APOSTILA TECNOLOGIA MECANICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "APOSTILA TECNOLOGIA MECANICA"

Transcrição

1 FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de J. Dutra Rafael Buist Victor Barreto Trabalho realizado como exigência parcial da disciplina Ética, ministrada pelo professor Tsen. Pompeia - SP 2011

2 SUMÁRIO 1- LEIS DE NEWTON VÍDEO 1º LEI DE NEWTON VÍDEO 2º LEI DE NEWTON VÍDEO 3º LEIS DE NEWTON Força de Atrito GRANDEZAS ESCARES VÍDEO GRANDEZAS ESCALARES VETORES VÍDEO: SENO, COSSENO E TANGENTE VÍDEO AULA RESOLVENDO EXERCÍCIO DIAGRAMA DE CORPO LIVRE REFERENCIA BIBLIOGRAFICA... 14

3 1 APOSTILA 1- LEIS DE NEWTON Na cinemática, estuda-se o movimento sem compreender sua causa. Na dinâmica, estudamos a relação entre a força e movimento. Força: É uma interação entre dois corpos. O conceito de força é algo intuitivo, mas para compreendê-lo, pode-se basear em efeitos causados por ela, como: Aceleração: faz com que o corpo altere a sua velocidade, quando uma força é aplicada. Deformação: faz com que o corpo mude seu formato, quando sofre a ação de uma força. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. Dadas várias forças aplicadas a um corpo qualquer: aplicadas: A força resultante será igual a soma vetorial de todas as forças

4 2 Leis de Newton As leis de Newton constituem os três pilares fundamentais do que chamamos Mecânica Clássica, que justamente por isso também é conhecida por Mecânica Newtoniana. 1ª Lei de Newton - Princípio da Inércia 1.1- VÍDEO 1º LEI DE NEWTON Quando estamos dentro de um carro, e este contorna uma curva, nosso corpo tende a permanecer com a mesma velocidade vetorial a que estava submetido antes da curva, isto dá a impressão que se está sendo "jogado" para o lado contrário à curva. Isso porque a velocidade vetorial é tangente a trajetória. Quando estamos em um carro em movimento e este freia repentinamente, nos sentimos como se fôssemos atirados para frente, pois nosso corpo tende a continuar em movimento estes e vários outros efeitos semelhantes são explicados pelo princípio da inércia, cujo enunciado é: "Um corpo em repouso tende a permanecer em repouso, e um corpo em movimento tende a permanecer em movimento." Então, conclui-se que um corpo só altera seu estado de inércia, se alguém, ou alguma coisa aplicar nele uma força resultante diferente se zero. 2ª Lei de Newton - Princípio Fundamental da Dinâmica 1.2- VÍDEO 2º LEI DE NEWTON Quando aplicamos uma mesma força em dois corpos de massas diferentes observamos que elas não produzem aceleração igual.

5 3 A 2ª lei de Newton diz que a Força é sempre diretamente proporcional ao produto da aceleração de um corpo pela sua massa, ou seja: ou em módulo: F=ma Onde: F é a resultante de todas as forças que agem sobre o corpo (em N); m é a massa do corpo a qual as forças atuam (em kg); a é a aceleração adquirida (em m/s²). A unidade de força, no sistema internacional, é o N (Newton), que equivale a kg m/s² (quilograma metro por segundo ao quadrado). Exemplo: Quando um força de 12N é aplicada em um corpo de 2kg, qual é a aceleração adquirida por ele? F= ma 12= 2a a=6 m/s² FORÇA DE TRAÇÃO Dado um sistema onde um corpo é puxado por um fio ideal, ou seja, que seja inextensível flexível e tem massa desprezível. Podemos considerar que a força é aplicada no fio, que por sua vez, aplica uma força no corpo, a qual chamamos Força de Tração.

6 4 3ª Lei de Newton - Princípio da Ação e Reação 1.3- VÍDEO 3º LEIS DE NEWTON Quando uma pessoa empurra um caixa com um força F, podemos dizer que esta é uma força de ação. Mas conforme a 3ª lei de Newton, sempre que isso ocorre, há uma outra força com módulo e direção iguais, e sentido oposto a força de ação, esta é chamada força de reação. Esta é o princípio da ação e reação, cujo enunciado é: "As forças atuam sempre em pares, para toda força de ação, existe uma força de reação." Força Peso Quando falamos em movimento vertical, introduzimos um conceito de aceleração da gravidade, que sempre atua no sentido a aproximar os corpos em relação à superfície. Relacionando com a 2ª Lei de Newton, se um corpo de massa m, sofre a aceleração da gravidade, quando aplicada a ele o princípio fundamental da dinâmica poderemos dizer que: A esta força, chamamos Força Peso, e podemos expressá-la como: ou em módulo: O Peso de um corpo é a força com que a Terra o atrai, podendo ser variável, quando a gravidade variar, ou seja, quando não estamos nas proximidades da Terra. A massa de um corpo, por sua vez, é constante, ou seja, não varia. Existe uma unidade muito utilizada pela indústria, principalmente quando tratamos de força peso, que é o quilograma-força, que por definição é:

7 5 1kgf é o peso de um corpo de massa 1kg submetido a aceleração da gravidade de 9,8m/s². A sua relação com o newton é: Além da Força Peso, existe outra que normalmente atua na direção vertical, chamada Força Normal. Esta é exercida pela superfície sobre o corpo, podendo ser interpretada como a sua resistência em sofrer deformação devido ao peso do corpo. Esta força sempre atua no sentido perpendicular à superfície, diferentemente da Força Peso que atua sempre no sentido vertical. Analisando um corpo que encontra-se sob uma superfície plana verificamos a atuação das duas forças. Para que este corpo esteja em equilíbrio na direção vertical, ou seja, não se movimente ou não altere sua velocidade, é necessário que os módulos das forças Normal e Peso sejam iguais, assim, atuando em sentidos opostos elas se anularão. Por exemplo: Qual o peso de um corpo de massa igual a 10kg: (a) Na superfície da Terra (g=9,8m/s²);

8 6 (b) Na superfície de Marte (g=3,724m/s²). (a) (b) Fonte: (conteúdo disponível no site: 2- Força de Atrito Até agora, para calcularmos a força, ou aceleração de um corpo, consideramos que as superfícies por onde este se deslocava, não exercia nenhuma força contra o movimento, ou seja, quando aplicada uma força, este se deslocaria sem parar. Mas sabemos que este é um caso idealizado. Por mais lisa que uma superfície seja, ela nunca será totalmente livre de atrito. Sempre que aplicarmos uma força a um corpo, sobre uma superfície, este acabará parando. É isto que caracteriza a força de atrito: (coeficiente de atrito); Se opõe ao movimento; Depende da natureza e da rugosidade da superfície É proporcional à força normal de cada corpo; Transforma a energia cinética do corpo em outro tipo de energia que é liberada ao meio.

9 7 A força de atrito é calculada pela seguinte relação: Onde: μ: coeficiente de atrito (adimensional) N: Força normal (N). Fonte: (conteúdo disponível no site: ). 3- GRANDEZAS ESCARES Grandeza física escalar É considerado grandeza escalar o comprimento, a velocidade, o tempo, temperatura, massa e energia dentre outros, pois para representá los basta ter um valor numérico com sua respectiva unidade de medida. Por exemplo, massa igual a 5 kg; grau igual a 30 C; tempo 10s; um comprimento de 20 m VÍDEO GRANDEZAS ESCALARES Grandeza física vetorial A diferença da grandeza física escalar para a vetorial é que na vetorial além do valor numérico deverá ter também direção e sentido. Por exemplo: Se uma pessoa perdida receber a informação de que sua casa está a 3 km dela, não será suficiente para chegar até a sua casa, pois precisará saber qual a direção e o sentido dessa direção que deverá seguir para andar 3 km e chegar até a sua casa. 4- VETORES Grandezas Escalares

10 8 Grandezas físicas como tempo, por exemplo, 5 segundos, ficam perfeitamente definidas quando são especificados o seu módulo (5) e sua unidade de medida (segundo). Estas grandezas físicas que são completamente definidas quando são especificados o seu módulo e a sua unidade de medida são denominadas grandezas escalares. A temperatura, área, volume, são também grandezas escalares. Grandezas Vetoriais Quando você está se deslocando de uma posição para outra, basta você dizer que percorreu uma distância igual a 5 m? Você precisa especificar, além da distância (módulo), a direção e o sentido em que ocorre este deslocamento. Quando o PUCK sofre um deslocamento de uma posição A para uma posição B, esta mudança de posição é definida pelo segmento de reta AB orientado, que une a posição inicial com a final, denominado neste caso de deslocamento (fig. 1). Figura 1 - Deslocamento do PUCK de uma posição A para B. Observe que o deslocamento não fica perfeitamente definido se for dada apenas a distância percorrida (por exemplo, 5,0 cm); há necessidade de especificar a direção e o sentido do deslocamento. Estas grandezas que são completamente definidas quando são especificados o seu módulo, direção e sentido, são denominadas grandezas vetoriais. Outras grandezas vetoriais: velocidade, aceleração, força... Vetores A representação matemática de uma grandeza vetorial é o vetor representado graficamente pelo segmento de reta orientado (Fig. 1), que apresenta as seguintes características: Módulo do vetor - é dado pelo comprimento do segmento em uma escala adequada (d = 5 cm). Direção do vetor - é dada pela reta suporte do segmento (30 o com a horizontal). Sentido do vetor - é dado pela seta colocada na extremidade do segmento. Notação: ou d: vetor deslocamento

11 9 a: vetor aceleração V: vetor velocidade Exemplo de vetores: a fig. 2 representa um cruzamento de ruas, tal que você, situado em O, pode realizar os deslocamentos indicados pelos vetores d 1, d 2, d 3, e d 4. Diferenciando estes vetores segundo suas características, tem-se que: Os vetores d 1 e d 3 têm a mesma direção, mesmo módulo, e sentidos opostos. Os vetores d 2 e d 4 têm a mesma direção, módulos diferentes e sentidos opostos. Os vetores d 1 e d 2 têm o mesmo módulo, direções e sentidos diferentes. Os vetores d 3 e d 4 têm módulos, direções e sentidos diferentes. Figura 2 - Vetores deslocamento. Adição de dois vetores Considere que o PUCK realizou os seguintes deslocamentos: 3,0 cm na direção vertical, no sentido de baixo para cima (d 1 ), e 4,0 cm na direção horizontal (d 2 ), no sentido da esquerda para a direita (fig. 5). O deslocamento resultante não é simplesmente uma soma algébrica (3 + 4), porque os dois vetores d 1 e d 2 têm direções e sentidos diferentes. Há dois métodos, geométricos, para realizar a adição dos dois vetores, d r = d 1 + d 2, que são: Figura 3 - Adição de dois vetores: Método da triangulação Método da triangulação: consiste em colocar a origem do segundo vetor coincidente com a extremidade do primeiro vetor, e o vetor soma (ou vetor resultante) é o que fecha o triângulo (origem coincidente com a origem do primeiro e extremidade coincidente com a extremidade do segundo) (Fig. 3).

12 10 Figura 4 - Adição de dois vetores: Método do paralelogramo Método do paralelogramo: consiste em colocar as origens dos dois vetores coincidentes e construir um paralelogramo; o vetor soma (ou vetor resultante) será dado pela diagonal do paralelogramo cuja origem coincide com a dos dois vetores (Fig. 4). A outra diagonal será o vetor diferença. Adição de dois vetores perpendiculares entre si Geometricamente, aplica-se o método da triangulação ou do paralelogramo (fig. 5) para determinar o vetor resultante d r. Figura 5 - Adição de dois vetores perpendiculares entre si Determina-se o módulo do vetor resultante aplicando-se o teorema de Pitágoras para o triângulo ABC da fig. 5. d 2 r = d d 2 (1) Aplicação numérica Sendo d 1 = 3 cm e d 2 = 4 cm, o módulo do vetor resultante d r é calculado substituindo estes valores em (1): d r 2 = = 25 d r = 5 cm Observação: O vetor diferença é obtido de modo análogo ao vetor soma; basta fazer a soma do primeiro vetor com o oposto do segundo vetor. d = d 1 + (-d 2 ) Componentes de um vetor Considere o vetor deslocamento d como sendo o da fig. 6a. Para determinar as componentes do vetor, adota-se um sistema de eixos cartesianos. As

13 11 componentes do vetor d, segundo as direções x e y, são as projeções ortogonais do vetor nas duas direções. Notação: d x : componente do vetor d na direção x d y : componente do vetor d na direção y Vamos entender o que seriam estas projeções. Para projetar o vetor na direção x basta traçar uma perpendicular da extremidade do vetor até o eixo x e na direção y traça-se outra perpendicular da extremidade do vetor até o eixo y; estas projeções são as componentes retangulares d x e d y do vetor d (fig. 6a). Figura 6a - Os vetores d x e d y são as componentes retangulares do vetor d. Qual o significado das componentes do vetor? Significa que os dois vetores componentes atuando nas direções x e y podem substituir o vetor d, produzindo o mesmo efeito. Para determinar os valores destas componentes, aplicam-se as relações trigonométricas para o triângulo retângulo OAB (fig.6a ou 6b). Figura 6b - Triângulo retângulo OAB. Para o triângulo OAB da fig. 6b, que é o da mesma da fig. 6a, valem as relações: sen = cateto oposto / hipotenusa = d y / d. Resolvendo para d y, tem-se que: d y = d sen Componente vertical do vetor d na direção Y (2a)

14 12 cos = cateto adjacente / hipotenusa = d x / d. Resolvendo para d x, tem-se que: d x = d cos Componente horizontal do vetor d na direção X (2b) Aplicação numérica Considerando que o módulo do vetor deslocamento é igual a 3,0 m, e o ângulo que este deslocamento faz com a direção X é igual a 60 o, determinar as componentes deste vetor, d x e d y. Substituindo em (2b): d x = 1,5 m d x = d cos = 3,0 cos 60 o = 3,0 * 0,50 Substituindo em (2a): d y = d sen = 3,0 sen 60 o = 3,0 * 0,87 d y 2,6 m Fonte: (conteúdo disponível no site: educar.sc.usp.br/fisica/vetores.html) 4.1- VÍDEO: SENO, COSSENO E TANGENTE. Somatória de forças igual à zero ( F=0)

15 VÍDEO AULA RESOLVENDO EXERCÍCIO DIAGRAMA DE CORPO LIVRE Slide de apoio: Site de apoio:

16 14 5- REFERENCIA BIBLIOGRAFICA Mundo Educação. Disponível em: Sentido. Acessado em: 20 setembro Vetores. Disponível em: Acessado em: 20 setembro Só Física. Disponível em: Acessado em: 23 setembro 2013.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Recuperação. - Mecânica: ramo da Física que estuda os movimentos; Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças.

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças. 14 Curso Básico de Mecânica dos Fluidos Objetivos da segunda aula da unidade 1: Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

FÍSICA. Figura 5.1 Ventilador

FÍSICA. Figura 5.1 Ventilador FÍSICA 1 MECÂNICA MECÂNICA I II Mecânica Gráfica para alunos do ensino 3. médio Pêndulo utilizando simples o PUCK 5. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N

UNIDADE NO SI: F Newton (N) 1 N = 1 kg. m/s² F R = 6N + 8N = 14 N F R = 7N + 3N = 4 N F 2 = 7N Disciplina de Física Aplicada A 2012/2 Curso de Tecnólogo em Gestão Ambiental Professora Ms. Valéria Espíndola Lessa DINÂMICA FORÇA: LEIS DE NEWTON A partir de agora passaremos a estudar a Dinâmica, parte

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

Como erguer um piano sem fazer força

Como erguer um piano sem fazer força A U A UL LA Como erguer um piano sem fazer força Como vimos na aula sobre as leis de Newton, podemos olhar o movimento das coisas sob o ponto de vista da Dinâmica, ou melhor, olhando os motivos que levam

Leia mais

Aula 00 Aula Demonstrativa

Aula 00 Aula Demonstrativa Aula 00 Aula Demonstrativa Apresentação... Relação das questões comentadas... 10 Gabaritos... 11 www.pontodosconcursos.com.br 1 Apresentação Olá, pessoal! Tudo bem com vocês? Esta é a aula demonstrativa

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo:

UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: UNIDADE III Energia: Conservação e transformação. Aula 10.2 Conteúdo: Estudo das forças: aplicação da leis de Newton. Habilidades: Utilizar as leis de Newton para resolver situações problemas. REVISÃO

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Retas e Planos. Equação Paramétrica da Reta no Espaço

Retas e Planos. Equação Paramétrica da Reta no Espaço Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x

Leia mais

Considerando o seguinte eixo de referência:

Considerando o seguinte eixo de referência: FORÇA É uma interacção que se estabelece entre dois corpos capaz de alterar o seu estado de movimento ou de repouso ou de lhes causar deformação. Podem ser interacções à distância ou interacções de contacto.

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

Você pode ter experimentado a ação das forças elétrica e magnética.

Você pode ter experimentado a ação das forças elétrica e magnética. Forças e interações Cotidianamente você lida com forças e quase nunca questiona que tipo de força está agindo sobre você ou que tipo de força você está exercendo sobre os objetos à sua volta. Todos nós

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

TEORIA UNIDIMENSIONAL DAS

TEORIA UNIDIMENSIONAL DAS Universidade Federal do Paraná Curso de Engenharia Industrial Madeireira MÁQUINAS HIDRÁULICAS AT-087 Dr. Alan Sulato de Andrade alansulato@ufpr.br INTRODUÇÃO: O conhecimento das velocidades do fluxo de

Leia mais

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo?

LOOPING 1 INTRODUÇÃO. 1.3 Problema (a)- Qual deve ser a altura da queda para que o carro faça o Looping completo? FUNDAÇÃO ESCOLA TÉCNICA LIBERATO SALZANO VIEIRA DA CUNHA Projeto de Pesquisa da Primeira Série Série: Primeira Curso: Eletrotécnica Turma: 2112 Sala: 234 Início: 17 de junho de 2009 Entrega: 23 de junho

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

COLÉGIO ESTADUAL YVONE PIMENTEL DISCIPLINA: FÍSICA (Professor Ronald Wykrota) EJA INDIVIDUAL 1ª SÉRIE - AULAS 01 e 02

COLÉGIO ESTADUAL YVONE PIMENTEL DISCIPLINA: FÍSICA (Professor Ronald Wykrota) EJA INDIVIDUAL 1ª SÉRIE - AULAS 01 e 02 EJA INDIVIDUAL 1ª SÉRIE - AULAS 01 e 02 FÍSICA: Física é a ciência exata que tem por objeto de estudo os fenômenos que ocorrem na natureza. Através do entendimento dos fenômenos da natureza, podemos entender

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS FQA Ficha 3 - Forças fundamentais, leis de Newton e Lei da gravitação universal 11.º Ano Turma A e B 1 outubro 2014 NOME Nº Turma 1. Associe um número da coluna 1 a uma

Leia mais

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças:

Imagine que você esteja sustentando um livro de 4N em repouso sobre a palma de sua mão. Complete as seguintes sentenças: UNIVERSIDADE FEDERAL DE SANTA CATARINA-CFM DEPARTAMENTO DE FÍSICA FSC 5107 FÍSICA GERAL IA- Semestre 2012.2 LISTA DE EXERCÍCIOS 4 LEIS DE NEWTON (PARTE I) Imagine que você esteja sustentando um livro de

Leia mais

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA:

NOME: Nº. ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: NOME: Nº 1 o ano do Ensino Médio TURMA: Data: 11/ 12/ 12 DISCIPLINA: Física PROF. : Petrônio L. de Freitas ASSUNTO: Recuperação Final - 1a.lista de exercícios VALOR: 13,0 NOTA: INSTRUÇÕES (Leia com atenção!)

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

DINÂMICA DO PONTO MATERIAL

DINÂMICA DO PONTO MATERIAL DINÂMICA DO PONTO MATERIAL 1.0 Conceitos Forças se comportam como vetores. Forças de Contato: Representam o resultado do contato físico entre dois corpos. Forças de Campo: Representam as forças que agem

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

A trigonometria do triângulo retângulo

A trigonometria do triângulo retângulo A UA UL LA A trigonometria do triângulo retângulo Introdução Hoje vamos voltar a estudar os triângulos retângulos. Você já sabe que triângulo retângulo é qualquer triângulo que possua um ângulo reto e

Leia mais

B. Descreva, de maneira similar ao texto acima, as outras forças que você indicou no diagrama.

B. Descreva, de maneira similar ao texto acima, as outras forças que você indicou no diagrama. FORÇAS I. Identificando forças Duas pessoas tentam mover um grande bloco. O bloco, contudo, não se move. Cristiano empurra o bloco. Márcia puxa uma corda que por sua vez está ligada ao bloco. esboço que

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

INTRODUÇÃO À ENGENHARIA

INTRODUÇÃO À ENGENHARIA INTRODUÇÃO À ENGENHARIA 2014 NOTA AULA PRÁTICA No. 04 VETORES - 20 A 26 DE MARÇO PROF. ANGELO BATTISTINI NOME RA TURMA NOTA Objetivos do experimento: Nesta aula você deverá aprender (ou recordar) a representação

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições.

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. Habilidade: Compreender os conceitos físicos relacionados a estática de um ponto material

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

CINEMÁTICA SUPER-REVISÃO REVISÃO

CINEMÁTICA SUPER-REVISÃO REVISÃO Física Aula 10/10 Prof. Oromar Baglioli UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO PARA

Leia mais

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1: O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!

Leia mais

LISTA UERJ 2014 LEIS DE NEWTON

LISTA UERJ 2014 LEIS DE NEWTON 1. (Pucrj 2013) Sobre uma superfície sem atrito, há um bloco de massa m 1 = 4,0 kg sobre o qual está apoiado um bloco menor de massa m 2 = 1,0 kg. Uma corda puxa o bloco menor com uma força horizontal

Leia mais

LISTA 3 - LEI DE COULOMB

LISTA 3 - LEI DE COULOMB LISTA 3 - LEI DE COULOMB 1. Duas cargas puntiformes eletrizadas estão fixadas a 3,0 mm uma da outra. Suas cargas elétricas são idênticas e iguais a 2,0 nc, positivas. Determine a intensidade da força eletrostática

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

FÍSICA. Questões de 01 a 06

FÍSICA. Questões de 01 a 06 FIS. 1 FÍSICA Questões de 01 a 06 01. Um estudante de Física executou um experimento de Mecânica, colocando um bloco de massa m = 2kg sobre um plano homogêneo de inclinação regulável, conforme a figura

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

MAGNETISMO - ELETROMAGNETISMO

MAGNETISMO - ELETROMAGNETISMO MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire

Leia mais

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos Mecânica dos Fluidos Unidade 1- Propriedades Básicas dos Fluidos Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito Sólido é duro e muito pouco deformável

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica

Unidade 10 Teoremas que relacionam trabalho e energia. Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Unidade 10 Teoremas que relacionam trabalho e energia Teorema da energia cinética Teorema da energia potencial Teorema da energia mecânica Teorema da nergia Cinética Quando uma força atua de forma favorável

Leia mais

Dinâmica do movimento de Rotação

Dinâmica do movimento de Rotação Dinâmica do movimento de Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: O que significa o torque produzido por uma força;

Leia mais

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos

Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Ano Letivo 2015/ 2016 Matriz do Teste de Avaliação de Física e Química A - 11.º ano 1 de fevereiro de 2016 120 minutos Objeto de avaliação O teste tem por referência o programa de Física e Química A para

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

AULA DE REPOSIÇÃO 001 / 3º ANO

AULA DE REPOSIÇÃO 001 / 3º ANO UL DE REPOSIÇÃO 00 / 3º NO Introdução Inicialmente, para a primeira aula, será feita uma retomada de todo o assunto já estudado, uma vez que não é nada fácil simplesmente retomar o conteúdo sem que sejam

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

1 ELEMENTOS DA CIRCUNFERÊNCIA

1 ELEMENTOS DA CIRCUNFERÊNCIA Matemática 2 Pedro Paulo GEOMETRIA PLANA II 1 ELEMENTOS DA CIRCUNFERÊNCIA Circunferência é o conjunto de pontos que está a uma mesma distância (chamaremos essa distância de raio) de um ponto fixo (chamaremos

Leia mais

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento

Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Lista de Exercícios de: Trabalho de uma força paralela ao deslocamento Quando aplicamos uma força sobre um corpo, provocando um deslocamento, estamos gastando energia, estamos realizando um trabalho. Ʈ

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta. Lista de Eletromagnetismo 1 Analise as afirmativas seguintes e marque a opção correta. I. Se duas barras de ferro sempre se atraem, podemos concluir que uma das duas não está magnetizada. II. Para conseguirmos

Leia mais

Deverão ser apresentados os cálculos e/ou as justificativas das respostas.

Deverão ser apresentados os cálculos e/ou as justificativas das respostas. Ensino Médio Unidade Parque Atheneu Professor (a): Pedro Paulo Aluno (a): Série: 2ª Data: / / 2015. LISTA DE FÍSICA I Deverão ser apresentados os cálculos e/ou as justificativas das respostas. 1) (FAMERP

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

Vetores. Definição geométrica de vetores

Vetores. Definição geométrica de vetores Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

3.1. Classifique: 3.1.1. o tipo de movimento da formiga. 3.1.2. o tipo de movimento da barata.

3.1. Classifique: 3.1.1. o tipo de movimento da formiga. 3.1.2. o tipo de movimento da barata. Escola Secundária Vitorino Nemésio Segundo teste de avaliação de conhecimentos de Física e Química A Componente de Física 11º Ano de Escolaridade Turma C 10 de Dezembro de 2008 Nome: Nº Classificação:

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA DE BELAS ARTES SISTEMA GEOMÉTRICO DE REPRESENTAÇÃO I PROF. CRISTINA GRAFANASSI TRANJAN MÉTODOS DESCRITIVOS Há determinados problemas em Geometria Descritiva

Leia mais

Programa de Retomada de Conteúdo - 3º Bimestre

Programa de Retomada de Conteúdo - 3º Bimestre Educação Infantil, Ensino Fundamental e Ensino Médio Regular. Rua Cantagalo 313, 325, 337 e 339 Tatuapé Fones: 2293-9393 e 2293-9166 Diretoria de Ensino Região LESTE 5 Programa de Retomada de Conteúdo

Leia mais