A trigonometria do triângulo retângulo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A trigonometria do triângulo retângulo"

Transcrição

1 A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e que, para este tipo de triângulo, há várias propriedades importantes. cateto cateto cateto cateto cateto cateto l Dois de seus lados são perpendiculares entre si e são, portanto, alturas do triângulo, o que facilita o cálculo de sua área: A = cateto. cateto 2 l Teorema de Pitágoras: ()² = (cateto)² + (cateto)²² l Como a soma dos ângulos de qualquer triângulo é 180º, num triângulo retângulo um dos ângulos é reto (90º) e os outros dois são sempre agudos e complementares (soma = 90º). Nesta aula, vamos descobrir como podemos estabelecer relações entre os ângulos de um triângulo retângulo (ângulos agudos) e seus lados. Será que eistem tais relações? É essa nossa primeira preocupação. A seguir, caso eistam, serão respondidas perguntas naturais como: Valem sempre? ; Como enunciá-las? etc.

2 Construindo triângulos retângulos semelhantes Dado um ângulo agudo qualquer, é possível desenhar um triângulo retângulo? Nossa A U Laula A Sim, podemos desenhar, na verdade, uma infinidade de triângulos retângulos. Vamos anotar algumas observações sobre esses triângulos retângulos: l Para todos eles, um dos ângulos mede. l O outro ângulo agudo mede 90º -, pois é o complemento de. l O terceiro ângulo, como não poderia deiar de ser, é reto. l Então todos eles possuem os mesmos ângulos. l Lembrando a aula anterior, podemos concluir que: todos estes triângulos retângulos são semelhantes l Se são semelhantes, então seus lados são proporcionais. Podemos então afirmar que, fiado um ângulo agudo, todos os triângulos retângulos, construídos com esse ângulo serão semelhantes e, portanto, terão lados proporcionais. Observe que acabamos de descobrir que há uma relação entre ângulos agudos e lados de um triângulo retângulo. Precisamos agora verificar como podemos enunciar essa relação mais claramente, usando linguagem matemática. Observe a figura a seguir: Q Figura 1 C A B P Os triângulos ABC e APQ são semelhantes. Como seus lados são proporcionais, podemos escrever: AB AP BC PQ BC PQ = ou = ou = AC AQ AC AQ AB AP

3 A U L A E se aumentarmos o ângulo (ou 0 diminuirmos)? F Essas proporções se alteram. Teríamos agora: Figura 2 E Q C A B P AB AP BE PF BE PF = ou = ou = AE AF AE AF AB AP Essas proporções - que se alteram conforme o ângulo varia - confirmam nossa suspeita de que há uma relação entre lados e ângulos agudos de um triângulo retângulo. Tais relações recebem nomes especiais como veremos ainda nesta aula. Relacionando lados e ângulos Você já sabe que, em todo triângulo retângulo, os lados são chamados (o maior lado) e catetos (lados perpendiculares). Precisamos, em função do ângulo, diferenciar a nomenclatura dos catetos. Veja a figura abaio. O cateto que fica em frente ao ângulo agudo que estamos utilizando chamase cateto oposto, e o cateto que está sobre um dos lados desse ângulo chama-se cateto adjacente. cateto adjacente cateto oposto Observe que, se o ângulo do problema for o outro ângulo agudo do triângulo, a nomenclatura oposto e adjacente troca de posição (veja a figura ao lado), pois depende do ângulo utilizado. cateto oposto y cateto adjacente

4 Vamos então reescrever as proporções obtidas na Figura 1 usando essa nomenclatura. Em relação ao ângulo, temos: A cateto adjacente C cateto oposto B cateto adjacente Q cateto oposto P BC AC = PQ cateto oposto = AQ AB AC = AP cateto adjacente = AQ BC AB = PQ AP = cateto oposto cateto adjacente A U L A Relações trigonométricas As relações que acabamos de generalizar são chamadas relações trigonométricas e recebem nomes especiais. A primeira é chamada seno do ângulo e escreve-se: cateto oposto sen = A segunda é chamada co-seno do ângulo e escreve-se: cateto adjacente cos = A última denomina-se tangente do ângulo e escreve-se: cateto oposto tg = cateto adjacente EXEMPLO 1 Você já conhece o triângulo pitagórico. Vamos obter as relações trigonométricas para um de seus ângulos agudos. 5 3 sen = 3 5 = 0,6 cos = 4 5 = 0,8 4 tg = 3 4 = 0,75

5 A U L A Observe agora que, para qualquer outro triângulo semelhante a este, obtemos o mesmo resultado. sen = 1, 5 2,5 = 3 5 = 4,5 7,5 = 6 =...= 0,6 10 cos = 2 2,5 = 4 5 = 6 7,5 = 8 =...= 0,8 10 tg = 1, 5 2 = 3 4 = 4,5 6 = 6 =...= 0,75 8 7,5 10 4, ,5 6 8 EXEMPLO 2 Na aula anterior, você viu um eemplo da utilização de ângulos para o cálculo da inclinação do telhado. No caso da utilização de telhas francesas, ficamos sabendo que o telhado poderá ter um caimento de 45%, o que equivale a um ângulo de 25º. Reveja a figura: 0,45 m 1 m Observe que 45% = 0,45 é a tangente do ângulo, que já sabemos ser igual a 25º. Em linguagem matemática, podemos escrever: tg = cateto oposto cateto adjacente ou tg 25º = 0,45 1 = 0,45 Na realidade, esse é um cálculo aproimado, feito com base na eperiência do carpinteiro e conferido por nós com instrumentos de desenho. Mais precisamente teríamos: tg 25º = 0,46631 Esse resultado pode ser obtido consultando-se uma tabela trigonométrica como a que reproduzimos no final desta aula.

6 EXEMPLO 3 Um torneiro mecânico precisa moldar uma peça e recebe o projeto a seguir. Todas as medidas necessárias à fabricação constam na figura. No entanto, como saber eatamente onde ele deve começar a fazer a inclinação para obter um ângulo de 25º, como mostra o projeto? A U L A Esse é um eemplo de aplicação da trigonometria dos triângulos retângulos na indústria. Para resolver o problema, o que precisamos é determinar o cateto do triângulo retângulo a seguir: P 25 B A Com os dados do projeto, podemos calcular AP: Q P 25 R B AQ = 50 e BR = 10 Assim, AP = = 20 A Sendo o ângulo B de 25º no triângulo ABP, podemos escrever: tg 25º = cateto oposto cateto adjacente = AP BP = 20 No Eemplo 2, vimos que tg 25º = 0, Usando apenas 3 casas decimais, temos: 0, 466 = ou = 0, 43 Dessa maneira, o torneiro descobre que o comprimento 100 da figura está dividido em duas partes, uma valendo 43 e a outra 67. Em 67 unidades de comprimento não há inclinação, e nas outras 43 ele deve inclinar a peça de tal maneira que seu final fique com 14 unidades de comprimento.

7 A U L A Usando a tabela trigonométrica Como vimos, para calcular o seno, o co-seno e a tangente de um ângulo agudo, basta desenhar um triângulo retângulo que possua esse ângulo, medir com bastante precisão os seus lados e calcular as razões: sen = cat.op. hip. cos = cat.adj. hip. tg = cat.op. cat.adj. Vejamos como calcularíamos essas razões para um ângulo de 32º. Vamos utilizar um papel milimetrado (papel quadriculado onde os lados de cada quadradinho medem 1 milímetro = 1 mm) para tentar ser bastante precisos. Q 5,9 cm 3,1 cm O 32 5 cm P Observe que construímos um ângulo de 32º e o triângulo OPQ. Medindo seus lados temos: OP = 50 mm, PQ = 31 mm, OQ = 59 mm Minutos (') e segundos ('') são dubdivisões do grau, dando mais precisão às medidas dos ângulos.. sen = 0,52 cos = 0,84 tg = 0,62 No entanto, esses valores, obtidos por processos gráficos, por melhor que seja nosso desenho, apresentam sempre imprecisões. Além disso, seria muito trabalhoso obter os valores de senos, co-senos e tangentes de ângulos graficamente, cada vez que precisássemos desses valores. Eistem processos para calcular senos, co-senos e tangentes com muitas casas decimais eatas. Hoje em dia, muitas calculadoras já trazem teclas com essas funções. Para usá-las, basta digitar a medida do ângulo e depois a tecla correspondente à função desejada. Outro recurso muito utilizado é consultar uma tabela trigonométrica, como a que consta no final desta aula. Nessa tabela, podemos encontrar os valores de seno, co-seno e tangente com uma aproimação de 5 casas decimais para todos os ângulos com medidas inteiras entre 1º e 90º, de 10 em 10 minutos.

8 Consulte a tabela e confirme que: sen 41º = 0,65606 cos 41º = 0,75471 tg 41º = 0,86929 sen 80º = 0,98481 cos 80º = 0,17365 tg 80º = 5,67128 A U L A EXEMPLO 4 Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada? 45 Representando a vista lateral geometricamente, podemos construir o triângulo retângulo a seguir: muro 45 escada 45 ch o 2 45 Usando o co-seno do ângulo de 45º que a escada forma com o muro, descobrimos o valor de, que será o comprimento da escada. cos 45º = 2 0,707. = 2 2,83 Eercício 1 Consulte a tabela trigonométrica e dê os valores de: a) sen 52º, cos 52º, tg 52º b) sen 38º, cos 38º, tg 38º c) sen 20º e cos 70º d) sen 70º e cos 20º Eercícios Eercício 2 Usando os triângulos retângulos a seguir, determine as razões trigonométricas para o ângulo. 2 2 cm 2 cm 3 2 cm 3 cm 2 cm 3 cm

9 A U L A Eercício 3 No Eercício 2, o que podemos concluir sobre o ângulo? Quanto mede esse ângulo? Eercício 4 Com auílio da tabela e dos eercícios anteriores, responda: a) A tangente de um ângulo agudo pode ser igual a 1? Em caso afirmativo, para que ângulo isso acontece? b) A tangente de um ângulo agudo pode ser maior do que 1? Em caso afirmativo, para que ângulos isso acontece? Eercício 5 Nos itens (c) e (d) do Eercício 1, você encontrou na tabela o seno e o coseno dos ângulos 20º e 70º, que são ângulos complementares (20º + 70º = 90º). Encontre na tabela os valores de seno e co-seno de outros ângulos complementares como: 30º e 60º, º e 50º... O que podemos concluir a partir da observação desses valores? Eercício 6 a) Com os valores que você anotou no Eercício 5, calcule, agora com o auílio da máquina de calcular, o valor das frações: sen 20º cos 20º sen 70º cos 70º sen 52º cos 52º sen 38º cos 38º b) Comparando esses resultados com o valor da tangente desses ângulos, o que podemos concluir?

10 Tabelas trigonométricas A U L A

11 A U L A TABELA DE SENOS 0º - 45º , , , , , , , , , , , , , , , , , , , , , , , ,8 0, , ,451 0, , , , , , , , , , , , ,656 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,142 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,282 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,071 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,561 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,939 0, ,498 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,674 0, , , , , , , , , , , , , , , , , , , , ,70711 graus minutos

12 A U L A TABELA DE SENOS 45º - 90º graus minutos , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,825 0, , , , , , , , , , , , ,968 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,947 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,995 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,964 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

13 A U L A graus minutos TABELA DE CO-SENOS 0º - 45º , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,995 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,964 0, , , , , , , , , , , , , , , , , , , ,947 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,69675

14 graus minutos TABELA DE CO-SENOS 45º - 90º A U L A 45 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,656 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,561 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,451 0, , , , , , , , , , , , , , , , ,674 0,8 0,142 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,282 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,071 0, , , , , , , , , , , , , ,

15 A U L A graus minutos TABELA DE TANGENTES 0º - 45º , , , , , , , , , , , , , , ,075 0, , , , , , , ,068 0, , , , , , , , , , , , , , , , , , , , , , , , , ,154 0, , , , , , , , , , , , , , , , , , ,197 0, , , , , , , , , , , , , ,208 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,357 0, , , , , , , , , , , , , ,3 0,741 0, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,847 0, ,858 0, , , , , , , , ,900 0, , , , , , , , , , , , , , , , , , , , , , ,02952

16 TABELA DE TANGENTES 45º - 90º A U L A graus minutos , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,195 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,805 1, , , , , , ,890 1, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,206 3, , , ,323 3, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,989 5, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,385 10, , , , , , , , , , , , , , , , ,470 22, , , , , , , ,968 49, , , , , , ,

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Matemática Aplicada II

Matemática Aplicada II Matemática Aplicada II 010G Cópia não autorizada. Reservados todos os MATEMÁTICA direitos APLICADA autorais. II 5E Editora Aline Palhares Desenvolvimento de conteúdo, mediação pedagógica e design gráfico

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

CEEJA MAX DADÁ GALLIZZI

CEEJA MAX DADÁ GALLIZZI CEEJA MAX DADÁ GALLIZZI MATEMÁTICA ENSINO MÉDIO APOSTILA 14 Parabéns!!! Você já é um vencedor! Voltar a estudar é uma vitória que poucos podem dizer que conseguiram. É para você, caro aluno, que desenvolvemos

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

1 A Integral por Partes

1 A Integral por Partes Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos.

Prova Final de Matemática. 3.º Ciclo do Ensino Básico. Prova 92/1.ª Chamada. Duração da Prova: 90 minutos. Tolerância: 30 minutos. PROVA FINAL DO 3.º CICLO DO ENSINO BÁSICO Matemática/Prova 92/1.ª Chamada/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ESTUDANTE Nome completo Documento de identificação CC n.º ou BI

Leia mais

Calculando o desalinhamento da contraponta

Calculando o desalinhamento da contraponta Calculando o desalinhamento da contraponta A UU L AL A Tornear peças cônicas é uma atividade bastante comum na área da Mecânica. Para fazer isso, o torneiro tem duas técnicas a sua disposição: ele pode

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 1 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Geometria Analítica Plana.

Geometria Analítica Plana. Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV Economia 1 a Fase /nov/014 MATEMÁTICA 01. Observe o diagrama com 5 organizações intergovernamentais de integração sul-americana: Dos 1 países que compõem esse diagrama,

Leia mais

APRESENTAÇÃO. Sumário

APRESENTAÇÃO. Sumário APRESENTAÇÃO Sumário Escrevi este pequeno livro com o objetivo de conscientizar ; simplificando os cálculos,algébricos e também da geometria. As situações desafiadoras continuam exercendo um papel preponderante

Leia mais

AULA DE REPOSIÇÃO 001 / 3º ANO

AULA DE REPOSIÇÃO 001 / 3º ANO UL DE REPOSIÇÃO 00 / 3º NO Introdução Inicialmente, para a primeira aula, será feita uma retomada de todo o assunto já estudado, uma vez que não é nada fácil simplesmente retomar o conteúdo sem que sejam

Leia mais

(Exames Nacionais 2000)

(Exames Nacionais 2000) (Eames Nacionais 000) 1.a) Seja [ABC] um triângulo O ângulo, assinalado na figura, tem o seu vértice no centro isósceles em que BA = BC. Seja α da Terra; o seu lado origem passa no perigeu, o seu lado

Leia mais

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br MATEMÁTICA APLICADA Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série

Leia mais

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO PROFESSOR: DENYS YOSHIDA PERÍODO: MANHÃ DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 016 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

Triângulos especiais

Triângulos especiais A UA UL LA Triânguos especiais Introdução Nesta aua, estudaremos o caso de dois triânguos muito especiais - o equiátero e o retânguo - seus ados, seus ânguos e suas razões trigonométricas. Antes, vamos

Leia mais

4 Mudança de Coordenadas

4 Mudança de Coordenadas Material by: Caio Guimarães (Equipe Rumoaoita.com) Última atualização: 14 de outubro de 006 4 Mudança de Coordenadas Translação e Rotação de Curvas no R² Introdução O enfoque dos 3 primeiros capítulos

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

TRIGONOMETRIA. Matemática II. 1 a Série do Ensino Médio 1 o Semestre Prof. Sérgio Tambellini. Aluno:... Turma:...

TRIGONOMETRIA. Matemática II. 1 a Série do Ensino Médio 1 o Semestre Prof. Sérgio Tambellini. Aluno:... Turma:... TRIGONOMETRIA Matemática II a Série do Ensino Médio o Semestre Prof. Sérgio Tambellini Aluno:... Turma:... Matemática II Prof. Sérgio Tambellini AULA Radiciação Tópicos da aula Definição de raiz Potência

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

Modelagem Matemática: Construindo Casas com Recursos Computacionais

Modelagem Matemática: Construindo Casas com Recursos Computacionais Modelagem Matemática: Construindo Casas com Recursos Computacionais Universidade Federal de Uberlândia Faculdade de Matemática Adriano Soares Andrade (*) Deive Barbosa Alves (*) adrianosandrade@bol.com.br

Leia mais

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales

Unidade 8 - Trigonometria no Triângulo Retângulo. Trigonometria História Triângulo retângulo Teorema de Pitágoras Teorema de Tales Unidade 8 - Trigonometria no Triânguo Retânguo Trigonometria História Triânguo retânguo Teorema de Pitágoras Teorema de Taes História O significado etimoógico da paavra trigonometria vem do grego e resuta

Leia mais

Acadêmico: Projeto de Ensino: Curso de Matemática Básica

Acadêmico: Projeto de Ensino: Curso de Matemática Básica O gênio é composto por % de talento e de 8% de perseverante aplicação (Ludwing Van Beethoven) Acadêmico: Projeto de Ensino: Curso de Matemática Básica SUMÁRIO NÚMEROS E OPERAÇÕES Introdução Conjunto dos

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

+ Do que xxx e escadas

+ Do que xxx e escadas Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico DINÂMICA + Do que xxx e escadas Razões trigonométricas

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

1. UMA RAZÃO PARA OS LOGARITMOS

1. UMA RAZÃO PARA OS LOGARITMOS . UMA RAZÃO PARA OS LOGARITMOS.. INTRODUÇÃO Os logaritmos foram inventados, no começo do século XVII, como um instrumento para facilitar e simplificar o cálculo aritmético, permitindo que se efetuassem,

Leia mais

SISTEMA DE EQUAÇÕES DO 2º GRAU

SISTEMA DE EQUAÇÕES DO 2º GRAU SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Caderno 1: 35 minutos. Tolerância: 10 minutos

Caderno 1: 35 minutos. Tolerância: 10 minutos Nome: Ano / Turma: N.º: Data: - - Caderno 1: 35 minutos. Tolerância: 10 minutos (é permitido o uso de calculadora) A prova é constituída por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Programação em papel quadriculado

Programação em papel quadriculado 4 NOME DA AULA: Programação em papel quadriculado Tempo de aula: 45 60 minutos Tempo de preparação: 10 minutos Objetivo principal: ajudar os alunos a entender como a codificação funciona. RESUMO Ao "programar"

Leia mais

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço.

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço. A UUL AL A A casa Nesta aula vamos examinar a planta de uma casa. Será uma casa simples, situada em terreno plano, com, dois quartos, cozinha, banheiro e área de serviço. Introdução terreno 20 m rua 30

Leia mais

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser

Leia mais

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala

Escalas. Antes de representar objetos, modelos, peças, A U L A. Nossa aula. O que é escala Escalas Introdução Antes de representar objetos, modelos, peças, etc. deve-se estudar o seu tamanho real. Tamanho real é a grandeza que as coisas têm na realidade. Existem coisas que podem ser representadas

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

2. MÓDULO DE UM NÚMERO REAL

2. MÓDULO DE UM NÚMERO REAL 18 2. MÓDULO DE UM NÚMERO REAL como segue: Dado R, definimos o módulo (ou valor absoluto) de, e indicamos por,, se 0 =, se < 0. Interpretação Geométrica O valor absoluto de um número é, na reta, a distância

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

Construção de funções a partir de problemas geométricos

Construção de funções a partir de problemas geométricos Construção de funções a partir de problemas geométricos Atividade introdutória M. Elisa. E. L. Galvão IME-USP/UNIBAN Problema: entre todos os retângulos de mesmo perímetro, qual é o de maior área? Como

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM.

Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo abaixo) para Pré-IME, Pré-ITA, EsPCEx, EEAer, ENEM. O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de ÁLGEBRA do ensino fundamental (6º ao 9º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) e parcial (ver conteúdo

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a

12) A círculo = π r 2. 13) A lateral cone = π.r.g. 16) V esfera = 18) A lateral pirâmide = 19) (y y 0 ) = m(x x 0 ) 20) T p+1 = a MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o sen cos tg base altura ) A triângulo = ) A círculo = π r x y ) A triângulo = D, onde D = x y x y ) A lateral cone = π.r.g ) sen (x)+ cos (x)= 4) A retângulo = base altura

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Trigonometria na circunferência

Trigonometria na circunferência Módulo 2 Unidade 10 Trigonometria na circunferência Para início de conversa... Figura 1: Reportagem do jornal O Globo da década de 1990 mostra o relógio da Central do Brasil, no Rio de Janeiro, sendo limpo

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH

MATEMÁTICA. 3 ΔBHG ΔAFG(L.A.A o ) AG BG e HG = GF 2 3 K. No ΔGBH : GH 2 GH MATEMÁTICA Prof. Favalessa 1. Em um aparelho experimental, um feixe laser emitido no ponto P reflete internamente três vezes e chega ao ponto Q, percorrendo o trajeto PFGHQ. Na figura abaixo, considere

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

XXIV SEMANA ACADÊMICA DE MATEMÁTICA. Minicurso: Explorando o GeoGebra: Um software para o ensino e aprendizagem da matemática.

XXIV SEMANA ACADÊMICA DE MATEMÁTICA. Minicurso: Explorando o GeoGebra: Um software para o ensino e aprendizagem da matemática. Universidade Estadual do Oeste do Paraná CCET MATEMÁTICA XXIV SEMANA ACADÊMICA DE MATEMÁTICA Minicurso: Explorando o GeoGebra: Um software para o ensino e aprendizagem da matemática. Ministrantes: Daniel

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b)

MA.01. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 a 3 b 3 = = 3a 2 b + 3ab 2 = 3ab (a + b) Reformulação Pré-Vestibular matemática Cad. 1 Mega OP 1 OP MA.01 1.. 3. 4. Sejam a e b esses números naturais: (a + b) 3 (a 3 + b 3 ) a 3 + 3a b + 3ab + b 3 a 3 b 3 3a b + 3ab 3ab (a + b) Reformulação

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

Prova Final 2012 1.ª chamada

Prova Final 2012 1.ª chamada Prova Final 01 1.ª chamada 1. Num acampamento de verão, estão jovens de três nacionalidades: jovens portugueses, espanhóis e italianos. Nenhum dos jovens tem dupla nacionalidade. Metade dos jovens do acampamento

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

Neste texto, faremos o lançamento de armadura de flexão positiva inclinada, armadura de costela e estribo variável, em uma viga.

Neste texto, faremos o lançamento de armadura de flexão positiva inclinada, armadura de costela e estribo variável, em uma viga. Tratamento de ferros inteligente Vigas Neste texto, faremos o lançamento de armadura de flexão positiva inclinada, armadura de costela e estribo variável, em uma viga. Para qualquer detalhamento, a edição

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente

Razões Trigonométricas no Triângulo Retângulo. Seno, Cosseno e Tangente Razões Trigonométricas no Triângulo Retângulo Seno, Cosseno e Tangente 1. (Ufrn 01) A escadaria a seguir tem oito batentes no primeiro lance e seis, no segundo lance de escada. Sabendo que cada batente

Leia mais

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015

MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 GRUPO DISCIPLINAR DE MATEMÁTICA MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL 2014 / 2015 (Em conformidade com o Programa de Matemática homologado em 17 de junho de 2013 e com as de Matemática homologadas em 3

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

Aula 4 Ângulos em uma Circunferência

Aula 4 Ângulos em uma Circunferência MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.

Leia mais

Compreendendo o espaço

Compreendendo o espaço Módulo 1 Unidade 2 Compreendendo o espaço Para início de conversa... A forma como você se locomove na cidade para ir de um lugar a outro tem a ver com as direções que você toma e com o sentido para o qual

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

Apostila Complementar

Apostila Complementar Desenho Técnico Apostila Complementar O curso de Desenho técnico mecânico é baseado nas apostilas de Leitura e Interpretação do Desenho Técnico Mecânico do Telecurso 2000 Profissionalizante de Mecânica.

Leia mais

FEIXE DE RETAS PARALELAS TEOREMA DE TALES

FEIXE DE RETAS PARALELAS TEOREMA DE TALES 222 FEIXE DE RETAS PARALELAS Feixe de retas paralelas é um conjunto de retas distintas de um plano, paralelas entre si. As retas a, d e c da figura constituem um feixe de retas paralelas. r s Transversal

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA. Módulo 2. Unidades 19 e 20

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA. Módulo 2. Unidades 19 e 20 MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA Módulo 2 Unidades 19 e 20 2 Unidade 19 A trigonometria do triângulo retângulo Para início de conversa... (Texto no interior do balão: Estou trabalhando

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

P3 da 2ª Etapa/2013 Valor: 3,0 pontos. Atividades usando o GEOGEBRA.

P3 da 2ª Etapa/2013 Valor: 3,0 pontos. Atividades usando o GEOGEBRA. ROTEIRO COMPONENTE CURRICULAR: Matemática 2 PROF.(A): Fabiano Maciel DATA: 9º An o EFII ALUNO(A): Nº: TURMA: P3 da 2ª Etapa/2013 Valor: 3,0 pontos Atividades usando o GEOGEBRA. As atividades deverão ser

Leia mais