1 ELEMENTOS DA CIRCUNFERÊNCIA

Tamanho: px
Começar a partir da página:

Download "1 ELEMENTOS DA CIRCUNFERÊNCIA"

Transcrição

1 Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos de centro da circunferência) Na prática: Reta tangente: Uma reta tangente a uma circunferência é uma reta que intercepta a circunferência em um único ponto Este ponto é conhecido como ponto de tangência ou ponto de contato Observação MUITO importante: (aprenda muito bem porque isso cai MUITO nos vestibulares): O R Toda reta tangente a uma circunferência é perpendicular ao raio no ponto de tangência Em uma figura: Figura 1 circunferência de centro e raio Na figura 1, todos os pontos da curva pontos estão à mesma distância do centro da circunferência Teremos especial interesse no cálculo da área do círculo e do perímetro da circunferência, dados por as seguintes fórmulas: Lembrando agora algumas retas e segmentos especiais que possuem relação com a circunferência : Figura 3 retas tangentes à circunferência Temos aqui retas tangentes em dois pontos: e Note que em ambos, a tangente é perpendicular ao raio que liga o ponto de tangência ao centro da circunferência Observação: Imagine uma corda da circunferência Caso baixemos um perpendicular à corda passando pelo centro da circunferência, encontraremos o ponto Este ponto será tal que Figura 4 perpendicular à corda da circunferência Figura 2 circunferência e retas e segmentos especiais Corda: Corda de uma circunferência é um segmento de reta cujas extremidades pertencem à circunferência Diâmetro: Diâmetro de uma circunferência é uma corda que passa pelo centro da circunferência Observamos que o diâmetro é a maior corda da circunferência e vale o dobro do raio Reta secante: Uma reta é secante a uma circunferência se essa reta intercepta a circunferência em dois pontos quaisquer 2 ÂNGULOS Depois de aprender a medir comprimentos, áreas e volumes na aula passada, vamos ver como medir e calcular algo que você tem que dominar muito bem: ângulos Ângulo nada mais é que a abertura entre duas retas Geralmente eles são medidos em graus ou em radianos Uma volta completa tem ou radianos CASD Vestibulares Geometria 1

2 21 Classificação quanto à medida Ângulo agudo: É aquele que tem medida menor que 22 Classificação quanto à soma Dois ângulos são complementares quando somam Nesse caso, dizemos que um é o complemento do outro Exemplos: e, e Figura 5 ângulo agudo Ângulo reto: É aquele que tem medida igual a Figura 10 dois ângulos complementares Figura 6 ângulo reto Dois ângulos são suplementares quando somam Nesse caso, dizemos que um é o suplemento do outro Exemplos: e, e Ângulo obtuso: É aquele que tem medida maior que Figura 11 dois ângulos suplementares Figura 7 ângulo obtuso Ângulo raso ou de meia volta: É aquele que representa meia volta de uma circunferência e vale Dois ângulos são replementares quando somam Dizemos que um é o suplemento do outro Exemplos: e, e Figura 8 ângulo raso Agora bastante atenção para a próxima definição Será algo utilizado exaustivamente durante o ano Ângulos opostos pelo vértice (OPV) Figura 12 dois ângulos replementares 3 CONVERSÃO DE UNIDADES A unidade de medida mais comum e mais importante é o grau Ele pode ser definido da seguinte forma: Definição: o grau (º) é o ângulo cuja medida é de uma volta completa (uma circunferência) Figura 9 ângulo opostos pelo vértice Ângulos opostos pelo vértice, como na figura acima, sempre possuem mesma medida possui Da definição, tem-se que uma circunferência Assim, uma semicircunferência possui e um quarto de circunferência possui No entanto, o grau não é a única unidade de ângulos Outra unidade que é bastante utilizada (principalmente em trigonometria) é o radiano (rad) E como vamos saber quantos radianos um ângulo tem? Para saber isso, temos que dividir o comprimento do arco que o ângulo determina em uma circunferência pelo raio da circunferência Observe os exemplos: 2 Geometria CASD Vestibulares

3 Um ângulo de determina um arco de uma volta completa em uma circunferência Se o raio da circunferência é, o comprimento do arco de uma volta completa é Dividindo esse comprimento pelo comprimento do raio, chegamos ao número Logo um ângulo de possui radianos Um ângulo de determina uma semicircunferência em uma circunferência Se o raio da circunferência é, o comprimento da semicircunferência é Dividindo esse comprimento pelo comprimento do raio, chegamos ao número Logo um ângulo de possui radianos Exercício Resolvido 1: Atividade para Sala nº 1, Geometria Plana II Sejam o centro e o raio da semicircunferência Logo Como, tem-se que Então a figura do problema é a seguinte: Um ângulo de determina um arco de um quarto de circunferência em uma circunferência Se o raio da circunferência é, o comprimento de um quarto de circunferência é Dividindo esse comprimento pelo comprimento do raio, chegamos ao número Logo um ângulo de possui radianos Observe que sempre que dividimos a medida de um ângulo em graus é diretamente proporcional à medida do mesmo ângulo em radianos Além disso, observe que 1 semicircunferência e 1 semicircunferência Logo: Figura 13 figura do exercício resolvido 1 A relação acima é muito importante quando queremos converter graus em radianos e vice-versa 31 Submúltiplos do grau Como é um quadrado de lado, a sua área é Além disso, como a área de um círculo é, a área do semicírculo da figura é Logo, a área total do canteiro é a área do quadrado mais a área do semicírculo: Nós acabamos de ver que o grau é de uma circunferência Agora, vamos conhecer os submúltiplos do grau, que são ainda menores do que ele! Minuto: 1 minuto é de um grau, ou seja, 1 grau equivale a 60 minutos Portanto, pode-se dizer que Além disso, a área do canteiro é Então: Segundo: 1 segundo é de um minuto, ou seja, 1 minuto equivale a 60 segundos Portanto, podese dizer que Resposta: Alternativa E Agora podemos falar que um ângulo pode medir (que precisão!) Note que não é correto dizer que um ângulo vale : como temos mais de 60 minutos, devemos dividir o total de minutos por 60, converter o excesso de minutos em graus, de modo a sobrar apenas o resto Observe: Exercício Resolvido 2: Atividade para Sala nº 3, Geometria Plana II voltas voltas voltas Assim: Resposta: Alternativa B CASD Vestibulares Geometria 3

4 Exercício Resolvido 3: Exercício Resolvido 5: Determine o valor de e de acordo com a figura abaixo: Converta em radianos Aplicando uma regra de três simples, tem-se que: Figura 14 figura do exercício resolvido 3 Logo: Resposta: equivale a e são ângulos opostos pelo vértice, logo são iguais Então, temos: Exercício Resolvido 6: Converta em graus deles é e são ângulos suplementares, logo a soma Então, temos: Aplicando uma regra de três simples, tem-se que: Resposta: e Logo: Exercício Resolvido 4: Qual é o ângulo cujo suplemento excede de quádruplo do seu complemento? Esta questão à primeira vista parece um pouco confusa, mas ela fica bem bacana depois que você organiza os dados Vamos lá: Seja o ângulo que queremos descobrirlogo: Suplemento de : Complemento de : Quádruplo do complemento de : Agora, de acordo com o enunciado, o suplemento de excede de (isto é, tem um excesso de ) o quádruplo do seu complemento Matematicamente falando: o Resposta: equivale a Expresse Exercício Resolvido 7: na maneira correta Para expressar na maneira correta, os números nas casas dos minutos e dos segundos devem ser menores que 60 Então: Vamos converter o excesso de segundos: Vamos converter o excesso de minutos: Resposta: expresso na maneira correta é Resposta: o ângulo cujo suplemento excede de quádruplo do seu complemento é o 4 Geometria CASD Vestibulares

5 EXERCÍCIOS PROPOSTOS Os exercícios abaixo (quando indicados por Atividade Proposta nº ) referem-se às Atividades Propostas do capítulo Geometria Plana II Nível I 1 Atividade Proposta nº 5 2 (UFPB - 07) Um ciclista, para vencer uma competição, percorreu em uma bicicleta com rodas de raio (incluindo o pneu) O número de voltas completas que cada roda da bicicleta deu, para percorrer essa distância, foi: (use ) 3 (UFTM - 11) O maior relógio de torre de toda a Europa é o da Igreja St Peter, na cidade de Zurique, Suíça, que foi construído durante uma reforma do local, em 1970 (O Estado de SPaulo Adaptado) O mostrador desse relógio tem formato circular, e o seu ponteiro dos minutos mede Considerando, a distância que a extremidade desse ponteiro percorre durante minutos é, aproximadamente, 4 (UFC - 04) Na figura ao lado, a razão entre o perímetro da região hachurada e o perímetro da circunferência é: 5 Atividade Proposta nº 2 8 Atividade Proposta nº 3 9 Determine a medida do ângulo igual ao triplo do seu complemento 10 Exprima em radianos os seguintes ângulos: a) b) c) d) e) f) 11 Exprima os ângulos abaixo em graus: a) b) c) d) Nível II 12 Você tem dois pedaços de arame de mesmo comprimento e pequena espessura Um deles você usa para formar o círculo da figura I, e o outro você corta em partes iguais para formar os três círculos da figura II Se é a área do círculo maior e é a área de um dos círculos menores, a relação entre e é dada por: 13 (UFV - 99) Aumentando-se no raio de uma circunferência, o comprimento e a área, respectivamente, aumentam: a) e b) e c) e d) e e) e 14 Calcule o ângulo abaixo a) 6 Atividade Proposta nº 10 7 Determine nos casos abaixo: a) b) b) c) 15 Atividade Proposta nº 1 CASD Vestibulares Geometria 5

6 16 A razão entre dois ângulos suplementares é igual a Determine o complemento do menor 17 O complemento da terça parte de um ângulo excede o complemento desse ângulo em Determine o ângulo 18 Exprima em radianos os seguintes ângulos: f) g) h) i) j) 19 Exprima os ângulos abaixo em graus: f) g) h) i) j) DICAS E FATOS QUE AJUDAM 1 Comprimento da circunferência (não se esqueça de que ) 2 Comprimento da circunferência (não se esqueça de que ) 3 Comprimento da circunferência (não se esqueça de que o ponteiro dos minutos dá uma volta completa em, logo ele dá de volta em ) 4 Seja o raio da circunferência A região hachurada corresponde a dois pedaços, cada um sendo igual a de um círculo Note que o contorno de cada pedaço é formado por dois segmentos retos (cada um igual a ) e um arco de de circunferência (de comprimento ) Assim, o perímetro de cada pedaço é: 6 Note que o diâmetro do semicírculo é, logo o seu raio é Assim, a altura do retângulo é Agora some a área do retângulo com a área do semicírculo (a área do semicírculo é metade da área do círculo) 7a) Note que 7b) Note que 7c) Note que 8 Um ângulo de possui Dividindo por, o quociente é e o resto é Logo a pizza é dividida em fatias idênticas de e a fatia menor mede 9 Seja o ângulo que queremos descobrirlogo: Complemento de : Triplo do complemento de : Como o ângulo é igual ao triplo do seu complemento, matematicamente falando, tem-se: 10 Conversão de graus para radianos 11 Conversão de radianos para graus 12 O perímetro do círculo grande é o triplo do perímetro de um dos círculos pequenos, logo o raio do círculo grande é o triplo do raio de um dos círculos pequenos 13 Sejam o comprimento da primeira circunferência e a área do primeiro círculo Então, tem-se: Aumentando-se no raio, formou-se uma nova circunferência de comprimento e um novo círculo de área O aumento do comprimento é: Como a região hachurada é formada por dois pedaços, o perímetro da região hachurada é: Como o perímetro da circunferência é, a razão entre o perímetro da região hachurada e o perímetro da circunferência é 5 Diferença entre a área do quadrado e a área dos círculos (não se esqueça de que o diâmetro é o dobro do raio) O aumento da área é: 14 a) Note que e são opostos pelo vértice, logo Além disso, e são suplementares, logo 14 b) Note que e são opostos, pelo vértice, logo Além disso, e são suplementares, logo Resolva o sistema e calcule e Finalmente, note que e são opostos pelo vértice, logo 6 Geometria CASD Vestibulares

7 15 Como o diâmetro da circunferência é, o seu raio é e o seu comprimento é Dividindo o comprimento do menor arco pelo comprimento da circunferência, tem-se que: 1 B 2 B 3 B GABARITO Logo o menor arco corresponde a do comprimento da circunferência, correspondendo a um ângulo de Como o menor arco e o menor arco juntos formam uma semicircunferência (que corresponde a um ângulo de ), o menor arco corresponde a um ângulo de Assim, como o ângulo do setor é dobro do ângulo do setor, o setor representa o dobro de eleitores do setor, num total de eleitores 16 Seja um dos ânguloslogo o outro ângulo é Como a razão entre eles é, matematicamente falando, tem-se: 4 D 5 B 6 B 7 a) b) c) 8 C 9 O ângulo é 10 a) b) c) d) e) f) 11 a) b) c) d) 12 C Assim, o primeiro ângulo é e o segundo ângulo é Assim, o menor ângulo é e o seu complemento é 17 Seja o ângulo que queremos descobrirlogo: Complemento de : Terça parte de : Complemento da terça parte: Agora, de acordo com o enunciado, o complemento da terça parte de excede de (isto é, tem um excesso de ) o complemento de Matematicamente falando: 13 B 14 a) b) 15 C 16 O complemento do menor ângulo é 17 O ângulo é 18 a) b) c) d) e) f) g) h) i) j) Conversão de graus para radianos f) g) h) i) j) 19 Conversão de radianos para graus CASD Vestibulares Geometria 7

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente

3º Ano do Ensino Médio. Aula nº10 Prof. Daniel Szente Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº10 Prof. Daniel Szente Assunto: Função exponencial e logarítmica 1. Potenciação e suas propriedades Definição: Potenciação é a operação

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO

ESSA AULA ESTÁ NO YOUTUBE COM O NOME: Física Total aula 11 Introdução à cinemática angular RESUMO RESUMIDÍSSIMO Fala, FERA! Chegamos a nossa aula 11, lembrando que até o final do ano além das aulas, com as Pílulas Enem abordaremos todos os principais conteúdos abordados nos exames. Cinemática angular é um conteúdo

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Aula 4 Ângulos em uma Circunferência

Aula 4 Ângulos em uma Circunferência MODULO 1 - AULA 4 Aula 4 Ângulos em uma Circunferência Circunferência Definição: Circunferência é o conjunto de todos os pontos de um plano cuja distância a um ponto fixo desse plano é uma constante positiva.

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES

Leia mais

INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário.

INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário. INSTRUMENTOS USADOS Lápis e lapiseiras Os lápis médios são os recomendados para uso em desenho técnico, a seleção depende sobretudo de cada usuário. INSTRUMENTOS USADOS Esquadros São usados em pares: um

Leia mais

Trigonometria na circunferência

Trigonometria na circunferência Módulo 2 Unidade 10 Trigonometria na circunferência Para início de conversa... Figura 1: Reportagem do jornal O Globo da década de 1990 mostra o relógio da Central do Brasil, no Rio de Janeiro, sendo limpo

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br

ICARO SISTEMA DE ENSINO MATEMÁTICA APLICADA. www.portalicaro.com.br atendimento@portalicaro.com.br MATEMÁTICA APLICADA Disciplina: Matemática Aplicada Trigonometria e aplicações Introduzimos aqui alguns conceitos relacionados com a Trigonometria no triângulo retângulo, assunto comum na oitava série

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Matemática Aplicada II

Matemática Aplicada II Matemática Aplicada II 010G Cópia não autorizada. Reservados todos os MATEMÁTICA direitos APLICADA autorais. II 5E Editora Aline Palhares Desenvolvimento de conteúdo, mediação pedagógica e design gráfico

Leia mais

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12.

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12. O MOVIMENTO CIRCULAR Podemos definir movimento circular como todo aquele em que a trajetória percorrida por um móvel corresponde a uma circunferência. Não custa insistir, ainda uma vez, que a circunferência

Leia mais

16 Comprimento e área do círculo

16 Comprimento e área do círculo A UA UL LA Comprimento e área do círculo Introdução Nesta aula vamos aprender um pouco mais sobre o círculo, que começou a ser estudado há aproximadamente 4000 anos. Os círculos fazem parte do seu dia-a-dia.

Leia mais

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO

GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO GABARITO COMENTADO SIMULADO PRE VESTIBULAR INTENSIVO Resposta da questão 1: Como 900 360 180, segue que o atleta girou duas voltas e meia. Resposta da questão : O ângulo percorrido pelo ponteiro das horas

Leia mais

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo

1 TEOREMA DE TALES 2 APLICAÇÃO PARA TRIÂNGULOS 3 TEOREMA DA BISSETRIZ INTERNA. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XI 1 TEOREMA DE TALES No Nivelamento, um dos assuntos abordados foi Razão e Proporção. A proporção aparece em várias situações no dia-a-dia: por exemplo, na leitura

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016 Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 6.º ANO 2015/2016 Tema 1: Números naturais. Potências de expoente

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

LISTÃO UNIDADE IV. Mensagem:

LISTÃO UNIDADE IV. Mensagem: LISTÃO UNIDADE IV Mensagem: A Matemática é uma ciência poderosa e bela; problemiza ao mesmo tempo a harmonia divina do universo e a grandeza do espírito humano. (F. Gomes Teieira) 01. Efetue as operações:

Leia mais

1. Desenho artístico e técnico

1. Desenho artístico e técnico 1. Desenho artístico e técnico O desenho artístico possibilita uma ampla liberdade de figuração e apreciável subjetividade na representação. Dois artistas ao tratarem o mesmo tema transmitem, a quem observa

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS O R I y 90º 180º II Q I Q + 0º/360º III Q IV Q - 270º 1290º 210 360º 3 Como pode cair no enem (ENEM) As cidades de Quito

Leia mais

Circunferência e Círculos

Circunferência e Círculos Circunferência e Círculos 1. (Unifor 2014) Os pneus de uma bicicleta têm raio R e seus centros distam R. Além disso, a reta t passa por P e é tangente à circunferência do pneu, formando um ângulo α com

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Uerj 015) Um tubo cilíndrico cuja base tem centro F e raio r rola sem deslizar sobre um obstáculo com a forma de um prisma triangular regular. As vistas das bases do cilindro

Leia mais

Planificação 2015/2016

Planificação 2015/2016 Planificação 2015/2016 ENSINO SECUNDÁRIO PLANIFICAÇÃO DA DISCIPLINA DE MATEMÁTICA A 11º ANO DE ESCOLARIDADE CONTEÚDOS PROGRAMÁTICOS GEOMETRIA NO PLANO E NO ESPAÇO II 1-Resolução de Problemas Envolvendo

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

MATEMÁTICA 3. Resposta: 29

MATEMÁTICA 3. Resposta: 29 MATEMÁTICA 3 17. Uma ponte deve ser construída sobre um rio, unindo os pontos A e, como ilustrado na figura abaixo. Para calcular o comprimento A, escolhe-se um ponto C, na mesma margem em que está, e

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA

AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA AULÃO FAETEC /CEFET QUESTÕES DE GEOMETRIA FAETEC 2016/UERJ 2017 18/06/2016 FAETEC 2016-1 A figura abaixo é formada por um retângulo e dois círculos de mesmo diâmetro, que são tangentes entre si e a exatamente

Leia mais

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal

Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA. Professor Responsável: Ivan José Coser Tutora: Rafaela Seabra Cardoso Leal Universidade Tecnológica Federal do Paraná Câmpus Apucarana Projeto Novos Talentos Edital CAPES 55/12 Oficina Ensinando Geometria com Auxílio do Software GEOGEBRA Professor Responsável: Ivan José Coser

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos. Sergio Lima Netto sergioln@lps.ufrj.br

PROBLEMAS SELECIONADOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos. Sergio Lima Netto sergioln@lps.ufrj.br PROLEMS SELECIONDOS DE DESENHO GEOMÉTRICO Parte II: Polígonos e Círculos Sergio Lima Netto sergioln@lps.ufrj.br versão julho de 008 Prólogo Foi feito um grande esforço para reproduzir os desenhos que acompanham

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO DESENHO GEOMÉTRICO 1º ANO ENSINO MÉDIO PROFESSOR: DENYS YOSHIDA PERÍODO: MANHÃ DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 016 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

O Pi não é de Pizza. Dinâmica 3. Aluno Primeira Etapa Compartilhar ideias. 9º Ano 4º Bimestre

O Pi não é de Pizza. Dinâmica 3. Aluno Primeira Etapa Compartilhar ideias. 9º Ano 4º Bimestre Reforço escolar M ate mática O Pi não é de Pizza Dinâmica 3 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas.

Leia mais

Raio é o segmento de recta que une um ponto da circunferência com o seu centro.

Raio é o segmento de recta que une um ponto da circunferência com o seu centro. Catarina Ribeiro 1 Vamos Recordar: Circunferência de centro C e raio r é o lugar geométrico de todos os pontos do plano que estão à mesma distância r de um ponto fixo C. Círculo de centro C e raio r é

Leia mais

FÍSICA. Figura 5.1 Ventilador

FÍSICA. Figura 5.1 Ventilador FÍSICA 1 MECÂNICA MECÂNICA I II Mecânica Gráfica para alunos do ensino 3. médio Pêndulo utilizando simples o PUCK 5. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador

Leia mais

Preparação para o teste intermédio de Matemática 8º ano

Preparação para o teste intermédio de Matemática 8º ano Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos

Leia mais

Introdução À Astronomia e Astrofísica 2010

Introdução À Astronomia e Astrofísica 2010 CAPÍTULO 1 ESFERA CELESTE E O SISTEMA DE COORDENADAS Esfera Celeste. Sistema de Coordenadas. Coordenadas Astronómicas. Sistema Horizontal. Sistema Equatorial Celeste. Sistema Equatorial Horário. Tempo

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109

valdivinomat@yahoo.com.br Rua 13 de junho, 1882-3043-0109 LISTA 17 RELAÇÕES MÉTRICAS 1. (Uerj 01) Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Trigonometria na circunferência

Trigonometria na circunferência Módulo 2 Unidade 20 Trigonometria na circunferência Para início de conversa... Figura 1: Reportagem do jornal O Globo da década de 1990 mostra o relógio da Central do Brasil, no Rio de Janeiro, sendo limpo

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

MOVIMENTO CIRCULAR. Fonte da imagem: Física e Vestibular

MOVIMENTO CIRCULAR. Fonte da imagem: Física e Vestibular MOVIMENTO CIRCULAR 1. (ADAPTADO) Clodoaldo é lenhador mas também, é muito imaginativo e criativo. Ele criou uma máquina para cortar troncos de Jacarandá. O tronco de um Jacarandá é cortado, por Clodoaldo,

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Fuvest 013) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 75 a.c. e 195 a.c. Sabendo que em Assuã,

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm.

Um triângulo isósceles tem o lado diferente medindo 12 cm. Calcule as medidas dos outros dois lados, sabendo que o seu perímetro é de 40cm. EXERÍIO OMPLEMENTRES - MTEMÁTI - 8º NO - ENSINO FUNDMENTL - 2ª ETP ============================================================================================== 01- ssunto: Triângulos Um triângulo isósceles

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45).

Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Aula 12 Exercício 1: Basta duplicar o apótema dado e utilizar o problema 1 (pág.: 45). Exercício 2: Traçar a diagonal AB, traçar a mediatriz de AB achando M (ponto médio de AB). Com centro em AB M e raio

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA. Módulo 2. Unidades 19 e 20

MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA. Módulo 2. Unidades 19 e 20 MATEMÁTICA E SUAS TECNOLOGIAS MATEMÁTICA Módulo 2 Unidades 19 e 20 2 Unidade 19 A trigonometria do triângulo retângulo Para início de conversa... (Texto no interior do balão: Estou trabalhando

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Geometria Analítica Plana.

Geometria Analítica Plana. Geometria Analítica Plana. Resumo teórico e eercícios. 3º Colegial / Curso Etensivo. Autor - Lucas Octavio de Souza (Jeca) Estudo de Geometria Analítica Plana. Considerações gerais. Este estudo de Geometria

Leia mais

Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira.

Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira. A. P. 1 Matemática Grupo B 23.02.11 Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira. Aluno(a): Turma: Nota:

Leia mais

v m = = v(c) = s (c).

v m = = v(c) = s (c). Capítulo 17 Teorema do Valor Médio 17.1 Introdução Vimos no Cap. 16 como podemos utilizar a derivada para traçar gráficos de funções. Muito embora o apelo gráfico apresentado naquele capítulo relacionando

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

1 ÁREA DO TRIÂNGULO. 1.3 Fórmula trigonométrica. 1.1 Fórmula clássica. 1.4 Triângulo equilátero. 1.2 Triângulo retângulo. Matemática 2 Pedro Paulo

1 ÁREA DO TRIÂNGULO. 1.3 Fórmula trigonométrica. 1.1 Fórmula clássica. 1.4 Triângulo equilátero. 1.2 Triângulo retângulo. Matemática 2 Pedro Paulo Matemática 2 Pedro Paulo GEOMETRIA PLANA XVI 1 ÁREA DO TRIÂNGULO Neste capítulo, estamos encerrando o nosso estudo de Geometria Plana que, como o nome diz, é sobre figuras planas. E uma grandeza muito

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto:

Matemática. O coeficiente angular dado pelo 3º e 4º pontos é igual ao coeficiente angular dado pelo 1º e 3º. Portanto: Matemática O gráfico de uma função polinomial do primeiro grau passa pelos pontos de coordenadas ( x, y) dados abaixo x y 0 5 m 8 6 4 7 k Podemos concluir que o valor de k m é: A 5,5 B 6,5 C 7,5 D 8,5

Leia mais

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base

# Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto. Altura. Raio. Base # Cone Elementos #Cone Reto (ou de Revolução) #Panificação do Cone Reto Eixo eratriz Superfície Lateral eratriz eratriz Altura eratriz Altura Raio Base Raio Base Raio Base Raio # Secção Meridiana do Cone

Leia mais

Desenhando perspectiva isométrica

Desenhando perspectiva isométrica Desenhando perspectiva isométrica A UU L AL A Quando olhamos para um objeto, temos a sensação de profundidade e relevo. As partes que estão mais próximas de nós parecem maiores e as partes mais distantes

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Roteiro de recuperação 3º Bimestre Matemática 7 Ano

Roteiro de recuperação 3º Bimestre Matemática 7 Ano Roteiro de recuperação 3º Bimestre Matemática 7 Ano Nome: Nº Série/Ano Data: / / Professor(a): Décio/Fernanda/Vinicius Este roteiro tem o objetivo de promover maior qualidade de seu estudo para a Prova

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 5º ANO DISTRIBUIÇÃO ANUAL DAS UNIDADES TEMÁTICAS/ TEMPOS LETIVOS (AULAS DE 45 )

PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 5º ANO DISTRIBUIÇÃO ANUAL DAS UNIDADES TEMÁTICAS/ TEMPOS LETIVOS (AULAS DE 45 ) Uma Escola de Cidadania Uma Escola de Qualidade Agrupamento de Escolas Dr. Francisco Sanches PLANIFICAÇÃO POR UNIDADE TEMÁTICA MATEMÁTICA 5º ANO DISTRIBUIÇÃO ANUAL DAS UNIDADES TEMÁTICAS/ TEMPOS LETIVOS

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18

MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 MATEMÁTICA (UFOP 2ª 2009 PROVA A) Questões de 09 a 18 9. Na maquete de uma casa, a réplica de uma caixa d água de 1000 litros tem 1 mililitro de capacidade. Se a garagem da maquete tem 3 centímetros de

Leia mais

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série)

SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série) SOCIEDADE ASTRONÔMICA BRASILEIRA SAB VII Olimpíada Brasileira de Astronomia VII OBA - 2004 Gabarito do nível 3 (para alunos da 5ª à 8ª série) Questão 1) (1 ponto) Como você já deve saber o sistema solar

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

MCU Movimento Circular Uniforme Sem transmissão de movimento

MCU Movimento Circular Uniforme Sem transmissão de movimento MCU Movimento Circular Uniforme Sem transmissão de movimento 1. (Pucrj 2013) A Lua leva 28 dias para dar uma volta completa ao redor da Terra. Aproximando a órbita como circular, sua distância ao centro

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Escola Básica e Secundária de Velas

Escola Básica e Secundária de Velas Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Revisão Matemática Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br Metro é uma unidade básica para representação de medidas de comprimento no Sistema Internacional(SI). Prefixos

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

Calculando distâncias sem medir

Calculando distâncias sem medir alculando distâncias sem medir UUL L No campo ocorrem freqüentemente problemas com medidas que não podemos resolver diretamente com ajuda da trena. Por exemplo: em uma fazenda, como podemos calcular a

Leia mais

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC.

Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. Olá pessoal! Resolverei neste artigo a prova de Raciocínio Lógico do concurso para a SEFAZ-SP 2009 organizada pela FCC. 01. (SEFAZ-SP 2009/FCC) Considere o diagrama a seguir, em que U é o conjunto de todos

Leia mais

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss.

Matemática. Euclides Roxo. David Hilbert. George F. B. Riemann. George Boole. Niels Henrik Abel. Karl Friedrich Gauss. Matemática Jacob Palis Álgebra 1 Euclides Roxo David Hilbert George F. B. Riemann George Boole Niels Henrik Abel Karl Friedrich Gauss René Descartes Gottfried Wilhelm von Leibniz Nicolaus Bernoulli II

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais