preços promocionais de venda de um livro para escolas. A tabela de preços é: 1n, se 1 n 4 P(n) = 11n, se 5 n 48 10n, se n ³ 49 em que n é a quantidade encomendada de livros P(n) é o preço total dos n eemplares. Analisando a tabela de preços praticada pela editora, é correto concluir que, para valores de n, pode ser mais barato comprar mais do que n livros do que eatamente n livros. Sendo assim, é igual a a) b) 4 c) 5 d) 6 e) 8 Devemos analisar os preços promocionais, quando há quebra de linearidade da função p(n). Dessa forma, podemos criar a tabela: n P(n) n P(n) : : 5 50 : : 5 50 Notamos que para n = 5 e n = 6, o preço é menor que para n = 4 e para n = 49, n = 50, n = 51 e n = 5, ele é menor que para n = 48. Assim o número de casos em que é mais barato comprar mais que n livros do que eatamente n livros é = 6. Alternativa D fgveconov014_1f CPV

10 10 CPV o Cursinho que Mais Aprova na GV 18. Observe as coordenadas cartesianas de cinco pontos: A(0,100), B(0, 100), C(10, 100), D(10, 100), E(100, 0). Se a reta de equação reduzida y = m + n é tal que mn > 0, então, dos cinco pontos dados anteriormente, o único que certamente não pertence ao gráfico dessa reta é a) A b) B c) C d) D e) E Para que a multiplicação entre o coeficiente angular (m) e o coeficiente linear (n) seja positiva, temos duas configurações possíveis para o gráfico: 1 a possibilidade a possibilidade y Os pontos A(0; 100) e C(10; 100) encaiam-se no 1º gráfico. Os pontos B(0; 100) e D(10; 100) se encaiam no º gráfico. O único que não pertence a nenhum gráfico é o ponto E(100; 0). y Alternativa E 19. Seja f :, tal que f () = + b , com b sendo uma constante real positiva. Sabendo que a abscissa do ponto de mínimo do gráfico dessa função é igual à ordenada desse ponto, então b é igual a a) b) c) d) 4 e) 7 b A abscissa do ponto mínimo ( V ) é dada por a. A ordenada do ponto mínimo (y V ) é dada por Δ 4a. Logo, +b (1) = + b 4(1) (1) b b 15 = 0 \ b = 5 ou b = Sabendo que b é real e positivo, b = 5. Alternativa B CPV fgveconov014_1f

11 CPV o Cursinho que Mais Aprova na GV Um envelope lacrado contém um cartão marcado com um único dígito. A respeito desse dígito, são feitas quatro afirmações, das quais apenas três são verdadeiras. As afirmações são: I. O dígito é 1. II. O dígito não é. III. O dígito é. IV. O dígito não é 4. Nesse problema, uma conclusão necessariamente correta é a de que a) I é verdadeira. b) I é falsa. c) II é verdadeira. d) III é verdadeira. e) IV é falsa. Montando uma tabela para as afirmações, em que V é verdadeiro e F é falso, e sabendo que sempre temos verdadeiras: I II III IV V V F V F V V V Nas duas possibilidades a II e IV sempre são verdadeiras. Alternativa C 1. Na figura, ABCD representa uma placa em forma de trapézio isósceles de ângulo da base medindo 60. A placa está fiada em uma parede por AD, e PA representa uma corda perfeitamente esticada, inicialmente perpendicular à parede. Nesse dispositivo, o ponto P será girado em sentido horário, mantendo-se no plano da placa, de forma que a corda fique sempre esticada ao máimo. O giro termina quando P atinge M, o ponto médio de CD. Nas condições descritas, o percurso total realizado por P, em cm, será igual a: 50π a) b) 40π c) 15π d) 10π e) 9π Considere a figura abaio: 0 o 40 cm 60 o 0 cm Q 60 o 10 cm R Temos: PQ = 1 1. π. 40 = 0 π cm QR = 1 6. π. 0 = 0 π RM = 1 6. π. 10 = 10 π cm cm Portanto: PQ + QR + RM = 50 π cm Alternativa A fgveconov014_1f CPV

12 1 CPV o Cursinho que Mais Aprova na GV. Um edifício comercial tem 48 salas, distribuídas em 8 andares, conforme indica a figura. O edifício foi feito em um terreno cuja inclinação em relação à horizontal mede α graus. A altura de cada sala é m, a etensão 10 m, e a altura da pilastra de sustentação, que mantém o edifício na horizontal, é 6 m. Usando os dados da tabela, a melhor aproimação inteira para α é: a) 4 b) 5 c) 6 d) 7 e) 8 Devemos ter tg a = 6 60 = 0,1. Pela tabela dada temos que 6º. Alternativa C. Determinada marca de ervilhas vende o produto em embalagens com a forma de cilindros circulares retos. Uma delas tem raio da base 4 cm. A outra é uma ampliação perfeita da embalagem menor, com raio da base 5 cm. O preço do produto vendido na embalagem menor é de R$,00. A embalagem maior dá um desconto, por ml de ervilha, de 10% em relação ao preço por ml de ervilha da embalagem menor. Nas condições dadas, o preço do produto na embalagem maior é de, aproimadamente, a) R$,51 b) R$,6 c) R$,1 d) R$,81 e) R$,5 Considere as embalagens dadas abaio: R = 4 cm π. 4. H H = π. 5. 1,5 H P R = 5 cm Þ P = ,5 H P' = 0,9. P = R$,51. Alternativa A CPV fgveconov014_1f

13 CPV o Cursinho que Mais Aprova na GV 1 4. O total de números pares não negativos de até quatro algarismos que podem ser formados com os algarismos 0, 1, e, sem repetir algarismos, é igual a: a) 6 b) 7 c) 8 d) 9 e) 0 Números pares que podemos formar com os números dados: 1 algarismo: 0 e algarismos: 10, 1, 0, 0, algarismos: 10, 10, 10, 1, 10, 0, 0, 10, 1, 0 4 algarismos: 10, 10, 10, 10, 10, 10, 01, 10, 10, Os elementos da matriz A = (a ij ) representam a quantidade de voos diários apenas entre os aeroportos i, de um país, e os aeroportos j, de outro país. A respeito desses voos, sabe-se que: quando j =, o número de voos é sempre o mesmo, quando i = j, o número de voos é sempre o mesmo, quando i =, o número de voos é sempre o mesmo; a 11 0, e det A = 0. De acordo com as informações, é correto afirmar que o conjunto solução com as possibilidades de a 11 é igual a: a) {a 1, a 1 } b) {a 1, a } c) {a, a 1 } d) {a 1, a } e) {a 1, a } Total: = 7 Alternativa B ( a 1 A matriz dada é A = a 1 a ) Devemos ter det A = 0 Û + a + a 1. a 1 a 1 a 1 a = 0 [ (a 1 + a 1 ) + a 1 a 1 ] = 0 = 0 (não pode) ou (a 1 + a 1 ) + a 1 a 1 = 0 De onde obtemos: 1 + = a 1 + a 1 1. = a 1. a 1 As raízes são: a 1 e a 1 Alternativa A fgveconov014_1f CPV

14 14 CPV o Cursinho que Mais Aprova na GV 6. Em uma sala estão presentes n pessoas, com n >. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos de mão entre si, e um único aperto por dupla de pessoas. Nessas condições, o número máimo de apertos trocados pelas n pessoas é igual a: a) n + n b) n n + c) n + n d) n n + e) n n O número máimo de apertos se dá quando somente uma pessoa não comprimenta as demais, assim: 7. Se 1 é um dos fatores da fatoração de m + n + 1, com m e n inteiros, então n + m é igual a: a) b) 1 c) 0 d) 1 e) m + n + 1 = ( 1) (m + b) m + n + 1 = m + b m b m b m + n + 1 = m + (b m) (b + m) b Assim, m = m b m = n Þ b = m + n Þ m + n = 1 b + m = 0 b = 1 b = 1 Alternativa B C = (n 1). (n ) C = n n n + = n n + Alternativa D CPV fgveconov014_1f

15 8. Considere o polinômio P(X) tal que P CPV o Cursinho que Mais Aprova na GV ( ) = A soma de todas as raízes da equação P() = 7 é igual a: 9. A seta indica um heptágono com AB = GF = AG = 4 BC = 4 FE = 0 cm. 15 a) 1 9 b) 1 c) 0 d) e) Sendo y =, temos: P (y) = (y) + (y) + 1 P (y) = 9y + y + 1 Sabe-se ainda que CD = ED e que o ângulo CD^ E é reto. Nas condições dadas, a área da região limitada por essa seta, em cm, é: a) 50 b) 60 c) 80 d) 00 e) 0 Assim: P () = 9 ( ) + () + 1 = P () = 7 Þ = 7 Þ = 0 e a soma das raízes é 9 81 = 1 9 Alternativa A Temos: + = ( ) Þ = 400 Þ = 10 A total = A ABFG + A CDE A total = A total = = 00 cm Alternativa D fgveconov014_1f CPV

16 16 CPV o Cursinho que Mais Aprova na GV 0. Se 1 + cos α + cos α + cos α + cos 4 α +... = 5, com 0 < α < π, então sen α é igual a: a) 0,84 b) 0,90 c) 0,9 d) 0,94 e) 0,96 A soma dada é a soma de uma P.G. infinita de a 1 = 1 e q = cos α. Assim: 1 1 cos α = 5 Þ cos α = 4 5 Pelo Teorema Fundamental da Trigonometria, temos: sen α + cos α = 1 Þ sen 4 α + ( 5 ) = 1 Þ sen α = 5 Portanto, sen α = sen α. cos α = = 4 5 = 0,96 Alternativa E COMENTÁRIO DO CPV A Prova de Matemática do Processo Seletivo da FGV Economia (novembro de 014) manteve o seu formato tradicional, com questões claras e objetivas. A Banca Eaminadora abordou o programa de forma equilibrada, tanto no conteúdo quanto no grau de dificuldade, obtendo um resultado bastante adequado aos propósitos da Direção da Faculdade de selecionar os melhores vestibulandos. A cobertura dos assuntos foi abrangente: 1 questão Conjuntos 1 questão Razão e Proporção 1 questão Eponenciais 1 questão Porcentagem 1 questão Probabilidades 1 questão Geometria Analítica 1 questão Geometria Espacial 1 questão Matrizes questões Sequências questões Aritmética questões Trigonometria questões Análise Combinatória questões Polinômios questões Lógica 4 questões Funções 5 questões Geometria Plana CPV fgveconov014_1f

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é:

QUESTÃO 16 Na figura, temos os gráficos das funções f e g, de em. O valor de gof(4) + fog(1) é: Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A ạ SÉRIE DO ENSINO MÉDIO EM 4 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, temos os gráficos das funções f e g,

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013

CPV especializado na ESPM ESPM Resolvida Prova E 10/novembro/2013 CPV especializado na ESPM ESPM Resolvida Prova E 0/novembro/03 Matemática. As soluções da equação x + 3 x = 3x + são dois números: x + 3 a) primos b) positivos c) negativos d) pares e) ímpares x + 3 x

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM CPV 8% de aprovação na ESPM ESPM julho/010 Prova E Matemática 1. O valor da expressão y =,0 é: a) 1 b) c) d) e) 4 Sendo x =, e y =,0, temos: x 1 + y 1 x. y 1 y. x 1 1 1 y + x x 1 + y 1 + x y xy = = = xy

Leia mais

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2

2) A área da parte mostarda dos 100 padrões é 6. 9. 2. 3) A área total bordada com a cor mostarda é (5400 + 3700) cm 2 = 9100 cm 2 MATEMÁTICA 1 Um tapete deve ser bordado sobre uma tela de m por m, com as cores marrom, mostarda, verde e laranja, da seguinte forma: o padrão quadrado de 18 cm por 18 cm, mostrado abaio, será repetido

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV PV O ursinho que Mais Aprova na GV FGV ADM 1/dez/01 MATEMÁTIA APLIADA 01. Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2004 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere as seguintes afirmações sobre o conjunto U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} I. U e n(u) = 10 III. 5 U e {5}

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos. PROVA FINAL DO 3.º CICLO DO ENSINO BÁSICO Matemática/Prova 92/1.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é

Revisão Extra UECE. 1. (Espcex- 2013) A figura a seguir apresenta o gráfico de um polinômio P(x) do 4º grau no intervalo 0,5. 1 0 no intervalo 0,5 é 1. (Espce- 01) A figura a seguir apresenta o gráfico de um polinômio P() do º grau no intervalo 0,5. O número de raízes reais da equação a) 0 b) 1 c) d) e) P 1 0 no intervalo 0,5 é. (Ufrn 01) Considere,

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9.

9 é MATEMÁTICA. 26. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. MATEMÁTICA 6. O algarismo das unidades de (A) 0. (B) 1. (C) 3. (D) 6. (E) 9. 10 9 é 7. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a (A) (B) (C) (D)

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014-2 INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR - INSPER. ANÁLISE QUANTITATIVA E LÓGICA POR PROFA. MARIA ANTÔNIA C. GOUVEIA Utilize as informações a seguir para as questões e. Uma estação de trens é constituída

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Geometria Analítica Plana.

Geometria Analítica Plana. Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 1. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.

3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção. Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa D. alternativa C. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma escola paga, pelo aluguel anual do ginásiodeesportesdeumclubea,umataxa fixa de R$.000,00 e mais R$ 0,00 por aluno. Um clube B cobraria pelo aluguel anual de um ginásio equivalente

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

AULA DE REPOSIÇÃO 001 / 3º ANO

AULA DE REPOSIÇÃO 001 / 3º ANO UL DE REPOSIÇÃO 00 / 3º NO Introdução Inicialmente, para a primeira aula, será feita uma retomada de todo o assunto já estudado, uma vez que não é nada fácil simplesmente retomar o conteúdo sem que sejam

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere z = + i19 cis θ Determine os valores de θ pertencentes

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

AMARELA EFOMM-2008 AMARELA

AMARELA EFOMM-2008 AMARELA PROVA DE MATEMÁTICA EFOMM-008 1ª Questão: A figura acima representa uma caixa de presente de papelão que mede 16 por 30 centímetros. Ao cortarmos fora os quadrados do mesmo tamanho dos quatro cantos e

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

MATEMÁTICA PRIMEIRA ETAPA - 1999

MATEMÁTICA PRIMEIRA ETAPA - 1999 MATEMÁTICA PRIMEIRA ETAPA - 1999 QUESTÃO 46 Observe a figura. Essa figura representa o intervalo da reta numérica determinado pelos números dados. Todos os intervalos indicados (correspondentes a duas

Leia mais

Raciocínio Matemático RESOLUÇÃO

Raciocínio Matemático RESOLUÇÃO ESCOLA DE ECONOMIA DE SÃO PAULO FUNDAÇÃO GETÚLIO VARGAS PROCESSO SELETIVO 2007/1.º SEMESTRE CADERNO 1 Respostas da 2. a Fase Raciocínio Matemático RESOLUÇÃO 17.12.2006 RACIOCÍNIO MATEMÁTICO 01. Em uma

Leia mais

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser

Leia mais

Matemática SSA 2 REVISÃO GERAL 1

Matemática SSA 2 REVISÃO GERAL 1 1. REVISÃO 01 Matemática SSA REVISÃO GERAL 1. Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede cm, e o raio de sua base

Leia mais

Edital nº 01, de 06 de janeiro de 2016.

Edital nº 01, de 06 de janeiro de 2016. COMISSÃO PERMANENTE DE SELEÇÃO COPESE Edital nº 01, de 06 de janeiro de 016. PROVA OBJETIVA - PROFESSOR DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO ÁREA DE CONHECIMENTO MATEMÁTICA/ DESENHO GEOMÉTRICO INSTRUÇÕES

Leia mais

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data

Bilhete de Identidade n.º Emitido em (Localidade) Classificação em percentagem % ( por cento) Correspondente ao nível ( ) Data EXAME NACIONAL DO ENSINO BÁSICO Prova 23 / 1.ª Chamada / 2009 Decreto-Lei n.º 6/2001, de 18 de Janeiro A PREENCHER PELO ESTUDANTE Nome Completo Bilhete de Identidade n.º Emitido em (Localidade) Assinatura

Leia mais

MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH

MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH MATEMÁTICA Prof. Favalessa 1. Em um aparelho experimental, um feixe laser emitido no ponto P reflete internamente três vezes e chega ao ponto Q, percorrendo o trajeto PFGHQ. Na figura abaixo, considere

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Canguru sem fronteiras 2007

Canguru sem fronteiras 2007 Duração: 1h15mn Destinatários: alunos do 12 ano de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada

Leia mais

Se o ABC é isóscele de base AC, determine x.

Se o ABC é isóscele de base AC, determine x. LISTA DE EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA PROFESSOR MOABI QUESTÃO I Nas figuras abaixo, o CBA é congruente ao CDE. Determine o valor de x e y. QUESTÃO II Num triângulo, o maior lado mede 26 cm,

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV ADM Objetiva 06/junho/010 MATemática 01. O monitor de um notebook tem formato retangular com a diagonal medindo d. Um lado do retângulo mede 3 do outro. 4 A área do

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa

Álgebra Linear. André Arbex Hallack Frederico Sercio Feitosa Álgebra Linear André Arbex Hallack Frederico Sercio Feitosa Janeiro/2006 Índice 1 Sistemas Lineares 1 11 Corpos 1 12 Sistemas de Equações Lineares 3 13 Sistemas equivalentes 4 14 Operações elementares

Leia mais

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2.

a soma dois números anteriores da primeira coluna está na segunda coluna: (3m +1) + (3n +1) = 3(m + n) + 2. OBMEP 01 Nível 3 1 QUESTÃO 1 ALTERNATIVA A Basta verificar que após oito giros sucessivos o quadrado menor retorna à sua posição inicial. Como 01 = 8 1+ 4, após o 01º giro o quadrado cinza terá dado 1

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

Semelhança de Triângulos

Semelhança de Triângulos Semelhança de Triângulos 1. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Assumindo DE = GF =12, EF = DG = 8 e AB =15, a altura do triângulo ABC é: a) 35

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IM - maio 006 MTMÁTI 0. a) atore a epressão 3 3 + 6. b) Resolva, em, a inequação 3 3 + 6 +. a) 3 3 + 6 = (3 ) 6(3 ) = ( 6)(3 ) = ( + 6 )( 6 )(3 ) é a forma fatorada

Leia mais

QUESTÕES OBJETIVAS PROVA 1 MATEMÁTICA 2. 1 Sendo este o gráfico de f(x),

QUESTÕES OBJETIVAS PROVA 1 MATEMÁTICA 2. 1 Sendo este o gráfico de f(x), QUESTÕES OBJETIVAS Sendo este o gráfico de f(), Multiplicando os números 4 567 896 095 46 765 44 769 (de algarismos) e 568 97 0 875 45 666 875 (de algarismos) obtemos um produto cuja quantidade de algarismos

Leia mais

Acadêmico: Projeto de Ensino: Curso de Matemática Básica

Acadêmico: Projeto de Ensino: Curso de Matemática Básica O gênio é composto por % de talento e de 8% de perseverante aplicação (Ludwing Van Beethoven) Acadêmico: Projeto de Ensino: Curso de Matemática Básica SUMÁRIO NÚMEROS E OPERAÇÕES Introdução Conjunto dos

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais